频率电压转换器

频率电压转换器
频率电压转换器

东华大学

模电课程设计报告

(频率电压转换器)

学生姓名: xxxx

学号: xxxx

班级: xxxx

目录

目录 ................................................................................................- 2 - 第一章设计指标 (3)

1.1 设计指标 .........................................................................- 3 - 第二章系统概述.. (3)

2.1设计思想...........................................................................- 3 -

2.2各功能的组成...................................................................- 3 -

2.3总体工作过程...................................................................- 4 - 第三章单元电路设计与分析 (6)

3.1输入信号...........................................................................- 6 -

3.2放大电路...........................................................................- 6 -

3.3零比较器和方波产生电路 ..............................................- 8 -

3.4微分电路........................................................................ - 10 -

3.5单稳态电路..................................................................... - 11 -

3.6滤波电路........................................................................ - 13 -

3.7直流放大电路................................................................ - 14 -

3.8调零电路........................................................................ - 15 - 第四章电路的组构与调试.. (16)

4.1 遇到的主要问题........................................................... - 16 -

4.2 现象记录及原因分析 .................................................. - 16 -

4.3 解决措施及效果........................................................... - 17 -

4.4 功能的测试方法、步骤、记录的数据 ...................... - 17 - 第五章结束语. (17)

第六章器件表 (18)

第七章参考文献 (18)

附图频率电压转换器总图 (19)

第一章设计指标

1.1设计指标

(1)输入频率为0~10K HZ ,有效值为20mv的交流信号,输出有效值为0~10v的直流信号;

(2)输出电压的有效值随输入信号的频率按线性规律变化;

(3)输入频率与输出电压的误差在1%内;

(4)输入信号是正弦波,方波还是三角波,不影响最后输出结果(5)当输入信号频率为5K时,波纹小于30mv,尖峰小于100mv

第二章系统概述

2.1设计思想

利用施密特触发器和若干电阻电容或其他数字芯片设计合理的电路,使输入的20mv交流电流转化成直流输出。

分析设计指标,输入信号幅度较小,因此需要先将信号放大,然后将放大后的信号通过与二极管并联,滤去低于0v的电压,经由555触发器,变为矩形波,经过积分电路和单稳触发器,形成脉冲,再通过滤波电路,得到直流电压。

由于会有干扰信号输入,所以,我们选择了差分放大电路,抑制共模信号,这样可以较好地消除输入信号中的干扰。

2.2各功能的组成

2.2.1输入信号

输入信号由函数发生器产生,有效值为20mv左右,频率为10KHZ,交流信号,可以是正弦波,方波和三角波。

2.2.2放大电路

放大电路由集成运放器构成差分放大电路和比例放大电路。

差分放大电路可以有效抑制共模干扰信号,并且将输入信号放大,以便触发后面电路中的施密特触发器。

输入信号的有效值为20mv,而施密特触发器的触发电压为8~12V,因此,放大电路部分需要放大400~600倍。具体电路参数计算见本报告第三章。

2.2.3零比较器

将二极管负端与放大后信号相接,正端接地,这样可以使通过的信号滤去幅值为负的信号。

2.2.4施密特触发器(555)

施密特触发器的输入电压要求为2/3Vcc

2.2.5单稳态触发器

该单稳态触发器是由施密特触发器(即555)构成,输出窄脉冲信号。

2.2.6滤波电路

将脉冲信号经滤波转换为直流信号。

2.2.7调零电路

用于调节F/V零点精度。

2.3总体工作过程

整个电路是开环电路,从输入交流信号到最终输出直流信号,所需经历的过程如下图所示。

第三章单元电路设计与分析

整个电路是开环电路。前后的模块不会相互影响。所以为了更快更准确的设计运行电路,可以采用分块设计分块测试的方法。以下是框内电路的具体设计方案和仿真电路草图。电路都采用了EWB仿真。

3.1输入信号

输入信号由函数发生器产生,有效值为20mv左右,频率为10KHZ,该设计选用的是正弦波,波形如图3-1所示。

图3-1 输入信号

3.2放大电路

放大电路由集成运放器构成差分放大电路和比例放大电路。

差分放大电路可以有效抑制共模干扰信号,并且将输入信号放大,以便触发后面电路中的施密特触发器。

由于下部分转换方波用到施密特触发器需要第一部分相应的放大信号,所以放大器的输出信号最大值必须大于施密特的2/3Vcc,即8v。但信号不能大于12V,所以放大倍数约为400倍到600倍左右。仪用放大器的优点在于抗干扰性强,输入阻抗高。还需注意的一点是:为了输出的放大信号波形更加清晰,设计放大器时,第一阶的放大倍数小于第二阶的放大倍数。这样放打出来的信号的干扰波也会大大减小,使输出的波形清晰,以便于接下来的测试与计算。

放大倍数与各电阻阻值的计算:

V01=(1+2R1/R0)*Vi

VO2=(R4/R2)*VO1

AV=(1+2R1/R0)* R4/R2

参数的选择以及仿真电路图如图3-2所示。

图3-2 放大电路

放大后波形如图3-3所示。

图3-3 放大之后的波形

3.3零比较器和方波产生电路

该模块用到了二极管,施密特触发器(555)和其他电路元件。

施密特触发器的应用:1、用于波形变换,可以将输入的三角波,正弦波和其他不规则的周期性电压信号转变成矩形信号输出;2、用于脉冲整形;3、用于脉冲幅度鉴别;4、多谐振荡器;5、单稳触发器。

该设计中用到的是它的第一个功能,产生方波。EWB仿真图如图3-4所示。

图3-4零比较器与方波产生器仿真图产生的方波如图3-5所示。

图3-5 方波

3.4微分电路

由于单稳态电路需要下降沿脉冲触发,所以,需要将方波信号通过微分电路进行转换。微分电路仿真图如图3-6所示。

图3-6 微分电路仿真图

微分电路会产生一个下降沿脉冲,如图3-7所示。

图3-7 下降沿脉冲

3.5单稳态电路

单稳触发器是在输入信号激励下,产生脉冲宽度恒定的输出信号。555构成的单稳触发器,外部激励从出发端TRI(2脚)输入,阈值输入THR(6脚)和放电管的集电极开路输出端DIS(7脚)相连,并接到电容C即电阻R。Ui=V TRI , U C=V TRI=V DIS。

单稳的工作原理:

稳态时,Ui为高电平Vcc。Uc受放电管VT1控制。

如果555定时器输出高电平,VT1截止,电容充电将使Uc上升至Vref1,输出将变成低电平。所以稳态时输出的高电平不可能保持。

如果555定时器输出低电平,VT1导通,将Uc锁定在低电平0.3V,由于Ui为高电平,该状态能保持。所以由555定时器构成的单稳触发器在稳定时输出U0为低电平,电容电压Uc保持在0.3V左右。

当Ui输入负脉冲是时,TRI端电位低于Vref2;而Uc仍为低电平,THR端小于Vref1,555定时器输出高电平,单稳触发器被触发。U0=“1”,放电管VT1截止,电容开始充电,Uc开始上升,电路进入暂态。当Uc上升到Vref1时,有两种情况。

如果此时触发信号已无效,TRI电位(Ui)回到高电平Vcc(大于Vref2),555定时器就被自动复位,U0输出低电平,暂态过程结束。放电管同时导通,电容通过放电管迅速放电,Uc下降,单稳触发器回到稳态。

如果此时触发器输入信号仍无效,Ui保持低电平,将出现THR 输入大于Vref,TRI输入小于Vref2的情况,此时555定时器的位置

功能优先,输出U0保持高电平,电路不能回到稳态。直到Ui为高电平,555定时器才能被复位。这样输出信号的脉冲宽度就受输入信号宽度控制,与电路参数无关。

参数计算:

单稳电路输出的高电平宽度(暂态时间)由电容的充电时间常数和Vref1决定。在单稳电路的暂态过渡过程中,电容充电的初始值为0V,始终为Vcc。但这个过程被终止在电容电压等于Vref1时。

Uc(0+)=0V ;Uc(∞)=Vcc ;Uc(Tpo)=Vref1 ;t=RC

Tpo=RClnVcc/(Vcc-Vref1)

改变电容充电时间常数RC或555定时器的控制输入电平Vcon (控制Vref1),都可以调节输出脉冲的宽度Tpo。若不控制Vcon,Vref1=2/3Vcc,则 Tpo=RCln3≈1.1RC

为了方便调节脉冲宽度,使用滑动变阻器代替原来的R。仿真图如图3-8所示。

图3-8 单稳态仿真电路

单稳态仿真电路产生一个宽度为20us的窄脉冲,仿真波形如图3-9所示。

图3-9 窄脉冲仿真波形

3.6滤波电路

滤波电路的作用在于能够把输入信号的交流部分滤除,留下直流部分。这里的R1阻值在100~200o电容的容值选择要偏大些。

实际操作过程中对于输出波形的精度调节,可以通过改变滑动变阻器的阻值来调节。

滤波电路仿真图如图3-10所示。

图3-10 滤波电路仿真图滤波后波形如图3-11所示。

图3-11 滤波后仿真波形

3.7直流放大电路

应用比例放大电路,可以将1V的电平放大为10V。

仿真电路如图3-12所示。

图3-12

仿真波形如图3-13所示。

图3-13 最终仿真波形3.8调零电路

仿真电路为图3-14。

图3-14 仿真电路图

第四章电路的组构与调试

4.1 遇到的主要问题

1、放大电路部分,放大后的波形出现失真。

2、通过二极管后,信号幅值减半。

3、调精度时,零点误差较大。

4、F/V转换线性不理想。

4.2 现象记录及原因分析

1、放大电路部分,放大后的波形出现失真波形如图4-1所示。

图4-1 失真波形

原因分析,运算放大器的静态工作点没有设好。

解决办法,选择合适的电阻及静态工作点,消除失真。

4.3 解决措施及效果

1、通过二极管后,信号幅值减半。

通过增加了一个比例放大电路,使幅值达到要求。

2、调精度时,零点误差较大。

通过增加了调零电路,使零点误差大大减小。

4.4 功能的测试方法、步骤、记录的数据

(1)零点和满额状态调节精度方法:

先将输入信号调为100HZ,通过调零电路滑动变阻器的调节,将电压值调为100mv。

然后将输入信号调为10KHZ,通过比例放大电路滑变的调节,将电压值调为10V。

反复进行上述两个步骤,直至满足精度要求。

分析:精度在误差范围内,线性较好。

第五章结束语

本次模电课程设计大大激发了我对学习的积极性。在设计电路时,巩固了上学期的模电知识,收获很多。可是,在该实验过程中,我积累了电子电路应用、设计方面的知识,拓展了思维方式,而且通过对电子元件和电路器件的实际应用,进一步加深了对模拟电子技术课程理论知识的理解。

电路的排版需要事先设计好,不然到后面会很乱,出现压线的情

况。

在进行电路连线时,耐心很重要,每一步都要很仔细,最后电路连成后,精度很高,受到了老师的表扬,很有成就感!

希望以后有时间还可以常到实验室来做其他的设计。

第六章器件表

⑴函数发生器 x1

⑵双踪示波器 x1

⑶交流毫伏表 x1

⑷555定时器 x2

⑸LF353 x2

⑹定值电阻 100K x 2 , 3K x 2 , 2K x 2, 1K x 6 , 200 x 3 ,

100 x 3

⑺滑动变阻器 100K x 1 , 3K x 1 , 1K x 2

(8)电容 0.01uf x4, 100uf x 2

(9)二极管x 1

(10)三极管 x 1

第七章参考文献

(1)模拟电子电路基础

(2)数字电路基础

附图频率电压转换器总图

基于LM331频率电压转换器电路设计

基于LM331频率电压转换器电路设计LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建 说明 LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建的比较器电路,触发定时器电路。在任何时刻,电流流过的电流输出引脚(引脚6)将输入频)的值成正比。因此,输入频率(FIN)成正比的电压(VOUT)率和定时元件(R1和C1 将可在负载电阻R4 。电路图

注意事项 该电路可组装在一个VERO板上。 我用15V直流电源电压(+ VS),同时测试电路。 LM331可从5至30V DC之间的任何操作。 R3的值取决于电源电压和方程是R3 =(VS - 2V)/(2毫安)。 根据公式,VS = 15V,R3 = 68K。 输出电压取决于方程,VOUT =((R4)/(R5 + R6))* R1C1 * 2.09V *翅。壶R6可用于校准电路。

电压频率转换器设计(含电路图)

《模拟电子技术基础》课程设计报告题目电压/频率变换器 班级电科1124 姓名冯刚毅 学号201211911406 成绩 日期

课程设计任务书

一电压/频率变换器的设计方案简介 1.1 实验目的及应用意义 1.学习简单积分电路的设计与由555定时器组成的单稳态触发器。 2.用multisim设计出实验原题图,使V I变化范围:0∽10V,f o变化范围:0∽10kHz;并分析其功能原理。 1.3 设计思路 电压/频率变换器的输入信号频率f。与输入电压V i 的大小成正比,输入控制电压V i常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。 本设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。积分器的输出信号去控制电压比较器或者单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C再次充电。由此实现V i 控制电容充放电速度,即控制输出脉冲频率。 1.4 原理框图设计

电压频率转换器原理框图1.5 电路图

二电压频率变换器各单元电路设计 2.1 积分器设计 积分器采用集成运算放大器和R C 元件构成的反向输入积分器。具体电路如下: 2.2 单稳态触发器设计 单稳态触发器采用555 定时器构成的单稳电路。具体电路如下:

2.3 电子开关设计 电子开关采用开关三极管接成反向器形式,当触发器的输出为高电平时,三极管饱和导通,输出近似为0,当触发器输出为低电平时,三极管截止,输出近似等于+Vcc。 2.4 恒流源电路设计 恒流源电路可采用开关三极管T,稳压二极管D z 等元件构成。具体电路如下所示。当V1’为0时,D2,D3 截止,D4 导通,所以积分电容通过二极管放电。当V1’为1 时,D2,D3 导通,D4 截止,输入信号对积分电容充电。在单稳态触发器的输出端得到矩形脉冲。

LM331压频变换器的原理及应用

LM331压频变换器的原理及应用 1. 概述 LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 LM331的内部电路组成如图1所示。由输入比较器、定时比较器、R-S触发器、输出驱动管、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vcc短路。 2. 工作原理 2.1 电压—频率变换器 图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、Ct和定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源IR对电容CL充电。此时由于复零晶体管截止,电源Vcc也通过电阻Rt对电容Ct充电。当电容Ct两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,Q输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容Ct通过复零晶体管迅速放电;电流开关打向左边,电容Cl对电阻RL 放电。当电容CL放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。图3画出了电容Ct、Cl充放电和输出脉冲f0的波形。设电容CL的充电时间为t1,放电时间为t2,则根据电容CL上电荷平衡的原理,我们有:(IR-VL/RL)t1=t2VL/RL 从上式可得: f0=1/(t1+t2)=VL/(RLIRt1) 实际上,该电路的VL在很少的范围内(大约10mV)波动,因此,可认为VL=Vt,故上式可以表示为: f0==Vt/(RLIRt1) 可见,输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。式中IR由内部基准电压源供给的1.90V参考电压和外接电阻Rs决定,IR=1.90/Rs,改变Rs的值,可调节电路的转换增益,t1由定时元件Rt和Ct决定,其关系是t1=1.1RtCt,典型值Rt=6.8kΩ,

电压频率变换器的设计讲解

机械与电子工程学院 课程设计报告 课程名称模拟电子技术课程设计设计题目电压频率变换器 所学专业名称电气信息类 班级电类114班 学号********** 学生姓名王*金 指导教师汪* 2012年12月23日

机电学院模拟电子技术课程设计 任务书 设计名称:电压频率转换器 学生姓名:王*金指导教师:汪* 起止时间:自2012 年12 月10 日起至2012 年12 月25 日止 一、课程设计目的 1).熟悉集成电路及有关电子元器件的使用; 2).了解电压平频率转换器主体电路的组成及工作原理; 3).学习电路中基本电路的应用以及单稳态触发器等综合应用。 二、课程设计任务和基本要求 设计任务: 1).熟悉和应用比较器的构成及设计方法,尤其是迟滞比较器的应用。 2).熟悉和应用积分器的构成和设计方法,了解电容在其中的工作原理。 3).熟悉和简单应用二极管作电子开关的构成和设计方法。 4).熟悉迟滞比较器与积分器之间的波形转换。 5).熟悉掌握运用multisim画图、调试和仿真。 基本要求: 1).有明确的设计方案使操作简便易行。 2).设计一个将直流电压转换成给定频率的矩形波,包括:积分器;电压

比较器。 3).输入为直流电压0-10V。 4).输出为f=0-500Hz的矩形波。 5).按规定格式写出课程设计报告书。

机电学院模拟电子技术课程设计指导老师评价表

目录 摘要和关键词 (1) 第一章设计指标 (2) 1.1 设计指标 (2) ◆ 1.1.1设计内容 (2) ◆ 1.1.2设计要求 (2) 第二章系统设计原理及内容 (2) 2.1 设计思想 (2) 电压/频率转换器原理框 (2) 第三章电路各模块方案设计 (3) 3.1 积分器的设计方案 (3) 3.2比较器的设计方案 (4) ◆ 3.2.1电压比较器 (4) ◆ 3.2.2过零比较器 (5) 3.3单稳态触发器 (6) 3.4低通滤波器 (6) 3.5模块的整合 (7) ◆ 3.5.1 电压/频率 (7) ◆ 3.5.2 频率/电压 (7) 第四章结束语 (8) 4.1心得体会 (8) 元件清单 (9) 参考文献 (9)

电压频率转换

A1的反馈电阻决定其直流增益。调整电位器RP1(10kΩ),使输入频率为30kHz 时,A1输出为3V,这样对于输入0~30kHz频率,可得0~3V输出电压,线性度为0.005%左右。 温漂取决于电容C2、A1的反馈电阻以及基准电压(13脚电压)。为此,C2采用温度系数为-120ppm/℃的聚苯乙烯电容,R2(75kΩ)采用温度系数为+120ppm/℃的电阻,基准电压电路的稳压二极管VD1采用LT1004。 本电路开关电容滤波器采用LTC1043,A1采用LF356,也可用其他讼司类似产品代替。 如图是NE555构成的电压/频率转换电路。电路中n,A1和A2构成同相积分器,VT1和A3构成恒流源,NE555构成单稳多谐振荡器。VT2是受NE555控制使其开关工作,对恒流源实行通/断控制。 A1和A2构成同相积分器,即同相输入电位较高,则输出上升;反之,同相输入电位较低,则输出下降。恒流源电流对C1进行充电,由于A2的同相输入为零,致使A2输出向负方向变化。由于A2为反相器,因此,A1的输出当然是向正方向上升。若恒流源切断,则积分电流仅是与恒流源反向的输入电流对C1反向充电,又使A2的输出电压向正方向变化,同理A1的输出向负方向变化。由此可知,积分电流受VT2的控制改变方向,从而实现了A1的积分输出改变方向。A1的输出送至NE555的2脚,只要7脚内部晶体管开路,C2就由R4充电使其电压上升,当6脚电平达到(2/3)Ucc时就会使片内触发器翻转,3脚变为低电平,同时C2通过7脚放电返回到零电位。由于3脚为低电平,VD1导通使VT2截止,这就切断了恒流源向积分器的充电通路。这时,A1输出下降,一直降到(1/3)Ucc时又使NE555的2脚为低电平并处于触发状态,于是又开始新的一轮循环,即3脚输出高电平,C2通过R4充电,VD1截止使恒流源为积分器提供电流直到3脚返回到低电平为止。重复上述过程就形成振荡,将输入0~-1OV电压转换为0~100 kHz的频率输出。

频率电压变换器

低频电子线路课程设计频率/电压变换器 电子信息工程三班 江海东 学号:2220083421

一、概述 本课题要求设计一个频率/电压变换电路,电路的输入信号为正弦波,电路的输出信号是直流电压,当输入信号的频率变化时,输出的直流电压随输入信号的频率发生线性变化。为电路的设计提供集成频率——电压变换器LM331和集成运放LM324这两种集成芯片,芯片的技术资料和使用方法查阅相关资料。 熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求: 1、输入信号:波形:正弦波; 峰—峰值:200mV; 频率变化范围:200Hz~2.0kHz。 2、输出信号:直流电压; 电压变化范围:1.0~5.0V;随频率线性变化。 3、电源电压:-12V~+12V范围内选择。 三、设计过程: 1、实验仪器:电源两个,函数信号发生器一台,万用表一块,电压表一块,示波器一个,面包板一个,LM331及LM324芯片各一个,电阻、电容、电位器、导线若干。 2、LM331的简要工作原理: LM331 可用作频率――电压转换(FVC); LM331用作FVC时的原理框如图5-1-1所示:

R +V CC 此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下:

2/3V CC v ct V 0 v CL p-p V CC 1 s t 图5-1-2 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

电压频率与频率电压转换电路

电压频率与频率电压 转换电路 2011年8月24日

目录: 摘要: (2) Abstract: (2) 一、设计方案 (3) (一)、电压频率转换电路 (3) 1.基于555定时器的电压频率转换: (3) 2.基于LM331的电压频率转换: (4) (二)、频率电压转换电路 (5) 1.基于LM2907的频率电压转换: (5) 2.基于LM331的频率电压转换 (5) 二、主体电路设计 (8) 三、电路安装 (9) (一)、电压频率转换电路 (9) (二)、频率电压转换电路 (10) 四、系统调试: (10) (一)VFC: (10) (二)FVC: (11) 1

摘要: 本系统利用了LM331的原理及性能设计了频率电压以及电压频率转换电路,实现了0Hz--10kHz频率与0—10V电压的相互转换,电路简单,转换结果线性度好。 关键字:LM331 频率电压转换滤波 Abstract: The system uses the principle and characteristic of LM331 to design the frequency-to-voltage and the voltage-to- frequency conversion circuits, realizes the frequency of 0Hz--10kHz and the voltage of 0 - 10V’s transformation , the circuits are simple and result have good linearity. Key-word: LM331 frequency voltage transformation filter 2

电压频率和频率电压转换电路的设计

模电设计课程设计报告 题目:电压/频率变换器 姓名: 班级: 学号: 指导老师: 2011年 1 月12 日

1 绪论 (1)电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。 如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。 图1 数字测量仪表 电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。 (2)F/V转换电路 F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。 1.1设计要求 设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。 1.2 设计指标 (1)输入为直流电压0-10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。 2 设计内容总体框图设计 2.1 V/F转换电路的设计 2.1.1 工作原理及过程 积分器和滞回比较器首尾相接形成正反馈闭环系统,如图 2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现

51单片机的电压频率转换

基于单片机的电压频率转换电路设计、装配与调试 1.电压频率转换电路 图3-13 LM331构成单片机V/F数据采集前向通道电原理图 1.电路工作原理分析 LM331片内能隙基准电路产生1.9V直流电压送到2脚,并钳位在1.9V上。当2脚外接R S+R S’,后形成基准电流i=1.9/(R S+R S’)。本例i=1.9/(12k+R S’),i max=1.9/12k=158μA,i min=1.9/17K=112μA。 片内输入比较器的两个输入端:7脚接被测输入电压V IN。6脚为阈值电压V X,并与电流输出端1脚相连。外接R L、C L电路。片内定时比较器两个输入端:一个在片内通过R、2R电阻分别与V CC、GND相连;获得固定的比较电压2/3V CC。另一个输入端5脚接Rt、Ct相连;获得随Ct充电状态变化的电压V5。V5与2/3V CC 比较,当Ct充电到V5>2/3V CC时,定时比较器使片內R-S触发器复位。在R-S 触发器复位状态下电流开关断开,输出驱动晶体管截止,使Ct开始放电。片內R-S触发器与定时比较器和复位晶体管以及外接Rt、Ct构成一个单稳脉冲定时器。定时周期T=1.1Rt×Ct。 当输入比较器的V IN>V X时,启动单稳脉冲定时器并导通频率输出晶体管,使3脚连接的光电耦合器导通。同时片内开关电源导通电流i通过1脚向C L充电,Vx逐渐升高;当Vx上升到V INVx。重复上述循环,在3脚输出一个脉冲频率信号。

注入C L 的平均电流IA VE =i ×t ×fout 严格地等于Vx /R L 。IA VE =i ×t ×fout = Vx/R L 。又V IN ≈V X ,故有: i ×t ×fout ≈ Vx/R L fout =t i R V L IN ??=)'/(9.11.1RS RS C R R V t t L IN +???=t L IN C Rt R RS RS V ???+?09.2) ’( 根据已知电路参数R S +R S ’=15k ,R L =100k ,Rt =6.8k ,Ct =0.01μF fout ≈000001.001.010008.6100010009.2001015????????IN V =1000VIN 可得当V IN =1V 时,fout=1000HZ 。V IN =10V 时,fout=10000HZ ,线性度可达0.01`%。 输入电压V IN 经一个R C 低通滤波器消除干扰,进入输入端7脚。R C 滤波器截止频率fo 为: fo =112C R V IN π=000001 .04.010*******.321?????≈16HZ R S 、R L 、Rt 和Ct 直接影响转换结果,对元件精度有一定要求,可根据转换精度适当选择。R S 、R L 、Rt 和Ct 要选用低温漂的稳定元件,C L 虽对转换结果无影响,但应选择漏电流小的电容。 3. 频率测量程序设计 LM331的3脚输出脉冲频率信号经光电耦合器隔离后,送入8031。由单片机程序对被测信号频率进行计数,或测定被测信号的周期,即可有两种方法。被测量信号频率fout =0~10KHZ ,当单片机系统时钟为6MHZ 时,T0或T1定时 脉冲fc=6MH Z /12=500 KH Z ,由测频公式fout = c x n n *fc (x n 为被测信号计数值,c n 为定时脉冲计数值),当c n 固定时,为频率法,当x n 固定时,为周期法。 由于定时的起始、结束边沿与被测的计数脉冲边沿不同步,将出现±1个被测的计数脉冲的误差δ,误差δ与被测量信号频率fout 有关,fout 越低,误差δ越大。要实现高精度频率测量,可采用同步计数技术来改善误差δ。用频率低的被测信号来控制定时计数的起始、结束(同步),此时产生的±1个脉冲的误差δ为±1个频率高的定时计数脉冲,降低了误差δ。同步计数时序见图3-14,fout-

模电课程设计 电压频率变换器(DOC)

模拟电子技术基础 题目名称:电压/频率变换器 班级: 姓名: 学号: 完成日期: 2011-6-10

摘要 本实验是对信号的产生、处理及变换功能电路的设计,在实际生产和操作中有这应用广泛。本设计是主要针对的是模拟电子技术课程的设计,具有可操作性和应用性,学生能够独立完成。电路信号的转换已经在电子领域中广泛应用,如:采样/保持(S/H)电路、电压比较电路、V/f(电压/频率)变换器、f/V(频率/电压)转换器、V/I(电压/电流)转换器、I/V(电流/电压)转换器、A/D(模/数)转换器、D/A(数/模)转换器等。可以从本实验中学习到更多的电路设计的方法,激发学生的设计兴趣和激情,为以后的学习和工作打下良好大的基础。而V/f(电压/频率)转换器便是本实验的主要内容。

目录 一. 设计任务 二. 简略设计方案 三. 电路构成和部分参数计算 1.积分电路 2.单稳态触发器电路 3. 电子开关电路图 4.恒流源电路的设计 四.总原理图和元器件清单 1.总原理图 2.元件清单 五.基本计算与仿真调试分析 1.基本计算 2.仿真结果 六.PCB仿真图 七. 设计总结 八.参考文献 一、设计任务

1.设计一种电压/频率变换电路,输入υI为直流电压(控制信 号),输出频率为?O的矩形脉冲,且 fυI。 O 2.υI变化范围:0~10V。 3.?O变化范围:0~10kHz 4.转换精度<1% 。 二、设计方案 可知电路主要是由积分器、单稳态触发器、电子开关和恒流源电 三、电路构成和部分参数计算 1.、积分电路: 积分电路采用集成运算放大器和RC元件构成反向输入积分器。电路图如下:

频率电压转换电路设计讲解

淮海工学院 课程设计报告书 课程名称:模拟电子技术课程设计 题目:频率/电压转换电路的设计系(院):电子工程学院 学期:12-13-1 专业班级:电子112 姓名:孙开峰 学号:2011120658

1、概述 本设计实验要求对比较器、F/V变换器LM331、反相器和反相加法器的主要性能和应用有所了解,要能掌握其使用方法。同时要了解它们的设计原理。 本设计实验要求我们要灵活运用所学知识,对设计电路的理论值进行计算得到理论数据,在与实验结果进行比较。 1.1 主要设计要求 当正弦波信号的频率fi在200Hz~2kHz范围内变化时,对应输出的直流电压Vi在1~5V范围内线形变化; 正弦波信号源采用函数波形发生器的输出; 采用±12V电源供电. 1.2 设计方法 设计总体框图如下,可供选择的方案有两种,它们是: ○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○2直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比. 2、设计过程 2.1 函数信号发生器ICL8038芯片介绍 2.1.1 ICL8038作用 ICL 8038 是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部元件就能产生从 0.001HZ~300kHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调频信号输入端, 所以可以用来对低频信号进行频率调制。 2.1.2 ICL8038管脚介绍

图2 ICL8038 表1 引脚功能介绍

2.2 比较器的设计 过零比较器 过零比较器被用于检测一个输入值是否是零。原理是利用比较器对两个输入电压进行比较。两个输入电压一个是参考电压Vr ,一个是待测电压Vu 。一般Vr 从正相输入端接入,Vu 从反相输入端接入。根据比较输入电压的结果输出正向或反向饱和电压。当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。 用比较器构造的过零比较器存在一定的测量误差。当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。例如,开环放大倍数为106,输出阈值为6v 时若两输入级电压差小于6微伏探测器输出零。这也可以被认为是测量的不确定度。 2.3 F/V 变换电路的设计 2.3.1 F/V 变换器的简单介绍 LM331是美国NS 公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/ D 转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331 采用了新的温度补偿能隙基准电路, 在整个工作温度范围内和低到 4.0V 电源电压下都有极高的精度。LM331 的动态范围宽, 可达 100dB ; 线性度好, 最大非线性失真小于 0.01% ,工作频率低到0.1Hz 时尚有较好的线性;变换精度高,数字分辨率可达12位; 外接电路简单,只需接入几个外部元件就可方便构成 V/F 或 F/V 等变换电路,并且容易保证转换精度。 2.3.2 LM331 器件管脚图及管脚功能 VI + — A +V CC —V EE Vo 图3 过零比较器

电压频率和频率电压转换电路的设计

电压频率和频率电压转换电路的设计 图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。1、1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。1、2 设计指标(1)输入为直流电压0- 10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。2 设计内容总体框图设计2.1 V/F转换电路的设计2、1、1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。 通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值。

矩形波的振荡频率2、1、2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。滞回比较器:用来输出矩形波,积分器得到的三角波可触发比较器自动翻转形成矩形波。稳压管:用来确定矩形波的幅值。 图2 总体框架图2、2 功能模块的设计2、2、1 积分电路工作原理积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。由于同相积分电路的共模输入分量大,积分误差大,应用场合少,所以不予论述,本课程设计用到的是反相积分电路。图3 积分器反相积分电路如图3 所示,电容器C 引入交流并联电压负反馈,运放工作在线性区。由于积分运算是对瞬时值而言的,所以各电流电压均采用瞬时值符号。由电路得因为“-”端是虚地,即U-=0,并且式中是积分前时刻电容C上的电压,称为电容端电压的初始值。所以把代入上式得当时若输入电压是图所示的阶跃电压,并假定,则t>=0时,由于,所以由此看出,当E为正值时,输出为反向积分,E对电容器恆流充电,其充电电流为E/R,故输出电压随线性变化。当向负值方向增大到集成运放反向饱和电压时,集成运放进入非线性工作状态,保持不变,图3所示。 如输入是方波,则输出将是三角波,波形关系如图4所示。当时间在0~期间时,电容放电当t=1时,当时间在~期间时,电容充电,其初始值所以当 t= 时,。

固定频率PWM微功率DCDC变换器设计.

固定频率PWM微功率DC/DC变换器设计 在电池供电的计算机,消费类产品和工业设备中,DC/DC变换器是重要的部件。变换器有两种类型:线性变换器和开关变换器。开关变换器主要有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。在此用Motorola的MC33466微功率开关稳压器来设计降压变换器、升压变换器 在电池供电的计算机,消费类产品和工业设备中,DC/DC变换器是重要的部件。变换器有两种类型:线性变换器和开关变换器。开关变换器主要有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。 在此用Motorola的MC33466微功率开关稳压器来设计降压变换器、升压变换器和反激变换器。MC33466器件具有非常低的静态偏置电流(典型值15μA),含有高精度电压基准、振荡器、脉宽调制(PWM)控制器、驱动晶体管、误差放大器、反馈电阻分压器等。 MC33466变换器工作如同一个固定频率电压模式稳压器。变换器工作在非连续模式,在晶体管开关导通期间,电感电流跃变到峰值大于或等于dc输入电流的两倍值。在晶体管开关的关闭期间,电感电流跃变到零,直到另一个转换周期开始为止。 因为输出电压端也同样作为电源电压来为内部电路供电,所以在降压变换器和反激变换器设计中,需要一个外部启动电路为集成电距开始转换提供起始功率。 图1、图2和图3分别为用MC33466设计的升压变换器、降压变换器和反激变换器。在图3和图3中的启动电路用三个分立元件组成。 在变换器设计中必须选择下列参数: Vin--额定工作的dc输入电压 Vo--所希望的dc输出电压 Io--所希望的dc输出电流 Vripple(pp)--所希望的峰-峰输出波纹电压。为使性能最佳,波纹电压应该保持一低数值一,因为它将直接影响电源电压调整率和负载调整率。

电压频率转换器

课程设计说明书 课程名称:模拟电子技术课程设计 题目:电压频率转换器 学生姓名: 专业: 班级: 学号: 指导教师: 日期:年月日

电压/频率变换器 一、设计任务与要求 说明:电压/频率变换电路实质上是一种振荡频率随外加控制电压变化的振荡器。 主要技术指标与要求: (1)设计一种电压/频率变换电路,输入υI为直流电压(控制信号),输出频率为?O的矩形脉冲,且 fυI。 O (2)υI变化范围:0~10V。 (3)?O变化范围:0~10kHz (4)转换精度<1% 。 二、方案设计与论证 可知电路有积分器,单稳态触发器,电子开关和恒流源电路组成,狂徒如下:Array 1、电压/频率变换器的输入信号频率 f。与输入电压 Vi 的大小成正比,输入控制电压 Vi 常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。 2、本设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。积分器的输出信号去控制电压比较器或者 单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制

积分电容恒流放电,当电容放电到某一域值时,电容 C 再次充电。由此实现 Vi 控制电容充放电速度,即控制输出脉冲频率。 三、单元电路设计与参数计算 1、积分器设计: 积分器采用集成运算放大器和 RC 元件构成的反向输入积分器。具体电路如下: 2、单稳态触发器设计 : 单稳态触发器采用 555 定时器构成的单稳电路。具体电路如下:

3、电子开关设计 电子开关采用开关三极管接成反向器形式,当触发器的输出为高电平时,三极管饱和导通,输出近似为 0,当触发器输出为低电平时,三极管截止,输出近似等于+VCC. 4 、恒流源电路设计 恒流源电路可采用开关三极管,稳压二极管Dz 等元件构成。具体电路如下所示。R2/D1/D5给三极管提供基极偏置,R1提供射极偏置,与+/-15V电源构成恒流源电路,三极管的集电极电流为恒定电流。当V1为低电平D2,D3 截止,D4导通,所以积分电容通过三极管放电。当 V1为高电平D2、D3 导通,D4截止,输入信号对积分电容充电。在单稳态触发器的输出端得到矩形脉冲。 四、总原理图及元器件清单 1 总原理图

电压频率转换电路

2 电压/频率转换电路 电压/频率转换即V/F 转换,是将一定的输入电压信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。针对煤矿的特殊要求,我们只分析如何将电压转换成200~1000Hz的频率信号。 实现V/F 转换有很多的集成芯片可以利用,其中LM331是一款性能价格比较高的芯片,由美国NS公司生产,是一种目前十分常用的电压/频率转换器,还可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。由于LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01% ,工作频率低到1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V 等变换电路,并且容易保证转换精度。LM331可采用双电源或单电源供电,可工作在4.0~40V 之间,输出可高达40V,而且可以防止Vs短路。图2是由LM331组成的典型的电压/频率变换器。 其输出频率与电路参数的关系为: Fout= Vin·Rs/(2.09·R1·Rt·Ct) 可见,在参数Rs、R1、Rt、Ct确定后,输出脉冲频率Fout与输入电压Vin成正比,从而实现了电压-频率的线性变换。改变式中Rs的值,可调节电路的转换增益,即V和F之间的线性比例关系。将1~5V 的电压转换成200~1000Hz的频率信号,电路参数理论值为R =18kΩ,Ct=0.022uF,R1=100kΩ,Rs=16.5528kΩ,由于元器件与标称值存在误差,在

模电课程设计(电压频率转换电路)

模拟电路课程设计报告设计课题:电压—频率转换电路 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

题目电压—频率转换电路 一、设计任务与要求 1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 (提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.) 二、方案设计与论证 用集成运放构成的电压—频率转换电路,将直流电压转换成频率与其数值成正比的输出电压,其输出为矩形波。 方案一、采用电荷平衡式电路 输入电压→积分器→滞回比较器→输入 原理图:

方案二、采用复位式电路 输入电压→积分器→单限比较器→输出 原理图: 通过对两种转换电路进行比较分析,我选择方案一来实现电压—频率的转换。方案一的电路图简单,操作起来更容易,器件少,价钱也更便宜,且方案一的线性误差小,精度高,实验结果更准确,所以我选择方案一。 三、单元电路设计与参数计算 1、电源部分:

图1 电源原理图 单相交流电经过电源变压器、单相桥式整流电路、滤波电路和稳压电路转换成稳定的直流电压。 直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉冲电压。 为了减少电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。 交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。 取值为: 变压器:规格220V~15V 整流芯片:LM7812、LM7912 整流用的二极管:1N4007 电解电容:3300uf C2、C3:0.1uf C4、C5:0.47uf C7、C8:220uf 发光二极管上的R:1KΩ 2、电压—频率转换部分: ○1积分器:

电压-频率变换器

课程设计Ⅱ 题目电压频率变换器的设计 学生姓名学号 0810064013 所在院(系)物电学院 专业班级电子信息科学与技术081班 指导教师 完成地点陕西理工学院 2011 年 11月 16 日

设计题目:电压/频率变换器的设计 学生信息姓名性别男班级电信 081班 学号0810064013 任务要求 电压/频率变换器输入V i为直流电压(控制信号),输出频率为f0的矩形脉冲;且Vi 变化范围:0~10V;f0变化范围:0~10kHz;转换精度<1%。并且要有具体的仿真结果。 所需实验设备、器材、软件 计算机,protel软件 设计与制作方案、所用方法及技术路线 1.明确性能指标,仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2.确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3.设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4.组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 设计与制作进度 第一周:对protel软件的学习和总体设计; 第二周:对各部分功能的设计并且按时完成。 设计与制作完成情况 完成了用软件仿真来实现电压/频率的变换。硬件部分只设计了下电路没有实物。 设计与制作收获及总结:由于以前从未接触过protel,所以完全需要自学,书上的资料不够用,就去图书馆借书,上网查资料,发现问题,不断地改进,最终才得以克服。特别谢谢我们的指导老师刘东老师在我做课程设计过程中对我的耐心指导,以及同学的帮助。 学生签字年月日 设计与制作成绩(五级制) 指导老师签字年月日教研室意见 教研室主任签字年月日系领导意见 领导签字年月日备注:学生除填写本表相应的内容外,还应撰写一份完整的设计与制作报告.

(重要)利用LM331进行频率电压转换

频率/电压变换器实验报告设计 一、实验目的 熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求 当方波信号的频率f i在200Hz~2kHz范围内变化时,对应输出的直流电压V i在1~5V范围内线形变化; 方波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V电源供电. 三、设计报告要求 1.列出已知条件,技术指标。 2.分析电路原理。 3.写出设计步骤: (1)电路形式选择。 (2)电路设计,对所选电路中的各元件值进行计算式估算,并标于图中。 4.测试与调整: (1)按技术要求测试数据,对不满足技术指标的参数进行调整,并整理列出表格,在方格纸上绘出波形。 (2)故障分析几说明。 5.误差分析。 四、实验仪器及主要器件 1.仪器 双踪示波器 1台 直流稳压电源 1台 毫伏表 1台 万用表 1台 低频信号发生器 1台 2.元器件 μA741 1只 LM331 1只 LM324 1只 电位器、电阻、电容若干 五、设计过程 1.方案选择 可供选择的方案有两种,它们是: ○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○2直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理

LM331的管脚排列和主要性能见附录 LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC ) LM331用作FVC 时的原理框如图5-1-1所示. -输入比较器 定时比较器 + +56 7 Q T C t R t V CC 2/3V CC 9/10V CC s 置“1”端 置“0”端 R fi 图5-1-1 Q 此时,○ 1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○ 7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下: 当输入负脉冲到达时,由于○6脚电平低于○ 7脚电平,所以S=1(高电平),Q =0(低电平)。此时放电管T 截止, 于是C t 由V CC 经R t 充电,其上电压V Ct 按指数规律增大。与此同时,电流开关S 使恒流源I 与○ 1脚接通,使C L 充电,V CL 按线性增大(因为是恒流源对C L 充电)。

传感器中的电压电流、电压频率变换的实现.

传感器中的电压/电流、电压/频率变换 的实现 传感器中的电压/电流、电压/频率变换的实现 类别:传感与控制 随着电子技术和计算机技术的迅速进步,工业自动化得到了快速发展,而在工业控制领域,检测传感器件起着越来越重要的作用,各种先进的传感器正在大量应用。但是很多传感器只提供4~20mA或者0~5V的直流模拟信号输出,而我国煤矿使用的煤矿安全监测系统大部分只允许接入1~5mA或者200~1000Hz的模拟信号,所以在一般工业现场使用的传感器要实现在煤矿的应用,除了考虑防爆因素外,还必须进行输出模拟信号的转换。这种输出信号的转换如果购买专用的转换设备,不仅价格高,使用也不是很方便。实际上自己设计制作一些转换电路也可以方便的实现所需性能,下面就介绍两种实用的电压/电流、电压/频率转换电路的设计和原理。 1电压/电流转换电路电压/电流转换即V/I转换,是将输入的电压信号转换成满足一定关系的电流信号,转换后的电流相当一个输出可调的恒流源,其输出电流应能够保持稳定而不会随负载的变化而变化。V/I转换原理如图1。由图1可见,电路主要元件为一运算放大器LM324和三极管BG9013及其他辅助元件构成,V0为偏置电压,Vin为输入电压即待转换电压,R为负载电阻。其中运算放大器起比较器作用,将正相端电压输入信号与反相端电压V-进行比较,经运算放大器放大后再经三极管放大,BG9013的射级电流Ie作用在电位器Rw上,由运放性质可知:V-=Ie·Rw=(1+k)Ib·Rw(k为BG9013的放大倍数)流经负荷R的电流Io即BG9013的集电极电流等于k·Ib。令R1=R2,则有V0+Vm=V+=V-=(1+k)Ib·Rw=(1+1/k)Io·Rw其中k》1,所以Io≈(Vo+Vin)/Rw。由上述分析可见,输出电流Io的大小在偏置电压和反馈电阻Rw为定值时,与输入电压Vin成正比,而与负载电阻R的大小无关,说明了电路良好的恒流性能。改变V0的大小,可在Vin=0时改变Io的输出。在V0一定时改变Rw的大小,可以改变Vin与Io的比例关系。由Io≈(V0+Vi)/Rw关系式也可以看出,当确定了Vin和Io之间的比例关系后,即可方便地确定偏置电压V0和反馈电阻Rw。例如将0~5V电压转换成0~5mA的电流信号,可令V0=0,Rw=1kΩ,其中Vo=0相当于将其直接接地。若将0~5V电压信号转换成1~5mA电流信号,则可确定V0=1.25V,Rw=1.25kΩ。同样若将4~20mA电流信号转换成1~5mA电流信号,只需先将4~20mA转换成电压即可按上述关系确定V0和Rw的参数大小,其他转换可依次类推。为了使输入输出获得良好的线性对应关系,要特别注意元器件的选择,如输入电阻R1、R2及反馈电阻Rw,要选用低温漂的精

相关文档
最新文档