改性聚酰胺的合成及其性能研究

改性聚酰胺的合成及其性能研究
改性聚酰胺的合成及其性能研究

维普资讯 https://www.360docs.net/doc/965529122.html,

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

聚酰胺改性的意义

聚酰胺改性的意义,现状与发展趋势 摘要:聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。 关键词:聚酰胺树脂综合性能加工增强改性性能 引言 聚酰胺是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。 正文 聚酰胺由二元酸与二元胺或由氨基酸经缩聚而得,是分子链上含有重复酰胺基团-CONH-的树脂总称。在用作纤维时,我国称为锦纶。PA品种繁多,有PA6、PA66、PA11、PA12、PA46、PA610、PA1010、PA612和近几年开发的新品种PA6T,PA9T,特殊尼龙MXD6等,其中PA6和PA66占主导地位,占总量的80%以上。PA属于结晶型塑料,在相对宽的温度和湿度范围内具有良好的综合性能,如拉伸强度高、耐摩擦、耐化学性(油、脂肪、脂肪族和芳香族烃类)、良好的冲击强度和阻隔性,而在此范围内,也有其不足的方面就是吸湿性大、吸水率高。 未改性前,在20℃、65%RH下,PA6吸水率约3.5%,PA66为2.5%左右,PA610为1.5%~2.0%,PA12约为1%;但改性后,PA吸水率非常小,如PA6T、9T在水中饱和吸水率仅为3%;未改性PA在干态和低温下冲击强度低,韧性差,除PA11和PA12外,其余经紫外辐照后性能将大大下降。填充、增强是改性PA 最常用的方法,可以提高冲击性能、尺寸稳定性、耐热性、阻燃性,PA可通过填料、增强剂或添加增韧剂、润滑剂、热稳定剂、加工助剂和着色剂来改进和提高性能,或同时使用添加剂和改性剂进行改性。 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。

聚酰胺特性

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的 差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑 性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般 为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好, 有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易 增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。

1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊 接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、 储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而 尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、 焊接、粘接。 应用:与尼龙6基本相同,还可作把手、壳体、支撑架等。

高分子论文综述(聚酰胺)

摘要 聚酰胺6的结构与性能之间存在相互关系,其加工方式多种多样,成型方式也多种多样,其加工工艺有六个方面需要注意。聚酰胺主要采用注塑和挤出。由于聚酞胺具有机械强度高、耐热性、耐磨性和耐油性优异等特点,已广泛应用于国民经济的许多领域。但由于其尚存在吸水性大、干态和低温冲击强度低等缺陷而限制了它在某些方面的应用。为此,国内外广泛开展了PA6的改性研究。 目前增强改性PA6主要研究有玻璃纤维、晶须、碳纳米管和热致液晶高分子材料增强改性聚酰胺6(PA6)的方法,并对其影响因素进行了分析。结果表明:4种增强材料均可提高PA6的力学性能;玻璃纤维是最常用的PA6增强材料,而短切玻纤因其易加工、成本低及良好的力学性能而被广泛应用。 PA6的应用市场广泛,未来PA6的研究方向将围绕低成本和高性能化、功能化不断发展。 关键词:聚酰胺6(PA6);加工工艺;增强改性;玻璃纤维;晶须;碳纳米管;热致液晶高分子材料;应用;低成本;功能化

目录 摘要 (2) 绪论 (4) 引言 (4) 一、PA6的结构与性能 (4) 二、PA6的加工 (6) 三、PA6的改性研究 (7) (一)改性研究的背景与意义 (7) (二)改性方向 (10) (三)增强改性PA6的研究进展 (11) 四、PA6的应用市场 (18) 五、PA6的发展展望 (21) 参考文献 (22)

绪论 引言 聚酰胺俗称尼龙(Nylon),英文名称Polyamid eP,它是大分子主链重复单元中含有酰胺基团的高聚物的总称。聚酰胺可由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚等得到的。是美国DuPont 公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T和特种尼龙等新品种。 而聚酰胺 6 ( PA6) 是由德国 Farben 公司的 P.Schlack 开发,并于 1943 年实现工业化生产的,因其具备优良的耐热性、机械性、耐磨性、耐化学性、易加工等特点,被普遍用于机械设备、化工设备、航空设备、冶金设备等制造业中,成为工程塑料中用量最大的材料。 一、PA6的结构与性能 聚酰胺PA6是部分结晶性聚合物。PA6的结晶密度1.24g/cm3,结晶度约20%一30%,Tg约48℃。聚酰胺分子间通过酰氨基形成氢键,这是其物性优秀的重要因素。PA6化学结构式如图1-1.

二聚酸型聚酰胺热熔胶的应用与改性研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

二聚酸型聚酰胺热熔胶的应用与改性研究进展 作者:祝爱兰, 孙静, 施才财, ZHU Ai-lan, SUN Jing, SHI Cai-cai 作者单位:上海轻工业研究所有限公司研发中心,上海,200031 刊名: 中国胶粘剂 英文刊名:CHINA ADHESIVES 年,卷(期):2008,17(12) 被引用次数:4次 参考文献(32条) 1.殷锦捷;马海云聚酰胺热熔胶牯剂的应用及发展趋势[期刊论文]-中国胶粘剂 2003(01) 2.高国生改性010聚酰胺树脂合成聚酰胺热熔胶的研究 2004 3.钟明强;徐立新;王先进热熔胶的开发与应用进展[期刊论文]-浙江化工 2000(04) 4.潘耀民二聚酸聚酰胺树脂的合成及其在制鞋工业中的应用 1997(01) 5.曹建平二聚酸聚酰胺包头胶的研制[期刊论文]-中国胶粘剂 1997(05) 6.杜郢改性聚酰胺树脂的合成及其在热熔胶领域的应用[期刊论文]-江苏石油化工学院学报 2002(01) 7.杜郢;蔡华兵;杨恩华废弃PET聚酯/二聚酸聚酰胺共聚物的合成及过程分析[期刊论文]-化工进展 2007(12) 8.金旭东;杨云峰;胡国胜聚酰胺热熔胶性能研究及其应用[期刊论文]-中国胶粘剂 2007(11) 9.牛丽红;王桂香;李春归汽车灯用热熔胶的研究及性能表征[期刊论文]-粘接 2005(01) 10.杨秀云;刘晓秋新型车灯热熔胶的研制[期刊论文]-长春理工大学学报 2007(03) 11.张彰热熔胶在电缆和光缆中的应用[期刊论文]-现代有限传播 1997(02) 12.孟宪铎热熔胶在油气管道接头密封上的应用[期刊论文]-粘接 1999(06) 13.李(足翟)亨;杨燕龙;吴宏聚酰胺与聚脂酰胺热熔胶及其制造方法 2002 14.LEONI R;GRUBER W;ROSSINI A Polyamide resin from dimer/trimer acid and N-alkyl diamine 1988 15.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising thermoplastic polyamide from dimer acid and N-substituted aliphatic diamine 1990 16.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising polyamide from dimer acid and Nalkyl diamine 1989 17.LEONI R;GRUBER W;ROSSINI A Polyamide of dimerized fatty acids and polyether urea diamines and their use as adhesives 1990 18.陈续明;贾兰琴;李瑞霞用于热熔胶的聚酰胺树脂合成组成与性能关系的研究[期刊论文]-中国胶粘剂 2000(01) 19.梁子材;李(足翟)亨;杨燕龙具有聚酰胺或聚酯酰胺结构的热态高强度热熔胶 1999 20.HEUCHER R;WICHELHAUS J;SCHUELLER K Hotmelt adhesive 1996 21.WICHELHAUS J;GRUBER W;ANDRES J Polymeric hotmelt adhesive 1988 22.DOUCET JOS Adhesive composition 1983 23.MATSUBA Y;TERADA N;OSAKO T Hot-melt polyamide adhesive and polyamide resin sheet-shaped molded product 2002 24.张华明;罗顺忠;赵鹏骥耐温保气型热熔胶的研制[期刊论文]-中国胶粘剂 1995(04) 25.张秀斌油气管道接口热收缩带用固定片及热熔胶的研制[期刊论文]-沈阳化工学院学报 2001(03) 26.陈续明;钟华;贾兰琴聚酯酰胺/EEA共混体组成与性能[期刊论文]-高分子材料科学与工程 2001(06) 27.陈续明;贾兰琴;李瑞霞聚酯酰胺/SIS共混体系的组成与性能[期刊论文]-石油化工 2001(01)

聚酰胺改性研究进展

聚酰胺改性研究进展 摘要:聚酰胺(尼龙,英文缩写为PA)是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。本文对近些年来聚酰胺改性方面的研究进展进行综述。 关键词:PA6 聚酰胺-胺聚酰胺石墨N -甲基吡咯类聚酰胺 1. PA6的增容改性 聚酰胺6(PA6)具有优良的力学性能,并且耐磨性和自润滑性好,易成型加工,是应用极广的工程塑料。但PA6具有吸湿大、尺寸不稳定、成型收缩大的缺点。而聚对苯二甲酸丁二醇酯(PBT)具有刚度好、强度高、耐热老化性优异、耐有机溶剂性好、易加工成型等优点,同时也具有冲击韧性差、在高温、高湿环境下易分解等缺点。将两者制成合金,可改善PA6的吸水性和PBT的冲击脆性。陈兴江等人采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。结果表明:EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。并采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。 2.OMMT改性PA6制备纳米复合材料 周雪琴等人采用环氧树脂改性MMT ,得到有机化改性的OMMT ,然后通过熔融插层法制备PA6/ OMMT 纳米复合材料,并利用X 射线衍射仪、透射电子显微镜、万能材料试验机等研究了纳米复合材料的形态结构、力学性能及热稳定性结果表明,经环氧树脂改性得到的OMMT 的层间距明显增加,从未改性的1. 22 nm 增加到 5. 13 nm ,并以纳米尺度分散于PA6 基体中;随着OMMT 含量的增加,PA6/ OMMT 复合材料的拉伸强度、弯曲强度和弯曲模量增加,热变形温度提高,拉伸强度可达76 MPa ,弯曲模量达到 3.462GPa,热变形温度为134 ℃;PA6/OMMT复合材料失重10%时的温度为422℃,比纯PA6 提高16 ℃,提高了PA6 的热稳定性。 3.改性聚酰胺-胺树枝状高分子 用乙二醇改性王持等人合成了PAMAM-PEG作为基因载体,PAMAM-PEG 细胞毒性能有效降低,但转染率也有所降低,引入少量(10%) PEG 改性的效果更为显著。王持等人以IDPI 为偶联剂,由相对分子量2000 的甲氧端基聚乙二醇

聚酰胺特性

聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是P A11、P A12、P A610、PA612,另外还有P A10、P A46、P A7、P A9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括: 增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为 1.5-3万。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好,有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良

好,因而容易增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。表1给出了聚酰胺主要品种的技术性能指标。 性能特点与用途 PA6 物性乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工成型加工性极好: 可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、储油容器等。 PA66 物性半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而尺寸稳定性差。 加工成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、焊接、粘接。 应用与尼龙6基本相同,还可作把手、壳体、支撑架等。

聚乙烯共混改性

聚乙烯共混改性 一摘要:聚乙烯是最重要的通用塑料之一,产量居各种塑料首位。聚乙烯(PE) 是由乙烯聚合而得的高分子化合物。聚乙烯分子仅含有C、H两种元素,所以是非极性聚合物,具有优良的耐酸、碱以及耐极性化学物质腐蚀的性质。聚乙烯(PE)树脂是以乙烯单体聚合而成的聚合物。聚乙烯的分子是长链线形结构或支链结构,为典型的结晶聚合物。在固体状态下,结晶部分与无定形部分共存。结晶度视加工条件和原处理条件而异,一般情况下,密度越高结晶度就越大。LDPE 结晶度通常为 55%~65%,HDPE 结晶度为 80%~90%。PE 具有优良的机械加工性能,但其表面呈惰性和非极性,造成印刷性、染色性、亲水性、粘合性、抗静电性能及与其他极性聚合物和无机填料的相容性较差,而且其耐磨性、耐化学药品性、耐环境应力开裂性及耐热等性能不佳,限制了其应用范围。通过改性来提高其性能,扩大其应用领域。其来源丰富,价格便宜,电气性质和加工性质优良,广泛应用于日用品、包装、汽车、建筑以及家用电器等方面。也作为泡沫塑料广泛用于绝热保温、包装和民用等各领域。但是,这些材料都是一次性使用,且质轻、体积大、难降解,用后即弃于环境中,造成严重的环境污染。因此有效合理地回收利用废旧泡沫塑料就显得日益重要。 聚乙烯的改性目标聚乙烯的下述缺点影响它的使用,是改性的主要目标。 (1)软化点低。低压聚乙烯熔点约为Ig0'C。高压聚乙烯熔点仅高于 0℃,因此聚乙烯的使用温度常低于10 0℃。 (2)J强度不高。聚乙烯抗张强度一般小于30M Pa.大太低于尼龙6、尼龙66、聚甲醛等工程塑料。 (3)易发生应力开裂。 (4)耐大气老化性能差。 (5)非极性,不易染色、印刷等 (6)不阻燃、极易燃烧。 ⊙根据密度的不同 低密度聚乙烯(LDPE)-其密度范围是0.91∽0.94g∕cm^3高密度聚乙烯(HDPE)-其密度范围是0.94∽0.99g∕cm^3中密度聚乙烯(MDPE)其密度范围是0.92∽0.95g∕cm^3 ⊙根据乙烯单体聚合时的压力 低压聚乙烯—压力0.1∽1.5MPa 中压聚乙烯—1.5∽8 MPa 高压聚乙烯压力为150∽250MPa 二、PE共混改性的机理 (1)有机增韧理论: 在塑料技术发展过程中,使用橡胶粒子与塑料进行共混改性即使有机粒子一弹性体作为增韧性,可以达到增韧的目的.产生出SBS等一人批新材料,已经在工业上获得广泛的应用如弹性鞋底材料、虽然获得理想的韧性却损害了复合材料宝贵的刚性和强度,劣化了加T流动性和耐热变形性,提高了成本,因而有一定的局限性。 (2)无机刚性粒子增韧理论

聚酰胺改性

聚酰胺改性 聚酰胺,PA俗称尼龙 (Nylon),由二元酸与二元胺或由氨基酸经缩聚而得 ,是分子链上含有重复酰胺基团-CONH-的树脂总称。在用作纤维时 ,我国称为锦纶。PA最早由美国杜邦公司开发成功 ,后来又开发出注塑级产品。PA具有良好的机械性能、耐热、耐磨损、耐化学性、阻燃性和自润滑性 ,而且易加工、摩擦系数低 ,特别适于玻璃纤维及其他材料增强改性等。 聚酰胺(PA)是工程塑料中历史最悠久、性能较优、产量最大、应用最广泛的品种。适用于汽车、电子电器、机械、运动和休闲、日用消费品等行业。PA品种繁多,有PA6、PA66、PA11、PA12、PA46、PA610、PA1010、PA612和近几年开发的新品种PA6T,PA9T,特殊尼龙MXD6等,其中PA6和PA66占主导地位,占总量的80%以上。 PA属于结晶型塑料,在相对宽的温度和湿度范围内具有良好的综合性能,如拉伸强度高、耐摩擦、耐化学性(油、脂肪、脂肪族和芳香族烃类)、良好的冲击强度和阻隔性,而在此范围内,也有其不足的方面就是吸湿性大、吸水率高。未改性前,在20℃、65%RH下,PA6吸水率约3.5%,PA66为2.5%左右,PA610为1.5%~2.0%,PA12约为1%;但改性后,PA吸水率非常小,如PA6T、9T在水中饱和吸水率仅为3%;未改性PA在干态和低温下冲击强度低,韧性差,除PA11和PA12外,其余经紫外辐照后性能将大大下降。填充、增强是改性PA最常用的方法,可以提高冲击性能、尺寸稳定性、耐热性、阻燃性, PA可通过填料、增强剂或添加增韧剂、润滑剂、热稳定剂、加工助剂和着色剂来改进和提高性能,或同时使用添加剂和改性剂进行改性。 一、填充增强剂 PA改性中最常用的方法是填充、增强。PA主要的增强剂为: (1)玻纤,PA66,PA6中最多可加50%,PA6,PA10, PA11.PAl2中最高加入量为30%, (2)玻璃微珠PA66、PAl2中可加50%; (3)碳纤维和石墨纤维,PA6中可加20%,PA66,PA11,PAl2中可加40%,碳黑和石墨添加 量一般不超过5%; (4)金属粉末(铝、铁、青铜、锌、铜),可提高树脂热变形温度和导电性, (5)二氧化硅和硅酸盐,最多可加40%; (6)液晶聚合物(LCP),最高加人量为30%。 其中最常用的增强剂是玻纤,这是因为PA熔体粘度较低,且玻纤与PA亲合性好,当填加较多的玻纤时,仍能保持在良好的加工粘度范围内,且增强效果。

聚酰胺弹性体的应用及研究进展

聚酰胺弹性体的应用及研究进展 吴文敬卢先博张勇 上海交通大学高分子材料研究所

纲要 1. 聚酰胺弹性体简介 2. 聚酰胺弹性体的研究进展 3. 本课题组的相关研究工作 4. 结语

1. 聚酰胺弹性体简介 ?热塑性弹性体:聚烯烃类(TPO)、苯乙烯类(SBC)、聚氨酯类(TPU)、聚酰胺类(TPAE)、聚酯类(TPEE)、聚氯乙烯类(TPVC)、聚硅氧烷类(TPSE) ?性能优势:力学性能好、具有耐油性、使用温度高

?主要厂家:德国Hüls公司(Diamide,现为朗盛收购)、美国Upjohn公司(现为Dow化学公司,Estamid)、法国ATO化学公司(Pebax)、瑞士EMS公司(Grilamid、Grilon)、日本酰胺公司、日本油墨公司、德国Evonik公司(Daiamid, Vestamid E) ?生产方式:嵌段共聚、简单共混、动态硫化

?嵌段共聚:-[(PA)m-PE-]n- –软段PE为聚醚或聚酯,如四氢呋喃聚醚(PT2MG) 、环氧丙烷聚醚(PPG) 、聚乙二醇(PEG) 、聚己内酯(PCL) 聚乙二醇、聚丙二醇、 聚丁二醇、双端羟基脂肪族聚酯等;硬段PA是聚酰胺(共聚尼龙、PA6、PA11、PA12、PA66、芳香族聚酰胺等) –二元酸法:端羧基脂肪族聚酰胺嵌段与端羟基聚醚二元醇通过酯化反应 –异氰酸酯法:半芳酰胺为硬段,脂肪族聚酯、聚醚或聚碳酸酯作为软段,半芳酰胺硬段是由芳香族二异氰酸酯与二元羧酸反应得 到的

?动态硫化(TPV):PA/rubber –最早由Gessler于1962年提出,并于80年代由Coran等成功开发出PP/EPDM TPV (美国孟山都,Santoprene) –橡胶弹性的实现:共混比,橡胶占主导,熔融共混过程橡胶相发生硫化 –热塑性的实现:相反转,硫化橡胶呈分散相 –性能堪比共聚型弹性体,某些性能更优 –工艺简单,成本低 –弹性体品种多:塑料相可为PA6、三元尼龙、共聚尼龙、长链尼龙;橡胶相涉及几乎所有橡胶(EPDM、EPM、NBR、HNBR、 ACM、IIR)

聚酰胺简介3

聚酰胺简介(3) 7.5.7 PA纳米复合材料 纳米复合材料(NC)是指分散相尺度至少有一维小于l00nm的复合材料,由于纳米分散相大的比表面积和强的界面相互作用,NC表现出不同于一般宏观复合材料的力学、热学、电、磁和光学性能,成为新一代复合材料。世界上第一次制备的聚合物基NC于1987年由日本丰田中央研究院的0kada公开报道,他采用插层聚合法制备了尼龙6/黏土NC,黏土是具有层状结构的硅酸盐,当它与聚合物以纳米尺度相复合时,由于纳米级相分散、强界面相互作用以及独特的结构和形态,使得聚合物/黏土NC具有常规聚合物/无机填料体系所不具备的一系列优异的性能,如高强度、高模量、高硬度,优异的阻隔、阻燃、表面光洁等性能,加之黏土含量低(一般<10%),不会改变聚合物流动性和加工性。因此,聚合物/黏土NC成为目前研究最多、最具工业化前景的新一代高性能聚合物基复合材料,在世界范围内得到了广泛的重视,国外发达国家和著名公司纷纷投入极大人力和物力开展聚合物基NC的研制开发,已取得明显进展,已有产品问世。到目前为止,聚合物基纳米复合材料研究最多的仍是聚酰胺/蒙脱土纳米复合材料。 中科院化学所在国内率先开展了尼龙/黏土NC的研究制备,l994年报道了尼龙6/蒙脱土NC,并发明了"一步"法制备尼龙6/蒙脱土NC,目前正进行推广应用。 7.5.7.1黏土结构和改性 聚合物/黏土NC中使用较多的是黏土,黏土为层状2:1型硅酸盐,如钠蒙脱土(S0-diummontmorillonite)、锂蒙脱土(hectorite)和海泡石(sepiolite)等。蒙脱土(MMT)是研究最多的一种。其基本结构单元是由一层铝氧八面体夹在两层硅氧四面体之间靠共用氧原子而形成的层状结构,层内原子以强的共价键结合为主,而层之间则以弱的范德华力或静电引力相互作用为主,每个结构单元厚约为lnm、长宽均为100nm的片层,层间有可交换的Na+、Ca2_、M92+等阳离子。如图7-7所示蒙脱土(MMT)的晶体结构。 研究表明,只有当聚合物分子插入到黏土片层之间,才能得到聚合物/黏土NC。由于黏土具有明显的亲水性,未经改性的黏土,单体或聚合物分子难以插入到层间形成NC,因此,对黏土进行有机化改性是必须的。常采用插层剂与蒙脱土层间阳离子进行交换,插层剂进入层间,使得层间距增大,层问微观环境发生变化,黏土亲油性增加,从而有利于单体或聚合物分子插入生成聚合物/黏土NC,因此插层剂的选择是制备聚合物基NC的关键步骤之一,它应符合以下条件: ①容易进入硅酸盐片(001面)层间,增大黏土片层间距; ②插层剂分子与单体或聚合物分子链之间具有较强的物理或化学作用,以利于单体或聚合物插入层间进行反应或复合,增强黏土片层与聚合物两相间的界面黏结; ③价廉易得。常用的插层剂有烷基铵盐、季铵盐、吡啶类衍生物和其他阳离子型表面活性剂等。

聚酰胺(PA)工程塑料发展概况

聚酰胺(PA)工程塑料发展概况 1基本市场情况 2016年PA6和PA66聚合物的全球生产量超过了750万t,PA6占比超过70%。PA6主要被加工成各种纤维(如纺织纤维、地毯长丝或短纤维),而PA6复合物占了PA6聚合物消费量的1/4左右。相比之下,大约各有一半PA66树脂被加工成工程塑料和纤维。PA6和PA66复合物有一半左右被汽车工业消耗了,电子电器工业消耗了近1/3(其中包含了动力工具和家电产品方面的应用)。在2016年PA6和PA66需求量方面,中国占了31%左右,欧洲、北美自由贸易区(包括南美)分别占了30%、21%左右,其他亚洲国家占大约18%。全球最大的PA6生产商是巴斯夫(BASF)、朗盛(Lanxess)、帝斯曼(DSM)、艾曼斯(Ems)和杜邦(DuPont),PA66的主要生产商是杜邦、索尔维(Solvay)、旭化成(AsahiKasei)和巴斯夫。中国在近几年里成长为最大的PA6和PA66复合物市场,也越来越有能力在热塑性塑料和基础产品(如己内酰胺和己二酸)方面实现自给自足。世界范围内PA6和PA66树脂的产能正在不断扩大。其中中国的PA6和PA66复合物的增长率为4%~6%,明显高于其他国家和地区。日本的Ube工业公司计划在2018年将其在西班牙卡斯特隆PA6工厂的产能扩大4~7万t/a。波兰化工企业GrupaAzoty也在波兰塔尔努夫新建一家PA6产能为8万t/a的工厂。 2聚酰胺产业链

3聚酰胺产品系列: (1)高性能无卤阻燃PA6和PA66复合物例如,德国朗盛BKV45FN04是一种45%玻璃纤维增强高模量PA6复合物,可自由着色,无卤无红磷,45%玻璃纤维使其具有很高的强度和刚度,还具有最高的UL94防火等级5VA级(1.0mm)以及很好的高压电痕抗性(符合标准DIN EN 60587)。德国巴斯夫Ultramid FRee A3U40G5是针对家电产品部件应用的无卤阻燃PA66,它可通过灼热丝试验标准(DIN EN 60335-1)—灼热丝起燃温度为775℃(试样壁厚0.75mm)。主要应用在电子电器领域。 (2)高导热系数的聚酰胺材料,Durethan BTC75H3.0EF是填充了75%导热矿物的PA6,其导热系数(流动方向)为 1.7W/(m˙K),是标准PA6 Durethan BKV30H2.0(填充了30%玻璃纤维)的几倍。可用于各类设备、LED和传统照明技术的热管理等散热部件。 (3)高温稳定PA6和PA66 巴斯夫产品Ultramid EndureD3G7 和杜邦产品Zytel PLS95G35DH1 BK549的连续工作温度可提高到220℃,此外,朗盛将向市场提供长期耐230 ℃的PA66。 (4)朗盛开发了几种30%玻璃纤维增强的PA6复合物---新型可焊接复合物。Durethan BKV30X-WPXT 提高了加工稳定性以及焊缝对加热工具、红外线和振动焊接的耐受性,还提高了熔体刚度和热稳定性。它可在200 ℃下连续工作,并且其在室温老化后和受热后仍具有高焊接强度。DSM也推出媲美Akulon K224-HWXG6 的高激光传输性的PA6复合物。Schulman公司产品Schulamid 66 GF 30 HE LW 是类似的PA66 产品。 (5)可耐受更高温度的吹塑成型PA66复合物,用于发动机的进气管。这类产品包括杜邦公司的Zytel BM70G20HSLX,Radici公司的Radilon A BMV 200HHR3800NER 和朗盛公司的Durethan AKV320ZH2.0。 (6)朗盛Durethan TP132-011 开发了一种填充30%的玻璃纤维和中空玻珠混合物的PA6复合物,相比填充实心玻璃珠的同类PA6复合物,前者使密度降低了12%,由此带来的好处是充填压力的降低和流动性的提高。 (7)索尔维高性能聚酰胺事业部推出了全新的耐高温聚酰胺材料Technyl○R Red S,该产品专门为在200℃连续高温条件下工作的汽车应用而研发,如涡轮

尼龙的增韧改性.

《聚合物复合材料设计与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 学号:2010130101025

尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方

尼龙的增韧改性

尼龙的增韧改性 Prepared on 22 November 2020

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙

lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首 (PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成

尼龙工程材料的改性.

尼龙工程材料的改性 摘要: 尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。 1.尼龙改性的研究进展 对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。 1.1共混改性 在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性 聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。 在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

相关文档
最新文档