人体三维模型

人体三维模型
人体三维模型

三维人体建模

摘要:对当今广为应用的线框模型、体模型和曲面模型等传统的三维人体建模方法进行了研究和分析,本文通过对三维人体建模的介绍,它的发展现况以及它对服装行业的影响,来阐述三维人体建模。

关键词:人体建模,发展,影响

目录

一:人体(三维)建模定义和内涵

1.1.三维模型(定义)

1.2.三维模型的构成

1.3.构建三维模型的方法

1.4.人体三维建模(定义)

二:人体建模发展现状

2.1.“3D人体扫描仪介绍”

2.2.主要人体三维扫描仪3D CaMega DCS系列(人体数字化系统)三:对服装产业的影响意义

3.1.三维服装仿真中的参数化人体建模技术

3.2.3D试衣系统中个性化人体建模方法

3.3.服装CAD中三维人体建模方法综述

四.文献来源

一:人体(三维)建模定义和内涵

1.1.三维模型(定义)

是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。

1.2.三维模型的构成

(1)网格网格是由物体的众多点云组成的,通过点云形成三维模型网格。点云包括

三维坐标、激光反射强度和颜色信息,最终绘制成网格。这些网格通常由三角形、四边形或者其它的简单凸多边形组成,这样可以简化渲染过程。但是,网格也可以包括带有空洞的普通多边形组成的物体。

(2)纹理纹理既包括通常意义上物体表面的纹理即使物体表面呈现凹凸不平的沟纹,

同时也包括在物体的光滑表面上的彩色图案,也称纹理贴图,当把纹理按照特定的方式映射到物体表面上的时候能使物体看上去更真实。纹理映射网格赋予图象数据的技术;通过对物体的拍摄所得到的图像加工后,再各个网格上的纹理映射,最终形成三维模型。

1.3.构建三维模型的方法

目前物体的建模方法,大体上有三种:第一种方式利用三维软件建模;第二种方式通过仪器设备测量建模;第三种方式利用图像或者视频来建模。

三维软件建模目前,在市场上可以看到许多优秀建模软件,比较知名的有

3DMAX,SoftImage, Maya,UG以及AutoCAD等等。它们的共同特点是利用一些基本的几何元素,如立方体、球体等,通过一系列几何操作,如平移、旋转、拉伸以及布尔运算等来构建复杂的几何场景。利用建模构建三维模型主要包括几何建模(Geometric Modeling)、行为建模(KinematicModeling)、物理建模(Physical Modeling)、对象特性建模(Object Behavior)以及模型切分(Model Segmentation)等。其中,几何建模的创建与描述,是虚拟场景造型的重点。

仪器设备建模三维扫描仪(3 Dimensional Scanner)又称为三维数字化仪(3

Dimensional Digitizer)。它是当前使用的对实际物体三维建模的重要工具之一。它能快速方便的将真实世界的立体彩色信息转换为计算机能直接处理的数字信号,为实物数字化提供了有效的手段。它与传统的平面扫描仪、摄像机、图形采集卡相比有很大不同:首先,其扫描对象不是平面图案,而是立体的实物。其次,通过扫描,可以获得物体表面每个采样点的三维空间坐标,彩色扫描还可以获得每个采样点的色彩。某些扫描设备甚至可以获得物体内部的结构数据。而摄像机只能拍摄物体的某一个侧面,且会丢失大量的深度信息。最后,它输出的不是二维图像,而是包含物体表面每个采样点的三维空间坐标和色彩的数字模型文件。这可以直接用于CAD或三维动画。彩色扫描仪还可以输出物体表面色彩纹理贴图。早期用于三维测量的是坐标测量机(CMM)。它将一个探针装在三自由度(或更多自由度)的伺服装置上,驱动探针沿三个方向移动。当探针接触物体表面时,测量其在三个方向的移动,就可知道物体表面这一点的三维坐标。控制探针在物体表面移动和触碰,可以完成整个表面的三维测量。其优点是测量精度高;其缺点是价格昂贵,物体形状复杂时的控制复杂,速度慢,无色彩信息。人们借助雷达原理,发展了用激光或超声波等媒介代替探针进行深度测量。测距器向被测物体表面发出信号,依据信号的反射时间或相位变化,可以推算物体表面的空间位置,称为“飞点法”或“图像雷达”。

根据图像或视频建模基于图像的建模和绘制(Image-Based Modeling

andRendering,IBMR)是当前计算机图形学界一个极其活跃的研究领域。同传统的基于几何的建模和绘制相比,IBMR技术具有许多独特的优点。基于图像的建模和绘制技术给我们提供了获得照片真实感的一种最自然的方式,采用IBMR技术,建模变得更快、更方便,可以获得很高的绘制速度和高度的真实感。IBMR的最新研究进展已经取得了许多丰硕的成果,并有可能从根本上改变我们对计算机图形学的认识和理念。由于图像本身包含着丰富的场景信息,自然容易从图像获得照片般逼真的场景模型。基于图像的建模的主要目的是由二维图像恢复景物的三维几何结构。由二维图像恢复景物的三维形体原先属于计算机图形学和计算机视觉方面的内容。由于它的广阔应用前景,如今计算机图形学和计算机视觉方面的研究人员都对这一领域充满兴趣。与传统的利用建模软件或者三维扫描仪得到立体模型的方法相比,基于图像建模的方法成本低廉,真实感强,自动化程度高,因而具有广泛的应用前景。

4.人体三维建模(定义)

涉及一种基于图像的人体三维建模方法。它针对现有人体三维模型代表皮肤变形的参数过多的不足和缺点,提出了一种新的旋转圆锥曲面建立人肢体三维模型的方法,在技术方案中首先使用双目立体视觉系统拍摄人体摆姿势的图像序列,并从双目图像序列中提取、匹配标记点或图像轮廓,根据标记点和图像轮廓以及体积不变的约束条件,估计人体三维变形和运动参数,最后使用圆球体和旋转圆锥曲面绘制人体模型。本项发明在医学图像、生物医学、手势识别、视频会议、视频游戏、自动新闻播放、电影制作、材料变形、图像压缩等方面都有实际应用价值。

二:人体建模发展现状

2.1.“3D人体扫描仪介绍”(一种新型科学仪器,用来侦测和分析人类个体的形状与外观数据。)

(1)主要特点

扫描速度快3秒极速扫描,三维数据自动匹配融合,一分钟后可看到拍摄成果。

系统精度高多传感标定精度能够达万分之一,3D彩色打印600万色、精度0.1mm。

真实感纹理融合获取高分辨率彩色纹理,纹理融合,获得真实感模型,与真人相似真实度达95%以上。

智能化操作人体三维数字化实现一键操作,多套传感设备实现数据交互

(2)原理

人只要站在3D人体扫描仪的电动旋转盘上缓缓旋转几分钟后,就可以在电脑上建立出三维的数据模型,再使用连接好的3D打印机便可以打印出来,人工上色后连脸上的痘痘等细节都能反映出来。

应用领域包含服装设计、虚拟试衣、个性化量身定做。

2.2.主要人体三维扫描仪3D CaMega DCS系列(人体数字化系统)

3D CaMega DCS系列人体全身(半身)扫描系统是国内首套具有自主知识产权的人体三维数字化测量系统。

3D CaMega DCS系列人体全身(半身)扫描系统充分利用光学三维扫描的快速以及白光对人体无害的优点,在3—5 秒内对人体全身或半身进行多角度多方位的瞬间扫描。人体全身(半身)扫描系统通过计算机对多台光学三维扫描仪进行联动控制快速扫描,再通过计算机软件实现自动拼接,获得精确完整的人体点云数据。

人体全身(半身)扫描系统获取的人体点云数据包含了完整人体各个部位的准确的三维信息(整体精确达到0.5mm)。基于人体点云数据即点云数据模型可生成完整的人体网格模型即面片模型;基于人体点云数据,通过人体参数化数字处理软件可获得不同部位的准确人体参数尺寸。

人体三维扫描系统也称三维人体测量系统,人体数字化系统,广泛应用于服装,动画,人机工程以及医学等领域。是发展人体(人脸)模式识别,特种服装设计(如航空航天服,潜水服),人体特殊装备(人体假肢,个性化武器装备),以及开展人机工程研究的理想工具。

2.2.1主要特点

1、安全可靠采用普通白光光源(非激光),对人体和人眼没有任何伤害,可睁眼测量;

2、瞬间测量单次测量时间0.4—0.1秒,多机测量时间3.0—5.0秒,快速扫描能有效避免人体晃动造成的误差;

3、自动拼接多机系统从前后不同方向依次自动快速完成人体三维数据的采集,自动拼接完成不同方位的点云数据,形成统一的点云模型;

4、真实色彩系统不仅可以获得人体表面精确的空间信息(X、Y、Z),而且同时获得每一个像素点对应的色彩信息(R、G、B),避免了利用贴图的方式而产生的色彩和位置发生错位的现象;

5、多种格式输出 ASC,OBJ,WRL,STL,TXT,IGS等,可以和

UG,PRO/E,CATIA,Geomagic,Imageware,MAYA等软件接口;

2.2.2应用范围

1、建立人体尺寸标准库、军队制服型号分析;

2、服装设计、虚拟试衣、个性化量身定做;

3、美体塑身行业体型分析评价;

4、三维影视动画真人建模;

5、医学工程、生理解剖;

6、人机工效学、工业设计;

7、专业人群选材(运动员、特种部队、艺术专业);

2.2.3应用案例

案例1——宁波某纺织有限公司

该公司看准人们对服装大批量定制的市场,推出服装量身定制车,通过我公司的数字化三维人体测量技术实现了缝前段自动化和缝制段自动化的高科技信息转换及自动排版剪裁,让科技支撑时尚,促成传统行业嫁接现代科技之上。2011年3月27在北京国展的服装展,就是采用我们的设备来进行展示。

案例2——2008年中国载人航天中心——神七宇航员的体型数据采集

三:对服装产业的影响意义

3.1.三维服装仿真中的参数化人体建模技术

三维服装仿真中,通常需要以不同体态特征的人体来展示穿着效果,例如服装的立体感以及合体性等。考虑到这一实际应用,提出了一种参数化人体建模的新方法。特征参数的确定依据人体测量学理论,模板和结果模型都表示为空间多边形网格,底层几何处理基于计算机图形学轴变形技术,同时引入了径向变形权重曲线来增加调整的灵活性。该方法具有操作

简单,输入直观以及建模速度快的优点,能够有效满足三维服装仿真环境对个性化人体模型的需求。

传统人体建模方法主要是利用三维造型软件进行手工交互式编辑,虽然可以得到较为细致的曲面或网格模型,但费时费力,而且一般都由专业技术人员来完成。非接触式三维测量技术的出现使这一情况有所改善,直接对人体进行扫描能够采集到精确的表面信息,但该方法产生的数据量庞大。快速参数化人体建模方法更侧重于特定形态人体的生成而非重建。在特征参数选取方面,该方法结合了人体测量学相关理论,对人体模板的修改则基于图形学轴变形技术,所实现的建模系统操作简单直观,非常适合三维服装仿真应用(例如虚拟服装展示系统)对个性化人体模型的需求。

3.2.3D试衣系统中个性化人体建模方法

从点云数据中用三角片重建人体曲面的方法.首先对人体的各部位采用基于曲率变化的方法采样,提取和保存了人体的特征点、特征轮廓线,克服了三角片无语义的缺点,并且生成人体骨架,为后期的动态展示服装打下了基础.然后采用轮廓同步前进法绘制三角片,重建

3D人体模型.该建模方法数据量小,能快速生成逼真的人体模型,满足3D虚拟试衣的要求.

无论是基于网络的虚拟试衣、3D服装CAD还是电子化量身定制,首要的问题都是如何解决在目前计算机软、硬件条件下,快速、方便地生成与客户人体体形相似的虚拟三维人体模型人体的建模方法直接影响后期三维虚拟试衣实现的难易程度和表现效果.重建人体表面常用的有多面体片、有理B样条曲面和NURBS曲面.目前NURBS曲面比较常见.但NURBS曲面不能很好地解决复杂曲面的拼接问题[3,4];而且在后期虚拟试衣过程中采用NURBS曲面很难进行碰撞检测。

用于重建人体的数据来自于3D人体点云,首先针对3D扫描仪获得的人体数据点密集散乱的问题,在参考前人算法的基础上对传统的切片采样稀疏法提出改进措施,采用基于曲率的双向采样方法.设计了合理的数据结构,克服三角片只能表达坐标信息,而不包含与人体模型相关的语义信息的缺点,保存了人体的特征点、特征轮廓线,生成了人体骨架,为后期动态展示服装打下了基础.最后,采用相邻轮廓线同步前进法连接三角片重建人体表面.

3.3.服装CAD中三维人体建模方法综述

三维人体建模方法划分为线框建模、实体建模、曲面建模、基于物理的建模等方法。

应用于三维服装CAD中的人体建模方法:三维服装CAD设计系统包括三

维人体测量、三维人台造型、三维服装造型、三维衣片设计和修改、三维衣片二维展开、衣片结构图生成、排料等模块。三维服装设计是在人台的基础上进行的, 因此在测量获得数据后, 就必须完成计算机人台造型。因服装设计的特殊性, 对人体模型提出了更具体的要求, 比如既要考虑构成人体的不同部位的组织特点及呼吸所需的基本度, 还要考虑人体正常活动所需的运动度等, 因此,服装人体建模是一个复杂形体的几何造型、参数化设计和运动仿

真的综合问题。当前在服装人体建模中主要使用的方法有以下4种:多面体建模、基于特征的服装人体曲面建模、参数化的曲面建模和以网格边界线为连续条件的三维人体建模。

四.文献来源

查阅渠道文献题目/刊物名称作者发表时间

网络搜索引擎:https://www.360docs.net/doc/963979306.html, 人体三维建模http://baike.baidu

.com/link?url=M63S

KK-UAJc7duVpkn8bKr

6LM9mKTEwrmutkzaYe

b_dtR7BDoU9lpHJVRg

Neb5RfQ6_iQkiMxTna

7Sixe90cLa

/

3D人体扫描仪http://baike.baidu

.co m/link?url=Q9_M

cGkljDkxP5jbkfL0OJ

fAd_J3cDC95vWpmDkW

-GLgEaw28fGVeQUAPd

PqxuJxpoopGKoZVfJ9

_dmvCf0ZC_

/

三维模型http://baike.baidu

.com/link?url=ALXP

qnUz7-DeABhb15M0Aa

RMB0demSzAH-K6tkyG

mkzQ7WtN-kGT64ZMT5

WbGzvP385Q276NiSiV

u7ccDdW9Sq

/

人体三维扫描仪3D

CaMega DCS

http://baike.baidu

.com/link?url=CZdx

DtYsQHKeU17t0DPvxS

7BuA6xSS59OS4ZKXy6

GUgL1zCjYdzXDg--o4

2R7GjW1h0RoQheR_s_

O4T3-Uvpj_

/

中国知网三维服装仿真中的参

数化人体建模技术

孙守迁,徐爱国

(浙江大学-计算机科

学与技术学院,浙江

杭州)

2007年12月

http:// https://www.360docs.net/doc/963979306.html,k https://www.360docs.net/doc/963979306.html,/ 服装CAD 中个性化

三维人体建模

王栋 1 高成英 2

高月芳 1 梁云 1

(1.华南农业大学信

息学院广东广州

510642; 2.中山大学

计算机应用研究所

广东广州

510275)

2009 年第 8

服装CAD中三维人体

建模方法综述

谷林, 张欣( 西安

工程科技学院, 陕西

西安 710048)

2006 年 5 月

3D试衣系统中个性

化人体建模方法

崔树芹1,2 余胜生

1 胡新荣2(1华中

科技大学计算机科学

与技术学院,湖北武

汉430074;2武汉科

技学院计算机科学与

技术学院,湖北武汉

430074)

2009年10月

人体三维模型解读

三维人体建模 摘要:对当今广为应用的线框模型、体模型和曲面模型等传统的三维人体建模方法进行了研究和分析,本文通过对三维人体建模的介绍,它的发展现况以及它对服装行业的影响,来阐述三维人体建模。 关键词:人体建模,发展,影响

目录 一:人体(三维)建模定义和内涵 1.1.三维模型(定义) 1.2.三维模型的构成 1.3.构建三维模型的方法 1.4.人体三维建模(定义) 二:人体建模发展现状 2.1.“3D人体扫描仪介绍” 2.2.主要人体三维扫描仪3D CaMega DCS系列(人体数字化系统)三:对服装产业的影响意义 3.1.三维服装仿真中的参数化人体建模技术 3.2.3D试衣系统中个性化人体建模方法 3.3.服装CAD中三维人体建模方法综述 四.文献来源

一:人体(三维)建模定义和内涵 1.1.三维模型(定义) 是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。 1.2.三维模型的构成

(1)网格网格是由物体的众多点云组成的,通过点云形成三维模型网格。点云包括 三维坐标、激光反射强度和颜色信息,最终绘制成网格。这些网格通常由三角形、四边形或者其它的简单凸多边形组成,这样可以简化渲染过程。但是,网格也可以包括带有空洞的普通多边形组成的物体。 (2)纹理纹理既包括通常意义上物体表面的纹理即使物体表面呈现凹凸不平的沟纹, 同时也包括在物体的光滑表面上的彩色图案,也称纹理贴图,当把纹理按照特定的方式映射到物体表面上的时候能使物体看上去更真实。纹理映射网格赋予图象数据的技术;通过对物体的拍摄所得到的图像加工后,再各个网格上的纹理映射,最终形成三维模型。 1.3.构建三维模型的方法 目前物体的建模方法,大体上有三种:第一种方式利用三维软件建模;第二种方式通过仪器设备测量建模;第三种方式利用图像或者视频来建模。 三维软件建模目前,在市场上可以看到许多优秀建模软件,比较知名的有 3DMAX,SoftImage, Maya,UG以及AutoCAD等等。它们的共同特点是利用一些基本的几何元素,如立方体、球体等,通过一系列几何操作,如平移、旋转、拉伸以及布尔运算等来构建复杂的几何场景。利用建模构建三维模型主要包括几何建模(Geometric Modeling)、行为建模(KinematicModeling)、物理建模(Physical Modeling)、对象特性建模(Object Behavior)以及模型切分(Model Segmentation)等。其中,几何建模的创建与描述,是虚拟场景造型的重点。 仪器设备建模三维扫描仪(3 Dimensional Scanner)又称为三维数字化仪(3 Dimensional Digitizer)。它是当前使用的对实际物体三维建模的重要工具之一。它能快速方便的将真实世界的立体彩色信息转换为计算机能直接处理的数字信号,为实物数字化提供了有效的手段。它与传统的平面扫描仪、摄像机、图形采集卡相比有很大不同:首先,其扫描对象不是平面图案,而是立体的实物。其次,通过扫描,可以获得物体表面每个采样点的三维空间坐标,彩色扫描还可以获得每个采样点的色彩。某些扫描设备甚至可以获得物体内部的结构数据。而摄像机只能拍摄物体的某一个侧面,且会丢失大量的深度信息。最后,它输出的不是二维图像,而是包含物体表面每个采样点的三维空间坐标和色彩的数字模型文件。这可以直接用于CAD或三维动画。彩色扫描仪还可以输出物体表面色彩纹理贴图。早期用于三维测量的是坐标测量机(CMM)。它将一个探针装在三自由度(或更多自由度)的伺服装置上,驱动探针沿三个方向移动。当探针接触物体表面时,测量其在三个方向的移动,就可知道物体表面这一点的三维坐标。控制探针在物体表面移动和触碰,可以完成整个表面的三维测量。其优点是测量精度高;其缺点是价格昂贵,物体形状复杂时的控制复杂,速度慢,无色彩信息。人们借助雷达原理,发展了用激光或超声波等媒介代替探针进行深度测量。测距器向被测物体表面发出信号,依据信号的反射时间或相位变化,可以推算物体表面的空间位置,称为“飞点法”或“图像雷达”。

三维模型轻量化技术

三维模型轻量化技术 1 模型轻量化的必要性 设计模型是一种精确的边界描述(B-rep)模型,含有大量的几何信息,在现有的计算机软硬件条件下,使用设计模型直接建立大型复杂系统装配、维修仿真模型是不可能的,因此需要使用轻量化的模型建立仿真模型,以达到对仿真模型的快速交互、渲染。 2 细节层次轻量化技术 90年代中期以来,模型轻量化技术得到了快速的发展,出现了抽壳(hollow shell)技术和细节层次(Level of Details, LOD)技术。抽壳技术只关心产品模型的几何表示而不考虑产品建模的过程信息,LOD技术将产品几何模型设定不同的显示精度和显示细节,根据观察者眼点与产品几何模型之间的距离来使用不同的显示精度,以此达到快速交互模型的目的。 LOD技术是当前可视化仿真领域中处理图形显示实时性方面十分流行的技术之一。LOD模型就是在不影响画面视觉效果的条件下,对同一物体建立几个不同逼近精度的几何模型。根据物体与视点的距离来选择显示不同细节层次的模型,从而加快系统图形处理和渲染的速度。保证在视点靠近物体时对物体进行精细绘制,在远离物体时对物体进行粗略绘制,在总量上控制多边形的数量,不会出现由于显示的物体增多而使处理多边形的数量过度增加的情况,把多边形个数控制在系统的处理能力之内,这样就可以保证在不降低用户观察效果的情况下,大大减少渲染负载。 通常LOD算法包括生成、选择以及切换三个主要部分。 目前轻量化的技术有多种,具有代表性的有JT和3DXML两种。3DXML是Dassault、微软等提出的轻量化技术,JT是JT开放组织提出的轻量化技术。SIEMENS公司的可视化产品都采用JT技术,如我们使用的VisMockup软件。 JT技术用小平面表示几何模型,采用层次细节技术,具有较高的压缩比,模型显示速度很快。 jt、ajt模型及其结构 jt模型文件是三维实体模型经过三角化处理之后得到的数据文件,它将实体表面离散化为大量的三角形面片,依靠这些三角形面片来逼近理想的三维实体模型。 模型精度不同,三角形网格的划分也各不相同。精度越高,三角形网格的划分越细密,三角形面片形成的三维实体就越趋近于理想实体的形状。模型曲面精度由Chordal、Angular 两个参数控制。图1(a),Chordal表示多边形的弦高的最大值,图1(b),Angular表示多边形相邻弦的夹角的最大值。?????????????????????????????? 图1 Chordal和Angular示意图 jt模型有三种结构形式,都保持了原来的产品结构。分别是: (1)Standard(标准结构形式)。包含一个装配文件和多个零件文件,其中零件文件都放在一个和装配文件同名的目录下。我们建立的虚拟样机模型都采用这种结构形式。 (2)Shattered(分散结构形式)。包含多个子装配文件和多个零件文件,其中子装配文件和零件文件都放在一个目录下。这种结构的优点是有子装配文件,并可以直接使用子装配,缺点是文件管理比较乱、不清晰。

浅谈三维建模技术的研究与应用

浅谈三维建模技术的研究与应用 兰文涛 新疆油田公司风城油田作业区 摘要:以应用为主的三维地理信息系统模型,通过Skyline TerraExplorer Pro和3ds Max模型制作,并发布应用到GIS,从而推进了GIS应用,实现了油田设施在计算机中的展示、研究与管理步伐,加快了数字油田建设,并促进了克拉玛依标志性建筑三维模型的早日完成。 关键词:3ds Max;Skyline TerraExplorer Pro;建模;GIS;应用 1.1 前言 2000年,中国石油天然气股份有限公司新疆油田分公司(以下简称油田公司)在“数字地球”技术背景下,提出了数字新疆油田的宏伟战略,并制定了“数字新疆油田”信息建设“三个阶段”的战略部署。不仅将从根本上建立从分散到集中,从无序到有序的信息化建设新秩序,而且标志着“数字新疆油田”规模化建设的开始。 但是“数字油田”是一个庞大,复杂的工程,涉及的内容之多,之广,它涉及数据建设,信息系统建设,网络工程建设等,其中信息系统的建设,是由二维地理信息来表示的。二维 GIS始于二十世纪六十年代的机助制图,今天已深入到社会的各行各业中,如土地管理、电力、电信、城市管网、水利、消防、交通以及城市规划等。但二维GIS存在着自身难以克服的缺限,本质上是基于抽象符号的系统,不能给人以自然界的本原感受。随着应用的深入,第三维的高程信息显得越来越重要。一些二维GIS 和图象处理系统现已能处理高程信息,但它们并未将高程变量作为独立的变量来处理,只将其作为附属的属性变量对待,能够表达出表面起伏的地形,但地形下面的信息却不具有,因此它们在国际国内也被俗称为2.5维的系统。考虑到2.5维这一概念并不严密,作者称之为“地形面三维”或简称面三维。我们认为,面三维的GIS本质上仍然是二维GIS系统。 二维GIS只能处理平面X、Y轴向上的信息,不能处理铅垂方向Z轴上的信息。它在表达上通常是将Z值投影到二维平面上进行处理,因此对于同一(x, y)位置的多个Z值不能表达。 世界的本原是处在三维空间中的,二维GIS将现实世界简化为平面上二维投影的概念模型注定了它在描述三维空间现象上的无能为力,克服这一缺陷迫切需要真正的基于三维空间的GIS的问世。三维地理信息系统就是在这一前提下进行的开发,它充分体现了三维建模技术,对三维物体进行了真实再现,从而满足生产、科研、管理、决策等对空间信息的可视化需求。 2.1 三维地理信息系统的定义与特点 2.1.1 三维地理信息系统的定义 三维地理信息系统(Geographical Information System)简称三维GIS,三维GIS是近年来迅速发展起来的一门融计算机图形学和数据库技术于一体的新型空间信息技术,它把现实世界中对象的空间位置和相关属性有机地结合起来,满足用户对空间信息管理的要求 ,并借助其特有的空间分析功能和可视化表达,进行各种辅助决策。从而满足了生产、科研、管理、决策等对空间信息的可视化需求。 从不同的角度出发,GIS有三种定义:①基于工具箱的定义:认为GIS是一个从现实世界采集、存

3D建模贴图实验报告

《摄影测量学》实验报告 实验序号:实验三实验项目名称:建筑三维建模贴图 学号1020022151 姓名张应芳专业、班10测绘工程1班实验地点工训2-307 指导教师何原荣老师实验时间2013年5月28日 一、实验目的 在3D max中建立的工商旅游学校新建教学用房的建筑三维模型的基础上,将拍摄的4个侧面和房顶的照片贴到已建成的三维建筑模型中。学会3D max进行建筑三维模型贴图的技术与方法。 二、实验设备(环境)及要求 硬件:CPU inter core(TM)2 duo,内存2GB,硬盘120GB 操作系统:Microsoft Windows XP SP3 制作软件:3D max、PS软件 三、实验过程与实验结果 (一)整体建模的分析与预处理 在已建立的工商旅游学校新建教学用房的建筑三维模型的基础上,结合拍摄的照片对整个模型的贴图进行整体的分析。其中主要为: 1.贴图材质照片的处理; 2.前视面的切割与贴图; 3.侧视面的切割与贴图; 4.贴图模块的阵列、镜像。 (二)女儿墙的再处理 在前一次的实验中,对于女儿墙的建立采用的是在6层楼多边形的顶部面插入一个0.2m宽度的多边形并挤出,但是因为挤出的多边形是环绕教学用房的外围的,所以会与屋顶梯间重叠,产生闪面的现象。所以在对三维模型进行贴图之前对女儿墙采用另外一种更简单的方法建立。 按“T”切换到俯视面,并隐藏CAD底图之外的其他部分。依次选择创建→图形→线,在底图上捕捉绘制样条线,以鼠标右键结束样条线的绘制。绘制线

完成之后,选择转换为可编辑样条线“”,在右编辑框命令栏中的几何体中将轮廓改为0.2m或者-0.2m(正负根据画线的方向以及实际需要而定)。 完成女儿墙的建模之后,根据其实际的位置,移动到建筑物的顶部。如图1所示。 图1 女儿墙处理 (三)多余面处理 在所建的模型中会存在一些多余的面,比如5层楼与6层楼重叠的部分,在整个模型的内部,对我们的建模以及视图显示没有用处,所以可以删除。选择相应所需删除的面元素,delete即可。如图2所示。

机械产品三维建模通用规则第1部分:通用要求

ICS XX.XXX.XX J XX 机械产品三维建模通用规则 第1部分:通用要求 General Principles of Three- Dimensional Modeling for Mechanical Products— Part 1: General Requirements (征求意见稿) 中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 三维数字模型的分类 (2) 5 三维数字模型构成 (2) 6 三维建模通用要求 (2) 7 模型文件的命名原则 (3) 8 三维数字模型检查 (3) 9 三维数字模型管理要求 (3)

前言 GB/T xxxxx—xxxx《机械产品三维建模通用规则》由四部分组成: ——第1部分:通用要求; ——第2部分:零件建模; ——第3部分:装配建模; ——第4部分:模型投影工程图。 本部分为xxxxx—xxxx《机械产品三维建模通用规则》的第1部分,给出了机械产品三维建模术语、模型分类与构成、建模通用要求、模型文件的命名原则、模型检查以及模型管理要求等方面的规范性要求。 本部分由全国技术产品文件标准化技术委员会提出并归口。 本部分主要起草单位:机械科学研究总院中机生产力促进中心、北京清软英泰信息技术有限公司、中国电子科技集团公司第三十八研究所、北京数码大方科技有限公司、北京艾克斯特信息技术有限公司、北京理工大学、西安电子科技大学、上海交通大学、广西玉柴机器股份有限公司、上汽通用五菱汽车股份有限公司、广西柳工机械股份有限公司、北京科新纪元信息技术有限公司。 本部分主要起草人: 本部分为首次发布。

三维建模在虚拟现实中的应用

龙源期刊网 https://www.360docs.net/doc/963979306.html, 三维建模在虚拟现实中的应用 作者:冯丹 来源:《商情》2019年第49期 【摘要】虚拟现实建模技术是当下计算机技术当中的一项热门话题。当今三维建模技术主要以Autodesk maya和3Dmax两款设计软件为主要创怍工具,三维建模方法主要有多边形建模、非均匀有理B样条曲线建模、细分曲面技术建模。每种建模方法各有其优点和缺点。本文主要围绕多边形建模和NURBS建模两种方法进行介绍。 【关键词】虚拟现实; 多边形建模; NURBS建模 一、引言 随着现在科技的发展以及计算机的普及应用,高科技技术产品的出现,三维技术和虚拟现实技术的应用逐渐发挥着重要的作用。虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,并使用户沉浸到该环境中。这是现代计算机技术高度发展的主要象征之一,有效提高了各类产品、建筑、景观、动画等的设计效果,使得图形不再仅局限于二维空间当中,而是转变为了三维立体图像,有种身临其境的感觉,标志着人类计算机科技的进步。 二、虚拟现实技术 虚拟现实技术简称 VR 技术,同时也被叫做灵境技术,是针对图像进行数字化处理,并包含了图形学、多媒体、网络、人工智能、传感器与高分辨率显示等技术,将人们的五感融合在一起,形成真实虚拟三维空间的信息集成技术系统。 三、三维建模技术 三维建模技术是一门通过软件来实现模型的技术手段。3D Studio Max,常简称为3ds Max 或MAX,是Discreet公司开发的(后被Autodesk公司合并)基于PC系统的三维动画渲染和制作软件。而NURBS曲面建模和Polygon多边形建模是这两款软件主要的建模类型。 (一)多边形建模 多边形建模是三维建模技术当中最早的建模技术之一。多边形建模方法是虚拟现实制作和虚拟建筑制作中最常用的三维建模方法,通过使用大量的、小的面片,多边形建模方法建立的模型可以建立任何平面或者曲面,并且使用这种方法建立的模型可以任意变化修改,能充分使用建模师的想象力,建立超现实三维模型。

三维模型特征提取算法

三维模型特征提取算法 一、特征提取需求由来 虚拟装配在CAD 建模领域使用广泛,Solidworks 、Pro/E、UG 等都有自己的零件装配程序模块,但是它们相互之间并不能进行直接的数据格式转换。比如:Solidworks 创建一个简单的零件直接用Pro/E 打开会丢失很多模型拓扑信息。STL 文件格式是通用的固体三维模型表示文件,常用CAD 软件都能打开。STL 文件是一种简单数据格式,其中只记录了模型的顶点和法向量(数据格式下一节具体介绍),大多数CAD 软件支持STL 文件格式的零件输出。然而,无论何种CAD 软件打开STL 文件之后,都难以读取模型的特征信息,甚至连模型的一个表面都选不中。在这种情况下,如果我们想把一大堆的STL 格式模型,加载到某款CAD 软件中进行装配,可能性几乎为零。在这种情况下,出现了对提取模型拓扑信息的需求。下面将详细介绍这种方法,并给出在OSG 场景中提取一个齿轮面的例子,供大家 二、基本概念三角形是三维引擎的基本绘制图元。任意一个三角形包括三个顶点和一个法向量(三 个顶点和一个法向量确定了一个最小单位的表面),无论是什么样子的三维模型都可以分解成三角形的组合。一个三维模型上的三角形并非独立存在,它们是有相互关系的,这些关系主要体现在两方面:(1)邻接关系(共边、共顶点)。(2)归一化法向量之间的夹角关系(法向量相等、法向量共面等等)。通过上述关系可以把三角形归类,从而组成不同的曲面。下面以平面和柱面为例对三角形组成的曲面进行介绍。定义一:模型中任意两个三角形存在公共边,则称两个三角形紧邻。定义二:模型中任意两个三角形存在公共顶点,则称两个三角形邻接。 定义三:如果存在一组三角形它们具有邻接关系(紧邻、邻接)并且归一化法向量全等则这一组三角形在同一个平面上。 定义四:如果存在一组三角形它们具有邻接关系(紧邻、邻接)并且归一化法向量处于某个平面上则这组三角形处在同一个柱面上。 定义五:归一化法向量,满足公式:关于其他形状的定义大家可以自己总结(如球面、圆柱面、圆锥面等等),这里只给出平面和一般柱面(多面体、圆锥面、圆柱面都是柱面)的定义。下面给出一个平面获取的例子: 粉红色区域为三角形组成的平面15 边形,法向量平行(归一化法向量相等)。在图形中可以看到,在模型的所有三角形中可以确定这样一组三角形,它们共同组成了粉红色区域,即在粉红色区域上取任意三角形作为起始,搜索模型中所有三角形能够确定一组与起始三角形归一化法向量相等且相邻。 三、特征提取算法介绍为了简洁起见,在此只讨论“曲面提取”算法,关于拉伸凸台等算法大家可以自己去推算,其实有了表面提取算法其他特征的提取也并不复杂。下面详细介绍这个算法。 算法定义:在模型的所有三角形中搜索满足邻接条件的、法向量满足特定数学方程的三角形集合。(本定义只能满足归一化法向量) 1、类定义如下:

三维建模 实验指导书

实验八十六 机械CAD 一、实验目的 1、了解三维CAD/CAM软件造型技术的基本原理,掌握构建几何模型的思路和方法。 2、掌握零件三维造型的基本操作。 3、掌握由零件构建装配体的基本方法和操作。 4、掌握由装配体或零件图进行工程图设计的基本方法和操作。 5、熟悉常用的三维CAD/CAM软件UG、SolidWorks、Pro/E、CATIA等软件环境和使用方法。 二、基本知识 1、三维CAD/CAM软件的功能 三维CAD/CAM软件根据功能不同分为综合集成型和单一功能型两种。 (1)综合集成型软件功能 综合集成型CAD/CAM支撑软件功能比较完备,综合提供三维造型、设计计算、工程分析、数控编程以及加工仿真等功能模块,综合性强、系统集成性较好。一般包括:CAD部分:三维造型(如图86-1),装配,工程图绘制; CAE部分:结构有限元分析,运动机构仿真分析(如图86-2),优化设计; CAM部分:数控编程(如图86-3),后处理,加工过程仿真; 用户开发工具:二次开发编程语言(UPL)或高级语言开发接口。 常用的综合集成型CAD/CAM软件有:UG、Pro/E、CATIA等。 (2)单一功能型软件功能 单一功能型软件主要支持产品设计或制造过程中的某个作业过程及相关操作,功能上相当于综合集成型CAD/CAM软件的某个模块。单一功能型软件完成任务单一、专业性处理能力强。三维设计CAD系统,主要完成三维造型、装配与工程图绘制,常用软件有SolidWorks、Solidedge等;数控编程软件有 MasterCAM、SurfCAM等;工程分析软件:动力学仿真分析主要有ADAMS等,有限元分析主要有ANSYS、ABAQUS、NASTRAN等。 图86-1 三维造型图86-2 构件运动分析图86-3 数控加工动态演示图 2、三维实体常见的表示方法 (1)体素构造几何法 体素构造几何法(Constructive Solid Geometry, CSG)在计算机内部通过基本体素和其运

产品三维展示的基本概况

产品三维展示的基本概况 顾名思义,三维产品展示就是将产品用三维的形式表现出来。 所谓三维的形式,我们首先想到的自然是三维建模的方式。利用三维建模,得到产品的三维模型,利用合适的材质或者用贴图的形式,可以让产品的三维模型更接近现实。 现在,我们也可以利用图像来得到三维的表现效果。用环绕物体的一系列图片,组合起来,通过专用播放器播放,也可以对物体进行自由的浏览。 产品展示的最直接和最直观的方式就是将产品实体展现在客户的面前。但是随着时代的发展,信息量的爆发,这种方式就不能满足客户对于信息收集的要求。利用平面图片和文字介绍做成类似目录形式的方式,来展示产品,是现在的主流展示方式。 但是这种对于产品的展示基本上还停留在二维的静止的形式上,无法充分的表现产品的外观和特点。 采用三维产品展示的方法,我们一来可以让对产品的外观和特点有个直观全面的了解,二来可以让客户自己来决定如何观察产品,这个互动的过程是二维方式难以企及的。 可以利用计算机三维技术,制作出三维模型,以及仿真的材质效果,还可以很流畅的表达出产品的运动流程或者使用方法。 这种技术一般对企业自身的产品有这非常大的宣传效果,例如一些机械类产品,再给客户介绍产品或者分析产品时,可以提供做好的三维产品展示视频给客户观看,不仅可以省去口述带来的弊端,也大大提高了企业的市场效率。 而且这种三维产品展示视频,可以放在任何平台上作为展示,更可以为企业起到宣传产品的作用,和提高用户认知的效果。 产品展示的最直接和最直观的方式就是将产品实体展现在客户的面前。但是随着时代的发展,信息量的爆发,https://www.360docs.net/doc/963979306.html,这种方式就不能满足客户对于信息收集的要求。利用平面图片和文字介绍做成类似目录形式的方式,来展示产品,是现在的主流展示方式。 但是这种对于产品的展示基本上还停留在二维的静止的形式上,无法充分的表现产品的外观和特点。 采用三维产品展示的方法,我们一来可以让对产品的外观和特点有个直观全面的了解,二来可以让客户自己来决定如何观察产品,这个互动的过程是二维方式难以企及的。 我们当然可以采用三维建模的方式,得到物体的三维模型,并进行展示。这种方法实现起来的成本很高,在网上进行展示的难度也比较大。这种三维模型也做不到完全的逼真,并不能给客户带来直观的感受。 但是基于图像的方式实现简单,方便快捷,也很容易应用在网上以及电子媒体中,在互动性上虽然稍弱,但是真实性是大大超过了三维建模的方式。 所以我们推荐使用基于图像的是三维产品展示方法。具体实现的方法如下: 环绕物体一周拍摄照片,一般是由物体转动而镜头相对固定拍摄出一系列照片。再用造型师软件进行发布,用一个专用的播放软件在互联网上播放虚拟物体,用户可用鼠标和键盘控制所观察虚拟物体的各面,并可调整其转速、转向和大小,使您感到正在观赏一个个真实的物体。

bim3d建模实验报告

bim3d建模实验报告 1、实验名称 Revit综合建模实验 二、实验目的综合使用各类Revit建模方法 三、实验内容使用Revit软件对一个完整的建筑物进行三维建模 4、实验设备计算机、Revit软件1套 5、实验步骤新建项目点击软件左上角图标,依次点击“新建门式钢架即完成。 图5-5 绘制墙体 0 1、切换至“室外标高”视图,单击“建筑”选项卡“构建”面板中的“墙”工具,在左侧实例属性栏墙体类型下拉栏选择相应的墙体类型,选择墙体的底部限制条件为“室外标高”,顶部约束为“直到标高:梁底标高”。如下图6-1所示。 02、在视图区域单击鼠标左键,作为起点,沿墙体所在位置的轴线进行绘制,再次单击鼠标右键作为终点,按下Esc键,结束墙体的绘制。依次绘制出油化库四周的墙体。 图6-1创建门窗门和窗的插入方法是很简单的操作,难点在于如何创建项目中特有的门窗。在此介绍如何插入门窗和调整门窗的位置,对于项目中如何创建各种门窗族的操作在后期将做出详细介绍。

1、在平面视图中,单击“建筑”选项卡中“构建”面板下的“门”工具,在左侧实例属性的下拉列表中选择对应的门类型。 02、移动鼠标光标至墙体上,出现门的平面轮廓时即可在此处单击插入门。如果门的开启方向不符合要求,在选中门的状态下,可以按空格键调整门的开启方向,或者按下图7-1所示,使用门的“开启方向调节箭头”进行调整。 图7-1 03、调整门的位置。选择门,在出现的临时标注尺寸中单击标注文字,修改尺寸,门会在尺寸的驱动下改变位置。 04、窗户的插入方法与门相同。 依次完成所有门窗的插入。创建屋面此建筑为单层建筑,无楼板层,将直接以屋顶命令创建屋顶,虽然Revit提供了专门创建屋顶的工具,但屋顶也可以用楼板命令来完成,需要注意的是,楼板是以绘制标高为基准向下生成的,而屋顶是向上生成的。 1、双击“项目浏览器”中的“梁顶标高”,打开楼层平面视图。 02、单击“建筑”选项卡中“构建”面板下的“屋顶”工具下拉列表中的“迹线屋顶“,用草图线绘制出屋面的边界,如下图8-1所示。 图8-1 03、框选上下两段草图线,如下图8-2所示,勾选的定义坡度,在属性栏输入坡度值,完成后在视图区域单击鼠标,

产品设计三维表现技法

《产品设计三维表现技法》 对设计造型的过程的表述与研究进行一定的联系和贯穿,尤其是真实空间与虚拟空间之间的联系,对其进行相似性并存的共性研究,加强应有的能力训练。因此,整合实际制作与虚拟制作,探索形态成型的原理与成型的步骤过程与方法,加入三维设计与探索,以及两种空间的表现与造型的相互转化是教程的意义所在。 本教程就是整合工业设计实际模型制作和计算机三维软件辅助设计虚拟模型制作的教程,探索三维表现的相通原理,运用具体的实例展开真实模型和虚拟模型的组合训练,主要解决产品设计表达中的三维表现造型的实体形式和虚拟形式。教程共设六章和两个阶段,从三维表现原理分析到形态造型表现,再到产品设计信息表达,进行逐层推进的讲解和训练,框架结构如下表。 第一章:形态造型三维表现基础理论 无所不能?——二维与三维的关系 真实与虚幻——R3D&V3D的定义与关系 前端发展——3D&V3D的发展与前景 第二章:形态造型的成型过程理论 四大元素——三维形态的基本构成元素(空间中的点、线、面、体) 纸上谈兵——形态造型三维表现的成型原理(点线面体之间的关系) 形态历程——传统造型形成的分析 第三章:形态造型三维表现的建立 无所不能——典型三维造型方法的介绍(点阵、切面、关键线、网格、模糊、) 看得见摸得着——R3D建立的材料、工具、场所与建立过程 看得见摸不着——V3D建模软件及插件的种类与建模方法介绍 第四章:形态造型三维探索与设计 表面功夫——造型表面与材质的研究 感官思考——空间复杂造型的创造, 方案求证——功能研究 第五章:产品形态造型的三维表现 矩阵演出——产品模型的种类介绍 运筹帷幄——模型制中的分析、判断、选择、计划至实施 金戈铁马——产品模型制作材料与工具、设备、场所 火光之间——典型材料产品模型加工实例 第六章:三维造型的记录与评析 视线终点——表现的要素:材料特点、造型特点 精益求精——表现细节:光线布置,记录角度,记录环境的选择与配合 神来之笔——表现的手段:图片、文字、视频、音频

实验一 三维零件建模实验 报告

实验一三维零件建模实验 1、 实验目的 通过该项实验熟练掌握使用Solidworks2012建立三维零件实体模型的方法。熟悉SolidWorks实体造型思想。 2、 实验设备和工具 计算机硬件:主机、网络、键盘、鼠标和绘图仪; CAD软件:Solidworks2012。 3、 实验原理 按CAD软件中所提供的各种实体生成方法,完成零件的实体造型以及实体的编辑修改。 4、 实验内容 双击Solidworks2012打开软件界面。找到Solidworks指导教程,按步骤完成指导教程1中的第1课零件、第二课装配体及第3课工程图及3D草图绘制全部内容。了解Solidworks软件的特点、用户界面、功能设置和设计思想等方面的内容。熟悉软件基本操作功能。如装配约束的建立、装配的干涉检查、装配体的运动仿真、装配体爆炸图的生成。 1、 三维零件模型的建立和保存方法; 2、利用绘制草图的方法生成三维模型(如通过拉伸、旋转、扫描、放 样等命令完成零件的三维造型); 3、利用特征造型的方法完善三维实体的造型(如倒角/倒圆、起筋、抽壳、打孔等命令); 4、对三维实体模型进行编辑和修改; 5、了解曲面造型的一些基本方法。 五、实验要求 1、要求对Solidworks软件界面有很好的认识,能对软件中的系统设

置和功能属性有清楚的了解,为今后进一步深入的学习打基础。 2、绘制机械CAD系统结构框图,以及CAD软件的三层结构(系统软件,支撑软件和应用软件)。完成四个例子绘制的全部过程包括截图。 六、实验步骤 (一)绘制机械CAD系统结构框图 机械CAD系统结构框图如图1-1所示 图1-1 (2) 绘制CAD软件的三层结构 CAD软件的三层结构如图1-2所示 图1-2 (3) 四个例子绘制 1. 绘制基体见图1-3 2. 拉伸基体见图1-4

PMI 三维模型标注 简介

系列介绍二:PMI使用案例 特征 一套全面的三维注释工具,用于捕捉尺寸、公差和产品定义信息直接从UGS 的NX制图(NX Drafting)软件界面派生出来-不需要花大量时间来学习就可以开始使用该应用程序可以在NX 制图(NX Drafting)中全面重复使用,在基于JT 的查看器中查看,并与UGS 的验证工具集成通过JT、PLMXML 和NX OpenAPI,为PMI 特征提供全面的API覆盖。 使用案例 替代了普遍的二维图纸。人们熟悉二维图纸并将其作为合法定义一个完工产品的方法。二维图纸提供了被普遍理解和解释的标准符号体系。然而,在某些情况下,定义一个已经制造的零件所需要的多种冗余数据的存在可能导致在最终三维格式中出现偏差。 翻译错误、复制错误或者版本不一致性都能够导致高成本的错误,而这些错误会迅速转化为更低的质量和生产力。因此,虽然二维图纸包含制造一个零件的“处方”,但是真正的制造过程需要三维格式和二维信息,以便第一次就生成出一个正确的零件。

通过使用用于传递下游生产要求的二维图纸,还会为产品开发周期增加不必要的负担。在产品定义中的一个简单变更不仅需要更新三维数字化数据,而且还需要大量的与产品相关联的所有二维文件的工程变更。由于维护这些文件需要花费时间,实施一个产品变更的生命周期随着它与二维数据的关联程度而增加。 通过使用NX PMI 解决方案,把二维信息直接嵌入到三维模型之中,产品团队不需要创建多种冗长数据组就能够定义一个给定的零件。相反,通过PMI,产品团队能够在三维模型中捕捉并共享工程要求-从而能够全面利用设计意图,消除了对二维图纸的需要,并且确保了最终产品符合其工程规格。 通过三维产品定义,提高了生产力。当在一个三维模型中创建并且在零件中直接与对象之间建立关联,PMI 提供了以下利益: ●通过确保完整地捕捉到设计意图,并使它与模型建立关联,从而减少了成本。不再需要根据二维信息来推导和解释设计意图。 ●减少了与不正确或者不完整的制造信息相关联的返工。 ●减少了因人工转换造成的制造错误,并增强了最终产品定义的“特性可解释性”。 ●通过把信息一次性做成文件并在每个地方重复使用这些信息,提高了生产力和质量(下游应用程序不再需要冗长的数据)。 ●通过促进在设计过程的早期就把模型做成文件,支持并行工程。设计协同团队不再等待图纸的生产就能够传递设计要求。 大量的下游过程-从自动创建二维图纸到对制成零件的最终检验-很容易重复使用以数字形式存储的信息。 另外,因为PMI 是由轻量化JT 格式支持和发布的,产品团队能够利用首选方法来对数据进行可视化处理: ●直接从一个CAD/CAM 系统中; ●在一个独立的三维产品可视化工具中; ●在一个产品数据管理(PDM)系统的端口查看器中 PMI 不仅减少了生成二维图纸的需要。通过它,下游应用程序还能够直接访问这些信息以便自动完成任务,比如CNC 编程、累计公差分析和CMM 分析。因此,产品团队能够在企业范围内在正确的时间以正确的详细程度访问正确的数据。 通过理解并传递整个企业-从工程部门到制造车间并外延到供应链-的三维PMI 的价值,制造商能够在他们的整个上游和下游过程中提高生产力、质量以及效率。 PMI 能够包含行为公差(GD&T)、焊缝符号、文本和尺寸,以及产品定义和过程注释。PMI 能够以信息在二维图纸上存在的同样方式存在于三维模型之中-在产品设计中用带箭头的指引线把数据连接到特定的零件中。因此,PMI 为熟悉二维系统的用户提供了一个直观环境。 PMI 建立之后就可以立即在整个产品生命周期中重新使用-从工程绘图到验证分析,从可视化工具(可视化工具促进了协同和标记)到制造和质量规划过程。PMI 的重要价值保持不变:一次创建,随地使用。

三维建模在各个领域的应用

三维建模在各个领域的应用 (武汉纺织大学工程造价11403王博) 摘要:自上世纪五十年代马特龙把地质统计学引用地质研究以来三维建模已经在多个领域得到应用,本文通过对前人的文献进行分析整理得出三维建模在各个领域中的应用及其发展始末。 关键词:三维设计;三维建模;技术应用 Application of three dimensional modeling in various Fields Abstract:since the1950s matalon applied geological statistics to the geology,the study of geological3D modeling has got application in many areas.In this paper,we give a sight on the application of3D modeling in various fields and the development of the whole story through the previous literature collation and analysis Keywords:3D design;3D modeling;application technology 1引言 随着社会经济的迅速发展,人民生活水平的不断提高和三维建模技术的不断完善,人们对三维建模产品的需求急剧增加。而三维建模技术在对交通、能源、动画、影视、通讯等各个项目中的利用也急剧增加。本文从三维建模的发展历史及其应用和意义三个方面对三维建模进行綜述。 根据百度百科的定义,三维模型是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。回顾一下地质建模在油田开发中的作用,可以发现目前的三维建模主要有两个作用:一个是为数值模拟提供基础模型,第二是用于油藏的整体评价,例如油藏勘探开发的风险评价。但三维建模一直没能深入到油田的生产中。 油田开发地质研究工作中,目前还没有十分有效、先进的技术。油藏地质研究还主要依靠手工编制的厚度图、油藏剖面图、连通图等。十分需要新的技术的补充与提高。在整个开发阶段地质研究工作中,唯一可以称为新技术的就是三维建模。因此三维建模完全可以在开发阶段地质研究中起到更为突出的作用。实际上,三维建模应该,也完全可以成为油藏开发阶段油藏精细描述和生产措施部署的核心技术。 现在,三维模型已经用于各种不同的领域。在医疗行业使用它们制作器官的精确模型;电影行业将它们用于活动的人物、物体以及现实电影;视频游戏产业将它们作为计算机与视频游戏中的资源;在科学领域将它们作为化合物的精确模型;建筑业将它们用来展示提议的建筑物或者风景表现;工程界将它们用于设计新设备、交通工具、结构以及其它应用领域;在最近几十年,地球科学领域开始构建三维地质模型。 2.三维建模的发展历史

Soldworks2010三维建模实验指导书

实验一:Solidworks 2010三维建模 (机械制图习题集机类54-4) 一、实验目的 通过本次实验使学生掌握Solidworks 2010软件二维草绘、三维建模的基本操作及常用命令,并运用该软件创建零件的三维模型,体会基于特征的参数化建模技术的应用。 二、实验要求 根据图1所示组合体轴测图,运用Solidworks 2010创建三维模型(如图2所示),并提交创建的三维模型文件。 图1 组合体的轴测图

图2组合体三维模型 三、实验内容 (一)启动Solidworks 2010 如图3所示,单击“开始”→“所有程序”→“Solidworks 2010”→“Solidworks 2010”,启动Solidworks 2010软件(或直接双击桌面快捷键,启动软件)。软件启动后,界面如图4所示。 图3 启动SolidWorks

图4 SolidWorks软件界面 (二)新建文件 在界面最上方标准工具栏中单击“新建”命令图标(如图5所示),出现“单位和尺寸标准”对话框(提示:当第一次启动Solidworks软件后新建文件,系统默认出现此对话框,后续再次新建文件,将不再出现此对话框),如图6(1)所示,“单位”处选择“MMGS(毫米、克、秒),“尺寸标准”选择“GB”,单击“确定”后,出现“新建Solidworks文件”对话框(如图6(2)所示)。单击“零件”图标并“确定”后,系统自动进入默认名称为“零件1”的三维建模环境,结果如图7所示。 图5 新建图标 (1)(2) 图6 单位和尺寸标准对话框

图7 三维建模环境 在界面左侧管理器窗口中,包含零件1的模型树。模型树中显示系统默认的零件名称,并提供三个相互垂直的基准平面(前视、上视、右视基准面)和坐标系原点。默认情况下,三个基准平面和坐标系原点被隐藏,在右侧的图形窗口中不显示。 注: 1、软件提供的三个基准平面:前视、上视和右视,分别对应国家制图标准中的主视、俯视和右 视。 2、新建模型文件时,系统默认的单位为“MMGS(毫米、克、秒),“尺寸标准”为“GB”。如需 要更改,可在新建文件进入三维建模环境后,单击界面最上方标准工具栏中“选项”命令图标(如图8(1)所示),出现“文档属性”对话框,可以对Solidworks各种文档属性和系统环境等选项进行设置。在此对话框中“文档属性(D)”选项标签下,“单位”处可重新设置模型单位(如图8(2)所示),“绘图标准”处设置总绘图标准(如图8(3)所示)。 (1)(2)

章3-角色(二、三维角色人体模型,场景建模)讲解

第三章角色 3.1 前言 “角色”一词的源于戏剧,自1934年米德(G.H.Mead)首先运用角色的概念来说明个体在社会舞台上的身份及其行以后,角色的概念被广泛应用于社会学与心理学的研究中。社会学对角色的定义是“与社会地位相一致的社会限度的特征和期望的集合体”。角色是一个抽象的概念,不是具体的个人,它本质上反映一种社会关系,具体的个人是一定角色的扮演者。 而在我们动漫产业中,角色更是一个非常重要的元素,没有一个吸引人的角色,就出不了一个好的作品。我们本章来介绍角色的建模。 3.2 骨骼动画原理 骨骼动画(Skeletal Animation)[9]又叫Bone Animation,它与关键帧动画(Key-frame Animation)相比,占用空间小,因为它不需要像关键帧动画那样在每一帧中存储各个顶点的数据,而只需要存储骨骼变换数据,骨骼与顶点相比,当然要少得多。所以骨骼动画有很多优势,当然其技术难度也很高。骨骼动画在计算机图形学中是一个十分重要的内容,不管是在游戏、电影动画还是虚拟现实中,生动逼真的角色动画(人、动物等)会使其增色不少。 骨骼动画的实现思路是从人的身体的运动方式而来的。动画模型的身体是一个网格(Mesh)模型,网格的内部是一个骨架结构。当人物

的骨架运动时,身体就会跟着骨架一起运动。骨架是由一定数目的骨骼组成的层次结构,每一个骨骼的排列和连接关系对整个骨架的运动有很重要的影响。每一个骨骼数据都包含其自身的动画数据。和每个骨架相关联的是一个“蒙皮”(Skin)模型,它提供动画绘制所需要的几何模型信息(Vertex信息,Normal信息等)和纹理材质信息。每个顶点都有相应的一组权值(Weight),这些权值定义了骨骼的运动对有关顶点的影响因子。当把动画人物的姿势和全局运动信息作用到骨架上时,这个“蒙皮”模型就会跟随骨架一起运动。 3.2.1实时角色动画 由于骨骼动画是从另外两种实时角色动画发展演变而来,因此,为了更好的理解骨骼动画的原理,就很有必要对它们进行研究分析。角色动画是计算机动画技术的一个重要组成部分,也是计算机图形学的一个重要分支。在实时渲染环境下,主要应用于虚拟现实,视频游戏,甚至是建模软件,动画制作软件。现在,随着计算机硬件技术的发展,特别是带有硬件加速功能的显卡性能的提高,实时渲染的角色动画技术得到了较快的发展且被广泛的应用。目前,实时角色动画技术大体可分为三种类型。

三维人体建模与显示

基于单目视觉测量的人体建模与显示 盛光有1,姜寿山1,欣2 (1.工程大学电子信息学院,710048; 2.工程大学服装与艺术设计学院,710048 ) 摘要:以一种基于单目视觉测量原理的三维人体扫描装置获得的人体数据为来源,运用三角面片法构建人体表面,并把人体模型保存为一种标准的模型格式文件OBJ文件,获取了三维人体模型。然后在Visual C++的编程环境中采用OpenGL (Open Graphics Library)作为三维图形接口,编程实现了三维人体模型,获得了可视化的人体模型。 关键词:三维人体模型;虚拟试衣;OpenGL;人体显示 随着人们对服装的舒适性,合体性和款式的个性化的要求越来越高。传统的二维服装CAD软件暴露出了种种不足之处,如号型难以适应不同形态的人体,不能在衣片设计阶段就看到成衣后的效果,需要反复修改等。根据个人体型进行单量单裁的量身定制方式(Made To Measure,简称MTM)应运而生,由于能满足个性特殊需求,这种方式深受人们欢迎。法国力克公司推出了一种服装量身定制系统[1],按照客户具体要求量身定制,做到量体裁衣,使服装真正做到合体舒适. 德国TechMath公司的FitNet软件系统针对该顾客的体型,从人体数据库中直接搜索出相近的体型及配套服装样板,并提供了进一步根据顾客体型和穿着习惯修改样板的功能[2]。还有英国的Baird Menswear西服公司,其销售到国和国际市场的西服中有80%是通过量身定制系统完成的,并且服装系列涵盖了不同款式、颜色和规格的组合[3]。而国的三维服装CAD技术远远落后于西方发达国家,近几年来国的一些院校和公司也都在研究这方面的技术。其中获得可视的三维人体模型的是三维虚拟试衣系统和三维服装CAD系统中的关键技术。本文以一种人体扫描仪所获取的三维人体数据为数据为基础,采用三角面片法构建了人体表面模型,并编程实现了人体模型的真实感显示。 1 三维人体模型构建 1.1 数据获取 目前,获取用于三维人体模型重建的数据,主要用两种途径。一种是从Poser, Maya 和3DSMax等软件系统导出人体模型数据,另外一种是采用非接触测量方法,通常是采用非接触式人体扫描仪获取人体表面的三维数据。本为获取数据的方法属于第二种。本文中人体建模用到的数据来源于一种基于单目视觉的双扫描头人体扫描仪所测得的[4]。由于获得的原始数据点云数量很大,并且排列不太规则,因此对原始点云进行了一定的处理,有效地减少了数据点云的数量和增加了点云数据的规律性。关于数据处理的细节不是本文的所讨论的重点,在此不讨论。处理之后的点云如图1所示。

相关文档
最新文档