大气气溶胶卫星遥感反演研究综述

大气气溶胶卫星遥感反演研究综述
大气气溶胶卫星遥感反演研究综述

龙源期刊网 https://www.360docs.net/doc/9615952470.html,

大气气溶胶卫星遥感反演研究综述

作者:苏倩欣李婧陈敏瑜

来源:《科技创新导报》2019年第36期

气溶胶灭火系统说明书

目录 一、热气溶胶灭火技术简介 (2) 1、YHQRR热气溶胶灭火机理 (2) 2、YHQRR热气溶胶灭火技术性能 (2) 二、YHQRR热气溶胶灭火装置的技术特点 (3) 1、可靠的启动装置 (3) 2、独特的冷却装置 (3) 3、产品选型及分类 (3) 4、灵活的应用方式 (4) 5、市场技术优势 (4) 三、YHQRR热气溶胶灭火系统设计要求 (4) 1、YHQRR热气溶胶灭火系统适用范围 (4) 2、YHQRR热气溶胶灭火系统设计基本参数 (4) 3、YHQRR热气溶胶灭火剂设计用量计算 (5) 4、YHQRR热气溶胶灭火系统配置要求 (5) 四、YHQRR热气溶胶灭火系统注意事项 (7) 1、YHQRR热气溶胶灭火系统设计、施工注意事项 (7) 2、YHQRR热气溶胶灭火系统调试注意事项 (7) 3、YHQRR热气溶胶灭火系统管理注意事项 (7)

一、热气溶胶灭火技术简介 1、YHQRR热气溶胶灭火机理 “气溶胶”是指液态或固态的微粒悬浮于气体介质中的一种物质,其灭火机理如下所述: 1.1、吸热降温灭火机理 热气溶胶产物中的固体微粒主要为M2O、M2CO3和MHCO3,这三种物质在火焰上均会发生强烈的吸热反应。M2O在温度大于350℃时就会分解,M2CO3的熔点为891℃,超过这个温度就会分解,MHCO3在100℃开始分解,200℃时完全分解,这些都是强烈的吸热反应,另外,M2O和C在高温下还可能进行如下吸热反应: M2O+C→2M+CO 2M2O+C→4M+CO2 上述反应都是强烈的吸热反应,这些固体微粒在火场中发生上述化学反应之前的物理气化过程中还需要从火焰中吸收大量的热,使其达到上述反应所需的温度而进行反应。任何火灾在较短的时间内所释出的热量是有限的,如果在较短的时间内,气溶胶中的上述固体微粒能够吸收火焰的部分热量,那么火焰的温度就会降低,则辐射到可燃烧物燃烧面时,用于气化可燃物分子和将已经气化的可燃烧分子裂解成自由基的热量就会减少,燃烧反应的速度就会得到一定程度的抑制,这种作用在火灾初期尤为明显。 1.2、化学抑制灭火机理 ①气相化学抑制作用 通过上述的一系列吸热反应以后,气溶胶固体微粒所分解出的M可以以蒸气或失去电子的阳离子形式存在。它与燃烧中的活性基团H·、O·和·OH的亲合力反应能力要比这些基团以及这些基团与其它可燃物分子或自由基之间的亲合反应能力大得多,故可在瞬间与这些基团发生多次链式反应: M+·OH→MOH M+O·→MO MOH+·OH→KO+H2OMOH+H·→M+H2O 如此反复大量消耗活性基团,并抑制活性基团之间的放热反应,从而将燃烧的链式反应中断,使燃烧得到抑制。 ②固相化学抑制 气溶胶中的固体微粒是很微小的,具有很大的比表面积和表面能,属典型的热力学不稳定体系,它具有强烈地使自己表面能降低以期达到一种相对稳定状态的趋势。因此它可以有选择性地吸附一些带电离子,使其表层的不饱和力场得到补偿而达到某种相对稳定状态。另外这些微粒虽小,但相对于自由基团和可燃物裂解产物的尺寸来说却要大得多,相比对活性自由基团和可燃物裂解产物具有相当大的吸附能力。这些微粒在火场中被加热以致发生气化和分解是需要一定时间的,而且也不可能完全被气化或分解。当它们进入火场以后,当受到可燃物裂解产物和自由活性基团的撞碰冲击后,瞬间对这些产物和基团进行物理或化学吸附,并可在其表面与活性的基团发生化学作用。可发生以下反应: M2O+2·H→2KOHMOH+·H→MO+H2O MO+·H→KOHM2CO3+2·H→2MHCO3 通过以上化学或物理作用达到消耗燃烧活性自由基团的目的,另外吸附了可燃物裂解产物而未被气化分解的微粒,可使得可燃物裂解的低分子产物不再参与产生活性自由基的反应,这将减少自由基产生的来源,从而抑制燃烧速度。 1.3、惰性气体窒息机理 热气溶胶灭火剂是一种自携氧可燃混合型药剂,其配方设计一般为正氧平衡和零氧平衡,这使得其在反应释放气溶胶的过程中不需消耗空中的氧,所以它一般不会降低防护区的氧含量。那么其所释放的惰性气体是如何局部对燃烧区的氧含量进行降低呢?这应该是通过CO2来实现的,因为CO2比空气重(CO2的分子量为44,空气的平均分子量为29),所以当火源较低时,CO2气体通过重力可下降到燃烧区取代空气使这一区域氧含量局部降低。 总的来说,热气溶胶的灭火作用是以上两种机理协同发挥作用的结果,其中以固体微粒的吸热降温和化学抑制作用为主,惰性气体的窒息作用为辅。 2、YHQRR热气溶胶灭火技术性能 2.1、技术经济性 热气溶胶灭火装置形态多样、配置灵活、启动可靠,可干净、迅速、高效、低成本的早期灭火和抑爆,是目前较理想的环保型灭火系统。热气溶胶灭火系统工作时,是在固体气溶胶发生剂通过热化学燃烧反应过程中生成的,

S型热气溶胶自动灭火装置简介

洁净环境S型热气溶胶自动灭火装置(以下简称S型自动灭火装置)是由东莞永业消防设备有限公司利用现代消防化工技术研制和生产的环保型混合气体灭火产品。在生产过程中无毒、实施灭火过程中效率高、压力低、无残留物、对被保护物无腐蚀、安全性强、不存在F、C1、Br、CO等有害物质,pdp=0、GEP ≤0.35、目前是消防领域用途比较广泛的灭火产品。 S型热气溶胶自动灭火装置的原理是以物理、化学、水汽降温三种灭火方式同时进行的全淹没灭火形式: 物理性质:以物理性稀释空气中氧气“窒息灭火”为主要方式,切断火焰反应链进行链式反应破坏火灾现场的燃烧条件,迅速降低自由基的溶度。 化学性质:存在抑制链式燃烧反应进行的化学灭火方式。 水汽性质:水蒸气冷凝与气化降低燃烧物温度。 适用范围 S型热气溶胶灭火系统为全淹没系统,适用于扑灭相对封闭空间的A、B类火灾以及电气电缆初起火灾。 a、扑灭A类火灾: 如木材、纸张等固体物质初起火灾,适用于木制品库、档案库、博物馆、图书馆、资料室等场所。 b、扑灭B类火灾: 适用于生产、适用或贮存才有(-35号柴油除外)、重油、变压器油、动物油、植物油等各类丙类可燃液体场所火灾。 c.扑灭电气电缆火灾: 适用于变(配)电间、发电机房、电缆夹层、电缆井、电缆沟、电子计算机房、通讯房等场所的火灾。 不适用范围 1、S型自动灭火装置不能用于扑救下列物质引起的火灾: 2、无空气仍能迅速氧化的化学物质,如硝酸纤维、火药等。 3、活泼金属,如钾、钠、镁、钛、锆、铀、钚等。 4、能自行分解的化合物,如某些过氧化物、联氨等。 5、金属氢化物,如氢化钾、氢化钠等。 6、能自燃的物质,如磷等。 7、强氧化剂,如氧化氮、氟等。 不适用场所 商业、饮食服务、娱乐等人员密集场所。 存放易燃、易爆物资的场所。

遥感反演PM2.5的文献阅读笔记

一、PM2.5遥感反演基本原理 卫星遥感反演大气气溶胶是基于卫星传感器探测到的大气上界的表观反射率,也是卫星传感器接收到的辐射值L 。 ))(1/(),(),(),,,(''0ρτρμτμτμμτa s a s a d v s a S T F L L -?+Φ= 0L 为整层大气反射的太阳辐射,主要来自于大气中分子和气溶胶的散射贡献; ) ,(s a d F μτ为太阳下行总辐射;),(s a T μτ为传感器和目标物之间的透过率;'ρ为地表反射率; )(a S τ为大气半球反照率。 由上式可看出卫星观测到的反射率既是AOD 的函数,又是下垫面反射率的函数,如果知道下垫面反射率,并根据不同地区的气溶胶特征确定大气气溶胶的模型就可以得到AOD 。 因此利用AOD 与地面监测指标之间的数学关系,进而建立相应的数学统计模型,这就是基于卫星遥感反演AOD 进而通过统计模型预测PM2.5的基本原理和思路。 二、遥感数据源 目前能用于反演PM2.5的遥感传感器主要有云-气溶胶光达和红外探险者卫星观测器CALIPSO 、中分辨率成像光谱仪MODIS 、多角度成像光谱仪MISR 、多角度多通道偏振探测器 POLDER 、大气臭氧总量绘图仪TOMS 和TOMS 的后继者臭氧监测仪OMI 。 目前应用最多的传感器主要是MODIS 和MISR 。 三、PM2.5时空分布计算方法 利用遥感反演的AOD 结合影响PM2.5的其他因素,采用统计方法间接计算PM2.5时空分布是当前主要的方法。 其计算方法大体可以分为简单线性模型、多元线性回归模型、人工智能模型和广义加法模型4种。 简单线性模型是利用近地面监测站的PM2.5浓度与AOD 之间的简单二元关系建立的,是较早用于PM2.5反演的模型构建方法。 多元线性回归模型除了考虑AOD 外,还将与PM2.5有相关性的湿度、温度、风速、气溶胶类型、大气边界层高度等因素作为自变量,因此多自变量进行PM2.5多元线性回归,其精度得到显著的提高。 由于PM2.5浓度的时空分布受到气象场、排放源、复杂下垫面、理化生过程的耦合等多种因素的影响,具有较强的非线性特性。有学者采用神经网络模型、支持向量机模型、贝叶斯网络算法、基因算法等人工智能算法进行PM2.5时空分布计算,取得较好的应用效果。 广义相加模型GAM 是线性模型非参数化的扩展将一些与因变量间存在的复杂非线性关系的自变量以不同函数加和的形式拟合入模型可以探索到变量间非单调非线性关系从中找

大气气溶胶相关研究综述

摘要 近日,环保部公布了我国第一部综合性大气污染防治规划——《重点区域大气污染防治“十二五”规划》。事实上,随着大气污染给人民生活带来的不便增多,人们空前关注大气科学进展以及PM2.5治理的理论依据。本文将从三个方面对大气气溶胶的研究做出总结和分析:大气气溶胶的基本特征,大气气溶胶的气候效应,国内外相关的大气气溶胶研究计划。 关键词:大气气溶胶;气候效应;环境健康;研究综述 前言 气溶胶是指长时间悬浮在空气中能被观察或测量的液体或固体粒子,其实际直径一般为0.001~100μm,动力学直径为0.002~100μm,对人体、环境、气候等产生着重要的影响。 [4] 由于大气气溶胶在气候、环境等方面的重要作用,近年来越来越引起科学界的重视。 很多过程可以产生气溶胶,根据来源可分为自然气溶胶和人为气溶胶。自然源主要是海洋、土壤和生物圈以及火山等;人为源主要来自化石燃料的燃烧、工农业生产活动等。工业革命以来,人类活动不仅直接向大气排放大量粒子,更重要的是向大气排放大量的SO2和SO X,NO2和NO X在大气中通过非均相化学反应逐渐转化成硫酸盐和硝酸盐粒子,形成二次气溶胶。污染气体形成的大气气溶胶自工业革命以来有大幅度增加。来自自然源的气溶胶如沙尘,也由于人类活动利用土地变化而发生着改变。尽管气溶胶只是地球大气成分中含量很少的组分,但由于其在许多大气过程中的重要作用而日益受到重视。随着环境污染问题的发展,人们已认识到大气气溶胶自身的污染特性与其物理化学性质以及在大气中的非均相化学反应有着密切的关系。[5] 气溶胶还与其他环境问题如臭氧层的破坏、酸雨的形成、烟雾事件的发生等密切相关。此外,气溶胶对人体和其他生物的生理健康也有其特有的影响。[1] 由于气溶胶的气候效应问题,气溶胶再次成为国际学术界的研究热点之一,大气气溶胶是当今大气化学研究中前沿的领域。国际大气化学研究计划(IGAC)科学指导委员会于1994年将国际全球大气化学研究计划和国际气溶胶计划(ICAP)合并重组,大气气溶胶研究被列为3大研究方向之一。大气气溶胶的研究内容,发展到包括物理和化学的性状、来源和形成、时空分布、对气候变化和环境质量的影响以及对大气化学过程的影响等多方面、多层次的综合研究,也涉及到大气科学的各个领域,具有很强的综合性。

气溶胶灭火装置操作规程

气溶胶灭火装置操作规程 一、气溶胶的灭火机理 热气溶胶是由凝集法形成的凝集性气溶胶,生成的燃烧产物在离开火焰后冷却而凝集成固态粒子。由于其粒径小,扩散性能好,可以扩散到灭火空间的任一角落,而且沉降作用较弱,粒子可以在防火保护空间长时间地保持悬浮状态,而作为全淹没灭火剂使用。 气溶胶中占绝对多数的是气体,固体颗粒主要是金属氧化物和碳酸盐类,气体产物是N2,少量CO2和CO,主要靠固体微粒吸热分解降温作用,气相和固相的化学抑制作用及惰性气体的稀释作用实现灭火。形成的气溶胶固体微粒直径在1μ m左右,这个粒级的粒子粒径远小于干粉灭火剂的极限粒径。进入到火焰中的微粒,从火焰中吸收热量自身温度升高(热熔作用),当温度上升到一定值时,微粒发生熔化,气化或分解,进一步吸收热量,其吸热降温作用是很明显的。例如K2O 在温度大于350℃时分解,K2CO3,温度大于891℃就会分解起吸热反应。对于小粒子来说,气化分解生成的气体物质对火焰均相抑制作用过程起主导作用,并且由于小粒子在火焰中的驻留时间较长,其非均相抑制作用也得到增强。此外小粒子的气化分解能使火焰得到冷却,因而在气溶胶灭火过程中存在着物理灭火作用和化学灭火作用的协同效应,灭火效率较高。 由于形成的气溶胶微粒非常小,具有较强的扩散性,气溶胶可以绕过障碍物流动,可以进入到微小空隙之内,具有

类似于气体的性质。气溶胶固体微粒具有较大的表面积,并能在可燃物火焰中吸热,发生气化和分解反应而降低火焰温度,其均相和非均相化学抑制作用都非常强,因而具有较高的灭火效力。 二、气溶胶灭火系统组件及功能作用 灭火系统主要包括三部分:灭火装臵、控制装臵和报警装臵。 灭火装臵主要由药筒、气体发生器、箱体组成。药筒由电点火器、引燃药、灭火药剂和外壳组成,药简装在气体发生器内。气体发生器一般由消焰冷却室和冷却室组成,发生器装在箱体内。箱体只起保护装饰作用,根据不同型号一个箱体可装数个气体发生器。 报警装臵包括:感烟探测器、感温探测器、放气指示灯、声光报警盒、紧急启停按钮等。 控制装臵一般均具有双回路火警探测报警功能,提供故障报警输出、火警报警输出,可贮存火警、操作记录等。 当有火灾发生时,温感、烟感探测器均探测到火灾信号后,控制装臵发出复合火警报警声。此时,若控制装臵处在手动状态下,值班人员可立刻通过紧急启停按钮和控制装臵本身的急启按钮启动灭火装臵,实现灭火。若控制装臵处在自动状态下,一般经过30s延时后,控制装臵便输出一个启动电流至灭火装臵引发电点火器,由电点火器点燃引燃剂,使点火能量扩大,再点燃灭火剂,灭火剂进行燃烧化学反应产生气溶胶。产生的气溶胶经消焰、冷却后由喷口喷出,到

气溶胶灭火系统说明书

一、热气溶胶灭火技术简介 1、YHQRR 热气溶胶灭火机理 .... 2、YHQRR 热气溶胶灭火技术性能 目录 .2 二、 YHQRR 热气溶胶灭火装置的技术特点 3... 1、可靠的启动装置 2、独特的冷却装置 3、产品选型及分类 4、灵活的应用方式 5、市场技术优势 .. 3 3 3 4 4 三、 YHQRR 热气溶胶灭火系统设计要求 4 .. 1、YHQRR 热气溶胶灭火系统适用范围 ..... 2、YHQRR 热气溶胶灭火系统设计基本参数 3、YHQRR 热气溶胶灭火剂设计用量计算 4、YHQRR 热气溶胶灭火系统配置要求 ..... 4 4 5 5 四、 YHQRR 热气溶胶灭火系统注意事项 7.. 1、YHQRR 热气溶胶灭火系统设计、施工注意事项 2、YHQRR 热气溶胶灭火系统调试注意事项 ...... 3、YHQRR 热气溶胶灭火系统管理注意事项 ......

、热气溶胶灭火技术简介 1、YHQRR 热气溶胶灭火机理 “气溶胶” 是指液态或固态的微粒悬浮于气体介质中的一种物质,其灭火机理如下所述: 1.1、吸热降温灭火机理 热气溶胶产物中的固体微粒主要为M20 、M2C03 和MHC03 ,这三种物质在火焰上均会发生强烈的吸热反应。 M20在温度大于350C时就会分解,M2C03的熔点为891 C,超过这个温度就会分解,MHC03在100C开始分解, 200 C时完全分解,这些都是强烈的吸热反应,另外,M20和C在高温下还可能进行如下吸热反应: M20+CH2 M+C0 2M 20+CH4M+C02 上述反应都是强烈的吸热反应,这些固体微粒在火场中发生上述化学反应之前的物理气化过程中还需要从火焰 中吸收大量的热,使其达到上述反应所需的温度而进行反应。任何火灾在较短的时间内所释出的热量是有限的,如果在较短的时间内,气溶胶中的上述固体微粒能够吸收火焰的部分热量,那么火焰的温度就会降低,则辐射到可燃烧物燃烧面时,用于气化可燃物分子和将已经气化的可燃烧分子裂解成自由基的热量就会减少,燃烧反应的速度就会得到一定程度的抑制,这种作用在火灾初期尤为明显。 1.2、化学抑制灭火机理 ①气相化学抑制作用通过上述的一系列吸热反应以后,气溶胶固体微粒所分解出的M 可以以蒸气或失去电子的阳离子形式存在。它 与燃烧中的活性基团H ?、0 ?和0H的亲合力反应能力要比这些基团以及这些基团与其它可燃物分子或自由基之间的亲合反应能力大得多,故可在瞬间与这些基团发生多次链式反应: M + - 0hH M0H M +0-HM0 M 0H+- 0hHK0+H20 M 0H+H H M +H20 如此反复大量消耗活性基团,并抑制活性基团之间的放热反应,从而将燃烧的链式反应中断,使燃烧得到抑制。 ②固相化学抑制气溶胶中的固体微粒是很微小的,具有很大的比表面积和表面能,属典型的热力学不稳定体系,它具有强烈地 使自己表面能降低以期达到一种相对稳定状态的趋势。因此它可以有选择性地吸附一些带电离子,使其表层的不饱和力场得到补偿而达到某种相对稳定状态。另外这些微粒虽小,但相对于自由基团和可燃物裂解产物的尺寸来说却要大得多,相比对活性自由基团和可燃物裂解产物具有相当大的吸附能力。这些微粒在火场中被加热以致发生气化和分解是需要一定时间的,而且也不可能完全被气化或分解。当它们进入火场以后,当受到可燃物裂解产物和自由活性基团的撞碰冲击后,瞬间对这些产物和基团进行物理或化学吸附,并可在其表面与活性的基团发 生化学作用。可发生以下反应: M 2O+2- HH2K0H M 0H+- HH M0+H20 M 0+- HH KOH M 2CO3+2 - H H TM HCO3 通过以上化学或物理作用达到消耗燃烧活性自由基团的目的,另外吸附了可燃物裂解产物而未被气化分解的微粒,可使得可燃物裂解的低分子产物不再参与产生活性自由基的反应,这将减少自由基产生的来源,从而抑制燃烧速度。 1.3、惰性气体窒息机理热气溶胶灭火剂是一种自携氧可燃混合型药剂,其配方设计一般为正氧平衡和零氧平衡,这使得其在反应释放气溶胶的过程中不需消耗空中的氧,所以它一般不会降低防护区的氧含量。那么其所释放的惰性气体是如何局部对燃烧区的氧含量进行降低呢?这应该是通过C02 来实现的,因为C02 比空气重(C02 的分子量为44,空气的平均分子量为29),所以当火源较低时, C02 气体通过重力可下降到燃烧区取代空气使这一区域氧含量局部降低。 总的来说,热气溶胶的灭火作用是以上两种机理协同发挥作用的结果,其中以固体微粒的吸热降温和化学抑制作用为主,惰性气体的窒息作用为辅。 2、YHQRR 热气溶胶灭火技术性能 2.1、技术经济性热气溶胶灭火装置形态多样、配置灵活、启动可靠,可干净、迅速、高效、低成本的早期灭火和抑爆,是目前较理想的环保型灭火系统。热气溶胶灭火系统工作时,是在固体气溶胶发生剂通过热化学燃烧反应过程中生成的,气溶胶灭火剂释放到被保护空间。同时无需管网和高压容器等,灭火装置直接安装在防护区内,体积小、安装方便,可大大节省建设投资,可靠性好,无需维护,运行费用低。 2.2、对设备的安全性 热气溶胶发生剂以电启动或化学启动后通过热化学燃烧反应生成的产物,即气溶胶灭火剂。该灭火剂中按质量 百分比,60%为气体,其成分主要是氮气(N2)、水蒸气(H2O),少量的二氧化碳(CO2)及微量的一氧化碳(CO)、氮氧化物(NOx)、氧气(O2)和碳氢化合物;占灭火剂40%的固体微粒主要是金属氧化物、碳酸盐、碳酸氢盐及 少量金属碳化物。对于机电设备间、电缆设施等防护空间,热气溶胶灭火剂不会对其设备造成影响,只要在热气溶胶灭火系统释放后及时通风、清扫即可,完全符合工业领域消防要求的需要。

大气气溶胶含碳物质基本特征综述

第一作者:邹长伟,男,1969年生,博士研究生,主要研究方向为环境污染与控制。3 国家自然科学青年基金资助项目(No.NSFC40205018)。 大气气溶胶含碳物质基本特征综述 3 邹长伟1 黄 虹2曹军骥3 (1.南昌大学环境科学与工程学院,江西 南昌330029;2.华南师范大学化学与环境学院,广东 广州510631; 3.中国科学院地球环境研究所,陕西西安710075) 摘要准确界定了气溶胶含碳物质,特别是有机碳和元素碳的基本概念,指出了元素碳与黑碳的异同,总结了有机碳和元素 碳的排放源,以及二次有机碳的经验公式。阐述了有机碳、元素碳对全球气候、大气化学过程及人体健康带来的危害及机理。归纳了气溶胶中有机碳、元素碳组分的空间分布特征、时间变化特征。概述了国内气溶胶有机碳、元素碳的研究状况,指出国内相关研究重点和趋势。 关键词大气气溶胶碳气溶胶有机碳元素碳 R eview on b asic characteristic of aerosol carbonaceous Zou Changwei 1,H uang Hong 2,Cao J unj i 3.(1.S chool of Envi ronmental S cience and Engineering ,N anchang Universit y ,N anchang J iang x i 330029;2.School of Chemist ry and Envi ronment ,S outh China N ormal Universit y ,Guangz hou Guang dong 510631;3.I nstitute of Earth Envi ron 2ment ,Chinese A cadem y of Sciences ,X i ’an S hanx i 710075) Abstract : Based on the researches of carbonaceous aerosol ,clear conception of the carbonaceous especially ,that of organic carbon (OC )and elemental carbon EC )was offered ,and the difference between EC and black carbon (BC )was recognized ;the main sources of OC and EC were summarized ,and the model of quantification of second OC was given ;the influences of carbonaceous on global climate ,atmospheric chemistry process and human health were indicated ;spatial distribution and temporal variation of carbonaceous were reviewed.Research progress of OC and EC in China were summarized and research trend were prospected. K eyw ords : Aerosol Carbonaceous Organic carbon Elemental carbon 近年来国外有关气溶胶中含碳物质的研究论文呈显著增长的趋势,碳气溶胶基本特征研究成为当前国际大气化学研究的热点之一。1 气溶胶含碳物质的概念 气溶胶颗粒中的含碳物质包括三类:有机碳(OC )、元素碳(EC )和碳酸盐碳(CC )[1]。其中CC 在大气气溶胶中的含量很低,其占总碳含量的比例<5%[2]。根据Clarke 等[3]的气溶胶碳酸盐特征研究结果表明,碳酸盐质量浓度为0.10~0.53μg/m 3。因此,绝大多数研究者,研究气溶胶含碳物质时,只讨论OC 、EC ,认为总碳量等于OC 加EC 。 OC 是一种含有上百种有机化合物的混合体,一般组分有脂肪类、芳香族类、酸类,包括多环芳香烃、正构烷烃、酞酸脂和醛酮类羧基化合物等有毒有害类物质[4,5]。OC 还可分为水溶性和非水溶性[6,7]。常规的分析中,OC 的量是有机物中碳元素的量。 EC 是一种高聚合的、黑色的、在400℃以下很 难被氧化的物质[8] 。在常温下表现惰性和憎水性, 不溶于任何溶剂。惰性决定了EC 的转换和清除都是物理过程。尽管EC 具有惰性,但它在化学反应中具有重要的作用,特别是它能在液相系统中加速SO 2氧化成硫酸盐[9]或降低雪的表面反照率[10]。其固相的物理硬度和惰性决定了单位质量单位面积的EC 所含有的颗粒数相对稳定,导致其表面面积/质量达到1000m 2/g [11]。考虑到EC 的来源,其表面可能覆盖有吸附性的聚合物质,或由于其暴露在大气中而与其他物质相互作用。由于在大气中受到扩散和凝聚过程的影响,所以与环境颗粒或示踪气体相碰撞导致EC 的表面被亲水性的物质覆盖。因此,其表面被覆盖的颗粒或粒子团就表现出憎水或亲水性的行为。环境大气中的EC 并不是纯的元素碳,有时还含有复杂的脂肪类、酚类和羧基等有机化合物[5,12]。 黑碳(BC )和EC 在文献中互换使用,只是研究者考虑的出发点有些区别。BC 相对于光吸收特性和化学组成更直观,而EC 则能更好地描述热分析测量中得到的物质,主要是石墨碳成分[13]。简而言 ? 072?

气溶胶灭火技术

气溶胶灭火技术(解说词) 前言 二十世纪初,人类进入电气时代,科学技术的巨大进步推动了全世界文明的飞速前进。但是,当我们正享受着快捷、舒适的现代文明生活的同时,灾难和危险也不期而至。荒漠化、水土流失、温室效应接连出现。更令人震惊的是,1985年,在南极洲上空,地球生命的保护伞——臭氧层居然出现了一个空洞。后经研究证实,长期在气体灭火领域占据主导地位的哈龙全溴氟烃灭火产品,对地球臭氧层有严重的损耗和破坏作用,是造成臭氧层空洞的元凶之一。 1987年9月,24个国家的代表在加拿大蒙特利尔签订了《关于消耗臭氧层物质的蒙特利尔议定书》,对包括哈龙在内的给大气臭氧层造成损害物质的生产和消费进行了限制。随后的修正案明确规定了发达国家须于1994年1月1日停止生产哈龙产品。中国于1991年正式成为《议定书》的缔约国,并将于2010年实现完全停止使用哈龙。 自《蒙特利尔议定书》签订之日起,世界各国都加大了哈龙替代产品的研发力度,许多发达国家在替代技术的开发研究方面取得了较大进展,出现了很多新型灭火剂,先后有IG-541、七氟丙烷、三氟甲烷、细水雾等产品问世。这些产品虽各有所长,但都不能完全替代哈龙。这时,气溶胶灭火产品横空出世,并以“灭火效率高、成本低、无毒无害”而引起人们的广泛关注。它的出现标志着一个灭火产品新纪元的到来。 第一章气溶胶灭火技术的发展过程 气溶胶灭火剂是近四十年发展起来的一种新型灭火剂。它是一种由氧化剂、还原剂、燃烧速度控制剂和粘合剂组成的固体混合物。热气溶胶灭火剂的释放经过了燃烧反应,产物中既有固体又有气体。其中大部分为N2、CO2和水蒸气等灭火气体,固体颗粒是钾和锶的氧化物。释放产物冷却、凝聚时生成极为细小的微粒,微粒的直径一般小于0.1微米。这些极为细小的微粒可以高效吸收与中和火焰中的燃烧自由基,从而达到化学抑制灭火作用。而灭火气体中包裹着固体颗粒形成的气溶胶,可以长时间悬浮,并能绕过障碍物,散布到各个角落,以一种全淹没的方式高效灭火。简单地说,气溶胶灭火剂是一种可悬浮于空气中的微纳米级干粉微粒,它是烟火技术和纳米技术发展的结晶。 从严格意义上讲,气溶胶到目前为止已经过三代发展。 第一代气溶胶灭火产品,早在上世纪60年代就已诞生。我国公安部天津消防研究所的刘孟焕等科研人员,对气溶胶灭火装置进行了研究,提出用烟火药剂燃烧、释放的产物进行灭火。当时称为“烟雾灭火系统”,主要用于石油化工产品储罐灭火装置上。 **[刘]** 第一代气溶胶灭火产品,早在上世纪六十年代就已诞生。当时天津消防研究所的科研人员,对气溶胶灭火剂及其装置进行了大量的研究,首先提出“以火攻火”的理论,自主研制出烟雾自动灭火系统,主要用于扑灭甲、乙、丙类液体储罐火灾。这是一项不同于以往的全新的灭火技术既有烟又有雾,既有细小的固体颗粒,又有水蒸气和N2、CO2灭火气体形成的气溶胶物质用于灭火。** 在当时中苏关系融洽的时代背景下,前苏联科学家跟随这一理论的指引,率先研制出可用于普通场所的气溶胶灭火剂。而我国由于当时的环境所限,并未对这一理论进行深入的应用性研究,产品仅停留在油罐系

S型气溶胶自动灭火系统技术介绍

S型气溶胶自动灭火系统技术介绍 1 概述 DKL固定式自动灭火装置(以下简称DKL灭火装置)是国内首创,具有世界先进水平的新型环保消防产品。它是在国际蒙特利尔协定和我国环境保护意识增强的背景下诞生的造福人类的高科技绿色消防产品,是哈龙灭火装置的理想替代产品,适用于通讯机房(Telecommunications facilities)及电子计算机房(Computer rooms)。 1.1 产品特点:灭火速度快,全方位灭火,不受火源位置影响;通过自动灭火控制器自动灭火,无须人员值守;运行储存于常压状态;无须敷设管网,简便易行,安装维修简单;可组合安装;无毒害,无腐蚀;不损耗大气臭氧层。 1.2 主要用途及适用范围(包括不适用范围及场所) 1.2.1 DKL灭火装置主要应用于通讯、邮电、冶金、电力、金融等行业的消防灭火。 1.2.2 DKL灭火装置适用于在相对封闭条件下扑救下列火灾 1.2.2.1 通讯机房、电子计算机房、变(配)电间、发电机房、电缆井、电缆沟、等场所的电气火灾。 1.2.2.2 生产、使用或贮存柴油(-35号柴油除外)、重油、变压器油、润滑油、动物油、植物油等各种丙类可燃液体场所的火灾。 1.2.2.3 生产、使用或贮存可燃固体物质场所的固体物质表面火灾。 1.2.3 DKL灭火装置不能用于扑救下列物质的火灾 1.2.3.1 无空气仍能迅速氧化的化学物质和能自行分解的化学物质。 1.2.3.2 活泼金属、金属氢化物、强氧化剂和自燃的物质。 1.2.3.3 可燃固体物质的深位火。 1.2.4 DKL灭火装置不适用于下列场所 1.2.4.1 爆炸危险区域。 1.2.4.2 商业、交通、饮食服务、文体娱乐等公共场所。 1.2.4.3 人员密集场所。 1.3 S型DKL气溶胶自动灭火装置规格型号

2021气溶胶灭火技术及其工程运用

2021气溶胶灭火技术及其工程 运用 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0477

2021气溶胶灭火技术及其工程运用 1、气溶胶的发生原理及特点 1.1气溶胶灭火技术是近几年投入应用的新型灭火技术,它是液体或固体微粒悬浮于气体分散介质中形成的一种溶胶。气溶胶灭火剂可分为两种类型:一种是在气溶胶灭火剂释放之前,气体分散介质和被分散介质是稳定存在的,气溶胶灭火剂的释放即气体分散液体或固体灭火剂形成气溶胶的过程;另一种气溶胶的释放过程经历了燃烧反应,反应物中既有固体又有气体,气体分散固体颗粒形成气溶胶,也可称为气溶胶发生剂,气溶胶发生剂为一种含能材料,属于烟火药的一种。 1.2气溶胶灭火剂释放生成的气溶胶中,气体产量占绝对多数,其灭火机理主要是三方面:一是吸热降温,其固体微粒(主要是金属氧化物,如K2O)进入高温及燃烧区即进行强烈吸热分解反应,使

温度迅速下降而灭火;二是气相化学抑制作用,在热作用下,由固体微粒分解产生的金属物质K可能以蒸汽或阳在瞬间与燃烧产物的活性基团H、OH和O发生多次链式反应,消耗活性基团和抑制活性基团与H、OH和O之间的放热反应,从而对燃烧反应起抑制作用;三是固体颗粒表面对链式反应的抑制作用(固相化学抑制作用),气溶胶中的固体颗粒是极其微小的,具有很大的表面积和表面能,它在火场中被加热和裂解更需要一定时间,而且也不能完全裂解或气化,固体颗粒进入火场后,受到可燃物裂解产生的冲击,它们相对于活性基团H、OH和O的尺寸大得多,这些活性基团与固体是颗粒表面发生碰撞,被瞬时吸附并发生化学反应,如此反复进行而消耗大量活性基团,从而阻断、终止燃烧链,使得燃烧反应不能继续进行。 经燃烧产生气溶胶是强烈放热反应,会产生气态的金属盐,冷却凝聚时生产气溶胶微粒极为细小,具有非常大的比表面积,因此成为特别优良的灭火剂。同时因其具有不破坏大气臭氧层、无毒无害、很少残留而被认为是绿色环保型的灭火技术产品,气溶胶灭火

气溶胶自动灭火装置使用说明书解读

新一代环保洁净型气溶胶自动灭火装置 使 用 说 明 书

广州海安消防设备有限公司 目录 第一章概述 (1) 第二章S型自动灭火装置的灭火原理 (1) 第三章适用范围和不适用范围 (1) 第四章装置构成及型号编制 (1) 第五章S型灭火装置的主要技术参数 (2) 第六章简明设计指南 (2) 第七章S型灭火系统控制模式 (3) 第八章S型灭火装置的安装、日常维护和使用 (4)

第一章概述 金海安牌(S)环保型自动灭火装置(以下简称S型自动灭火装置)是由广州海安消防设备有限公司利用现代化工技术自行研制和生产的环保型混合气体灭火产品。在生产过程中无毒、无污染、无公害,实施灭火过程中效率高、压力低、无残留物、对被保护物无腐蚀、安全性强、不存在F、Cl、Br、CO等有害物质,ODP=0、GWP≤0.35、不破坏大气臭氧层。是目前消防领域代替哈龙产品的理想产品。 第二章 S型自动灭火装置的灭火原理 1、IVS型灭火剂的特性 IVS型灭火剂是一种固体含能化学物质,属于烟火药剂。利用电子气化启动器激活IVs 型灭火剂,使其发生化学反应,能产生大量惰性气体、水汽和微量固体颗粒,形成混合气体,混合气体从IVS型自动灭火装置的喷口向外释放喷射,扑灭火灾。 2、S型自动灭火装置的灭火原理 S型自动灭火装置的灭火机理是以物理、化学、水汽降温三种灭火方式同时进行的全淹没灭火形式: a、以物理性稀释空气中氧气“窒息灭火”为主要方式,切断火焰反应链进行链式反应 破坏火灾现场的燃烧条件,迅速降低自由基的浓度; b、存在抑制链式燃烧反应进行的化学灭火方式; c、水蒸汽冷凝与气化降低燃烧物温度。 第三章适用范围和不适用范围 1、适用范围 S型气溶胶系统为全淹没系统,适用于扑灭相对封闭空间的A、B类火灾以及电气电缆初起火灾。 a、扑灭A类火灾: 如木材、纸张等固体物质初起火灾,适用于木制品库、档案库、博物馆、图书馆、资料室等场所;

安全壳微小通道内气溶胶沉积模型综述

Nuclear Science and Technology 核科学与技术, 2020, 8(3), 123-129 Published Online July 2020 in Hans. https://www.360docs.net/doc/9615952470.html,/journal/nst https://https://www.360docs.net/doc/9615952470.html,/10.12677/nst.2020.83014 Summary of Aerosol Deposition Models within Micro Channels of Containment Hongchun Ding, Yaru Fu, Qiliang Mei Shanghai Nuclear Engineering Research & Design Institute Co. Ltd., Shanghai Received: Jun. 5th, 2020; accepted: Jun. 30th, 2020; published: Jul. 7th, 2020 Abstract During a severe accident in a nuclear power plant (NPP), even if the containment does not fail or destroy seriously, the radioactive fission product aerosols will still leak into the environment through these potential micro channels within containment. At present, many countries still esti-mate the leakage rate of aerosol particles from these micro channels in the same way as ordinary gases, that is to say, aerosol particles can pass through these micro channels without any loss. However, many experiments have observed that when aerosol particles pass through these micro channels, deposition occurs through a variety of deposition mechanisms. If the deposition of aerosol particles in these micro channels is taken into account, the conservativeness of source term assess-ment of severe accidents can be reduced. In this paper, severe representative models for studying the deposition effects of aerosol particles in micro channels are introduced through a large number of literature reviews. The advantages and disadvantages of these models are compared and sum-marized, which will provide a reference for the subsequent model study of aerosol deposition within micro channels. Keywords Source Term, Aerosol Particles, Micro Channel, Containment, Nuclear Power Plant, Severe Accident 安全壳微小通道内气溶胶沉积模型综述 丁宏春,付亚茹,梅其良 上海核工程研究设计院有限公司,上海 收稿日期:2020年6月5日;录用日期:2020年6月30日;发布日期:2020年7月7日

植被参数遥感反演

2019‐06‐15 植被参数遥感反演 种间竞争条件下互花米草光谱特征分析及叶绿素含量反演研究

目 录 研究背景1 数据来源 2光谱分析与叶绿素反演3总结 4

01 研究背景

面临外来物种入侵等威胁长江口盐沼湿地 互花米草vs 芦苇等 湿地生态系统 重要的生态服务价值面积占5.8% 丰富的生态系统产品和服务

宏观研究→精细化研究单一物种 →多物种混合 -入侵物种与本地物种的竞争-生态学–光谱学–遥感科学 湿地生态遥感 以国产高分系列为例 -空间分辨率GF2: 1m -光谱分辨率GF5: 0.45~12.5μm ,12个谱段 -时间分辨率GF4: 分钟级 机遇 挑战

种间竞争条件下互花米草光谱特征分析及叶绿素含量反演研究 种间竞争 生态学研究多(入侵机制、扩散方式、影响因子等)光谱学研究少 互花米草 生态学研究多(环境影响、生物多样性、驱动因子等)光谱学研究少,遥感主要针对纯物种分类和制图长江口盐沼湿地:华东师大、复旦大学、同济大学、南大、中科院、上师大 叶绿素反演 农田研究多,湿地研究少光谱指数多,集成应用少 123 入侵机制-Yokomizo,2009;Z. Ge, 2013; Hu,2015等 扩散方式-Paradis,2014;H.Liu,2017影响因子-B.Li,2009;Medeiros,2013 环境影响-B.Li,2012;C.Zhang,2017等生物多样性-C. Wang,2006;L. Tang;2013光谱-Z.Gao,2006;B. Zhao, 2015制图-Davranche,2013;Ai,2017 叶绿素-Jacquemoud,2009;Main,2013等 生物量-Quan,2011;Verrelst,2013;Pastor,2015;LAI-Ustin, S.2009;Tian,2013;B.Liu,2016等

多源遥感数据反演土壤水分方法

多源遥感数据反演土壤水分方法 张友静1,王军战2,鲍艳松3 (11河海大学水文水资源与水利工程科学国家重点实验室,江苏南京 210098;21中国科学院寒区旱区环境与工程研究所, 甘肃兰州 730000;31南京信息工程大学大气物理学院,江苏南京 210044) 摘要:基于AS AR 2APP 影像数据和光学影像数据,根据水云模型研究了小麦覆盖下地表土壤含水量的反演方法。利用T M 和MOD I S 影像构建的植被生物、物理参数与实测小麦含水量进行回归分析,发现T M 影像提取的归一化水分指数(NDW I )反演精度较好,相关系数达到0187。根据这一关系,结合水云模型并联立裸露地表土壤湿度反演模型,建立了基于多源遥感数据的土壤含水量反演模型和参数统一求解方案。反演结果表明:该方案可得到理想的土壤水分反演精度,并可控制参数估计的误差。反演土壤含水量和准同步实测数据的相关系数为019,均方根误差为3183%。在此基础上,分析了模型参数的敏感性,并制作了研究区土壤缺水量分布图。 关键词:土壤含水量;多源遥感数据;水云模型;AS AR;多尺度 中图分类号:P33819 文献标志码:A 文章编号:100126791(2010)022******* 收稿日期:2009203209 基金项目:国家自然科学基金资助项目(40701130;40830639) 作者简介:张友静(1955-),男,江苏南京人,教授,主要从事遥感机理与方法研究。E 2mail:zhangyj@hhu 1edu 1cn 土壤含水量是地表和大气界面的重要状态参数,并直接影响地表的热量和水量平衡,因而受到水文、气象和农业灌溉等多个学科的关注。微波土壤水分遥感研究始于20世纪80年代,其中最具代表性的是U laby 利用试验数据得出土壤后向散射系数的主导因素为粗糙度和含水量 [1]。80年代后,Dobs on 和U laby 利用车载、高塔、航空平台的微波数据研究了土壤湿度反演的最佳工作模式,并一致认为小角度入射后向散射系数对土壤湿度最敏感[2]。随着微波散射模型不断发展,相继出现微波散射的小扰动模型、几何光学模型、物 理光学模型、两尺度模型和积分方程模型A I E M 。Dobos on 等在物理模型和试验研究的基础上各自建立了经验和半经验模型,成功地反演了裸土的土壤含水量 [324]。2000年以来,随着Rardrsat,E NV I S AT AS AR 传感器发射,基于卫星雷达数据的土壤湿度反演逐步开展。李震等综合主动和被动微波数据,建立一种半经验模型,用于估算地表土壤水分的变化 [526]。研究表明AS AR 数据在半干旱区农田土壤湿度反演方面具有独特的优势[729]。 在植被覆盖条件下,微波信号的组成十分复杂。研究提取植被覆盖下的土壤湿度信息的重点在于如何有效的分离出植被对微波的散射信号,以便用土壤的后向散射信号估算植被覆盖下的土壤含水量。直接用多频同步微波遥感数据通过理论模型或数值模拟求解植被对微波的散射信号[9],具有很好的同步性和物理意义。但遥感数据获取较为困难,同时求解所需的地面同步观测的数据要求很高,因而区域尺度的监测应用还有待深入研究。根据植被的生物、物理特征与植被散射信号之间的关系,采用同步光学遥感数据反演植被散射信号是近年来的研究热点[9211]。但在植被特征参数表达农作物后向散射信号的能力评价、模型参数的识别以及整体求解方案等方面的研究较少。此外,为满足土壤水分监测和灌溉决策的需求,还需研究不同时空分辨率数据反演植被散射信号的能力。本文根据水云模型,研究多尺度下不同植被特征参数与小麦含水量的关系,采用将所有参数放入统一框架下估算的策略,构建了结合光学和微波遥感数据的土壤水分估算模型,并分析了模型参数的敏感性。经准同步实测数据检验,小麦覆盖下土壤水分的估算达到了较高的精度。 第21卷第2期 2010年3月 水科学进展ADVANCES I N WATER SC I ENCE Vol 121,No 12 M ar .,2010

相关文档
最新文档