精馏塔基础知识 (2)

精馏塔基础知识 (2)
精馏塔基础知识 (2)

塔基础知识

1:化工生产过程中,是如何对塔设备进行定义的?

答:化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。

2:塔设备是如何分类的?

答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔(合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。

3:什么是塔板效率?其影响因素有哪些?

答:理论塔板数与实际塔板数之比叫塔板效率,它的数值总是小于1。在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。

4:塔的安装对精馏操作有何影响?

答::(1)塔身垂直.倾斜度不得超过1/1000,否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm,塔板水平度如果达不到要求,则会造成液层高度不均匀,使塔内上升的气相易从液层高度小的区域穿过,使气液两相不能在塔板上达到预期的传热,传质要求.使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向与该层塔板上液体的流动方向一致。(3)溢流口与下层塔板的距离应根据生产能力和下层塔板溢流堰的高度

而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等部件的安装,检修情况都是要注意的。对于不同的塔板有不同的安装要求,只有按要求安装才能保证塔的生产效率。

5:塔设备中的除沫器有什么作用?

答:除沫器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除沫器。可有效去除3—5um的雾滴,塔盘间若设置除沫器,不仅可保证塔盘的传质效率,还可以减小板间距。所以丝网除沫器主要用于气液分离。

6:塔器在进行设备的材料选择时,应考虑哪些问题?

答:(1)在使用温度下有良好的力学性能,即较高的强度,良好的塑性和冲击韧性以及较低的缺口敏感性。(2)要求具有良好的抗氢,氮等气体的腐蚀性能。(3)要求具有较好的制造和加工性能,并具有良好的可焊性。(4)热稳定性好

7:精馏塔的精馏段与提馏段是怎样划分的,二者的作用是什么?

答:当精馏塔的某块塔板上的浓度与原料的浓度相近或相等时,料液就由此处塔引入,该塔称为加料版。位于加料版以上的塔段为精馏段,位于加料版及其以下的塔段为提馏段。精馏段的作用是使原料中易挥发组分增浓。提馏段的作用是回收原料中易挥发组分。

8:塔体腐蚀通常表现在哪些部位?原因是什么?

答:(1)、焊口腐蚀。焊口腐蚀是由于焊条选材不当、焊接工艺不完善、焊口处理不彻底等引起的。(2)、局部腐蚀。局部腐蚀是由于塔体自身倾斜、气体分布器开口不均、塔内填料

堆积不均造成介质在塔内流动时偏流,对塔体内部的冲蚀。

9:塔的裙座高度是如何确定的?

答:塔的裙座高度主要是保证塔底产品抽出口与泵的进口管线的高度差大于塔底泵的汽蚀余量,避免塔底泵因发生气蚀作用而损坏

10:塔设备的临界风速是指什么?

答:塔体上总是在顺风向与横风向分别受到力的作用,可相应地成为拽力与升力。冈为后者比前者要大得多,因此在计算时可只考虑升力,作用在塔体上的升力是交变的,升力的频率与旋涡脱落频率相同。因此旋涡脱落频率与塔的任一振型的自振频率一致时.便会引起塔的共振。塔共振时的风速称为临界风速。

11:两相间传质的双膜理论是什么?

答;双膜理论”是两相间物质传递的机理应用最为广泛的理论,它的基本点如下:(1)当气液两相接触时,两相之间有一个相界面,在相界面两侧分别存在着呈层流流动的稳定膜层(有效层流膜层)。膜层的厚度主要随流速而变,流速越大膜层厚度越小。(2)在相界面上气液两相互成平衡。(3)在膜层以外的主体内,由于充分的湍动,溶质的浓度基本上是均匀的,即认为主体中没有浓度梯度存在,换句话说,浓度梯度全部集中在两个膜层内。双膜理论对于湿壁塔,低气速填料塔等具有固定传质界面的吸收设备有实际意义。

12:塔设备在停车检查时的重点项目是什么?

答:(1)查塔盘水平及支撑件,连接件的腐蚀,松动等情况,必要时取出塔外清洗或更换。(2)检查塔体腐蚀,变形及各部位焊缝的情况,对塔壁,封头,进料口处筒体,出入口接管,压力引出口线,液位计引出线等处进行测厚,判断其受蚀情况。(3)全面检查设备的附件、安全阀、压力表、温度计、液位计等接管有无堵塞,是否在规定的压力下动作,有无对安全阀、压力表等进行校验等等。(4)如在运行中发现异常震动等现象,停车检查时一定要查明原因,妥善处理。如焦化接触冷却塔曾出现裙座螺栓松动特殊情况。(5)对于介质较脏的塔,如焦化分馏塔还需检查塔盘浮阀是否灵活,集油箱及塔底抽出线结焦情况等等。(6)对于焦炭塔除检查塔设备变形、裙座裂纹扩展情况,除塔壁受腐蚀外,还需检查塔内壁挂焦情况,挂壁严重的话,需要将挂焦铲干净。

13:车吹扫后,要清理杂质,打开人孔的顺序是什么?

答:应从上往下开始拆。因为吹扫后还可能有部分易燃易爆气体在塔内聚集,而又往往聚集在塔内顶部,如果先拆开下面人孔,空气

进入后,可燃气体与空气混合成爆炸性气体,遇火星即会爆炸。相反,从上往下拆,每拆一个,就形成一个空气对流段,塔内易燃易爆气体随空气对流到塔外,难以达到爆炸极限浓度,故从上往下拆安全。

14:板式塔和填料塔在传质上有什么差别?

答:通常的精馏、吸收操作过程中,精馏塔和吸收塔大都采用板式塔和填料塔两种塔型。板式塔属于分级接触型的传质设备,就大多数塔板形式而言,气、液两相按错流方式流动,传质是在塔板上进行的。填料塔是连续型的传质设备,气、液两相按逆流方式流动,传质主要在覆盖于填料表面上的液膜中进行。

15:高压操作的蒸馏塔一般选用什么塔型?

答:高压操作的蒸馏塔,推荐用板式塔。如果选用填料塔,则会因塔内气液比较小等因素的影响,导致分离效果不好。

16:完成萃取操作有几个步骤?

答:(1)、相的分散。将一相液体分散到另一相液体中,形成分散体。(2)、相间传质。将分散体维持必要的时间,使传质进行到适当程度。(3)、相的分离。将分散体分离成两相清夜。工业萃取要求溶质萃出率高和萃取剂用量少,多次重复上述三个步骤,合理安排各进出液体,组成多级逆流萃取以获得浓度高的萃取液并方便后续加工。

17:萃取塔有几种形式?

答:萃取塔按搅拌形式可以分为三类。1、无搅拌的萃取塔。如:喷

淋塔、填料塔、挡板塔、筛板塔。2、往复搅拌的萃取塔。如:脉动

填料塔、脉动筛板塔、振动筛板塔。3、旋转搅拌的萃取塔。如:转

盘塔、Oldshue-Rushton 塔、偏心转盘塔、Scheibel 塔。

18:萃取设备计算的基本数据有哪些?

答:(1)确定萃取剂。 (2)确定平衡数据。 (3)确定操作流程。(4)确定萃取相比。 (5)求取理论级数。 (6)确定萃取设备类型。19:从塔盘的溢流方式看,塔盘可分为哪几种?

答:从塔盘的溢流方式看,可分为单溢流式和双溢流式.其中单溢流式又有中间降液和两边降液之分.一般来说,塔径在Φ800-2000mm 之间可用单溢流塔盘,塔径在Φ2000mm 以上的可用双溢流塔盘.

20:减压塔为什么设计成两端细,中间粗的形式?

答:减压塔上部由于气液相负荷都比较小,故而相应的塔径也比较小。减压塔底由于温度较高,塔底产品停留时间太长,容易发生裂解、缩合结焦等化学反应,影响产品质量,而且对长期安全运转不利。为了减少塔底产品的停留时间,塔的气提段也采用较小的塔径。绝大多数减压塔下部的气提段和上部缩径部分的直径相同,有利于塔的制造和安装。减压塔的中部由于气、液相负荷都比较大,相应选择较大的直径,故而构成减压塔两端细,中间粗的外形特征。21:减压塔真空度高低对操作条件有何影响?

答:减压塔的正常平稳操作,必须在稳定的真空度下进行,真空度高低对全塔气液相负荷大小,平稳操作影响很大。在减压炉出口油温度、进料油流量、塔底气提吹气流量及回流量均不变的前提下,如果真空度降低,就改变了塔内油品压力与温度平衡的关系,提高了油品的饱和蒸汽压。相应油品分压增高,使油品沸点升高,从而降低了进料的气化率,会使收率降低。在操作上,由于气化率下降塔

内回流量减少,会使各馏出口温度上升。因此,在把握馏出口操作条件时,真空度变化除应调节好产品收率,也要相应调节好馏出口温度,当真空度高时可适当调低馏出口温度。真空度低时馏出口温度要适当提高。

22:不同类型塔板的气液传质原理有何区别?

答:塔板是板式塔的核心部件,它的主要作用是造成较大的气、液相接触的表面积以利于在两相间进行传质和传热的过程。塔板上气液接触的情况随气速的变化而有所不同大致可以分为以下四种类型:1.鼓泡接触:当塔内的气速较低的情况下,气体以一个气泡的形态穿过液层上升。塔板上所有气泡外表面积之和即为该塔板上的气液传质面积。2.蜂窝状接触:随着气速的提高,单位时间内通过液层气体数量增加,使液层变为蜂窝状。它的传质面积要比鼓泡接触大。3.泡沫接触:气体速度进一步加大时,穿过液层的气泡直径变小,呈现泡沫状态的接触形式。4.喷射接触:气体高速穿过塔板,将板上的液体都粉碎成液滴,此时传质和传热过程则是在气体和液体的外表面之间进行。:前三种情况在塔板上的液体是连续的,气体是分散相进行气液接触传质和传热过程的;喷射接触在塔板上气体处在连续相,而液体则处在分散相。在小型低速的分馏塔内才会出现鼓泡状和蜂窝状的情况。原油蒸馏过程中气速一般比较大,常压蒸馏采用浮阀或筛孔塔板,以泡沫接触为主的方式进行传质和传热。减压蒸馏的气体流速特别高,通常采用网孔或浮喷塔板,以喷射接触的方式进行传质和传热。经高速气流冲击所形成液滴的流速也很大,

为避免大量雾沫夹带影响传质效果,塔板上均装有挡沫板。

23:塔有哪些不正常操作现象?

答:夹带液沫:对一定的液体流量,气速越大,液沫夹带越大,塔板上液层越厚.而液层厚度增加,相当于板间距的减小,对液沫夹带的影响增大,因此,当气速增至某一数值时,塔板上必将出现恶性循环,板上的液层不断增厚而不能达到平衡,最终液体将充斥全塔,并随着气体从塔顶溢出,这种现象称为夹带液沫.溢流液沫:因降液管通过能力的限制而引起的液沫称为溢流液沫.板压降太大通常是降液管内液面太高的主要原因.因此,板压降很大的塔板都比较容易发生溢流液沫,由此可见,气速过大同样会造成溢流液沫.此外,如塔内某块塔板的降液管阻力急剧增加(如堵塞)也会造成溢流液沫漏液:当气体流速较小时,塔板上部分液体会从筛孔中直接落下,这种现象称为漏液现象.漏液现象的发生除塔板的结构因素之外,气速是决定塔板漏液的主要因素. 24:应力腐蚀是怎样定义的?

答:不锈钢在特定的腐蚀介质中和在静拉伸应力的作用下所出现的低于强度极限的脆性开裂现象称为应力开裂腐蚀.这种类型的腐蚀破坏性极大,即在不锈钢的腐蚀敏感部位形成微小凹坑,产生细小裂纹,且裂纹扩展很快,能在短时间内发生严重的破坏。

25:什么情况下一般优先使用板式塔?

答:(1)在处理易结垢或含固体颗粒的物料时,应选择板式塔。板式塔中,气、液负荷都比较大,以高速通过塔板时有“清扫”的功

能,可防止堵塞。(2)液体负荷过大时,填料塔和板式塔的生产能力都会下降,但板式塔中可应用多溢流的方法予以避免。(3)液体负荷过小时,填料塔的表面不易被全部润湿,而在板式塔中可增加溢流堰的高度以保持较高的持液量,使气液能充分接触,这对蒸馏、吸收或有化学反应的操作过程都是有利的。(4)高压操作的蒸馏塔,建议使用板式塔。如用填料塔,则因塔内气液比小等因素的影响,分离效果不好。(5)操作过程中有热量放出或吸入时,用板式塔较为有利。塔板上有较大的持液量以便放置换热管。此外板式塔上还可根据工艺上的需要设置多个加料管与侧线出料口。如果安装在填料塔上则需加设液体分布器或液体收集器,从而增加了费用。(6)塔内温度有周期性变化时,对板式塔影响较小,而在填料塔中,有些力学性能较差的填料将被挤坏。便于检修和清洗时,选用板式塔。

26:什么情况下一般优先考虑填料塔?

答:(1) 要求低压时应选择填料塔。因为填料塔的自由截面积一般大于50%,气体阻力小。如处理热敏性物料,在高温下易发生分解或聚合反应,在真空下操作可以降低塔底的温度,用填料塔便很合适。(2)易发泡的物质,在板式塔中易引起液泛,而填料在多数情况下易使泡沫破灭。(3)处理腐蚀性的物料时,选用填料塔较为有利,因为填料的用材很广泛,陶瓷、塑料等非金属材料均可,既便宜,效果又好。板式塔的塔板一般以金属为主,选择的余地很小。(4)传质速率受气膜控制时,选用填料塔。因为填料表面覆盖的是

薄的液膜,气相湍动有利于减少气膜阻力,与此相反,如传质速率受液膜控制时,则可选用板式塔,塔板上可维持液相湍动状态。(5)塔的直径小于800mm 时,一般以采用填料塔为宜。如用板式塔,则塔板的固定与密封都会有困难。目前由于新型填料特别是规整填料的发展,大直径的填料塔也广泛应用。其中波纹填料塔的直径已超过14m。

27:塔设备设计或选型时,要考虑的因素有哪些?

答:(1)生产能力大。在较大的气液负荷或其波动范围较宽时,也能在较高的传质速率下稳定地操作。(2)流体阻力小,运转费用低。对热敏性物料挥发物多的精馏、吸收过程,这一项更应注意。(3)能够提供足够大的相际接触面积,使气液两相在充分接触的情况下进行传质,达到高分离效率。(4)要解决由于物料性质,如腐蚀性、热敏性、发泡性,以及由于温度变化的周期性等而提出的特定要求。(5)结构合理,安全可靠,金属消耗量少,制造费用低。(6)不易堵塞,容易操作,便于安装、调节与检修。(7)充分利用热能。

28:在设计塔设备结构形式时,在物料性质方面需要考虑哪些问题?答:物料性质是塔设备结构选型时首要条件,需要从以下几个方面考虑:(1)易气泡的物料,如果处理量不大时,以选择填料塔为宜。因为填料容易使泡沫破灭,而在板式塔中则易引起液泛。(2)具有腐蚀性色介质,可选用填料塔,如必须选用板式塔,宜选用结构简单、造价便宜的筛板塔、穿流式塔盘或舌形塔盘,以便及时更换。(3)

具有热敏性的物料需减压操作,为防止热引起分解或聚合时,应选用压力降较小的塔型,如可采用装填规整填料的塔、湿壁塔等,当要求真空度较低时,宜用筛板塔和浮阀。(4)粘性较大的物料,可选用大尺寸填料。板式塔的传质效率太差。含有悬物的物料,应选择液流通道较大的塔型,以板式塔为宜。可选用泡罩塔、浮阀塔、栅板塔、舌形塔和孔径较大筛板塔等。不宜选用小填料。(5)操作过程中有热效应的系统,用板式塔为宜。因塔板上有液层,可在其中安装换热器,进行有效地加热或冷却。

29:在生产操作中,工况条件及操作要求对塔设备的选用有哪些影响?答:塔设备的结构形式因为生产的设计工况不同也不尽相同。

(1)若气相传质阻力大(即气相控制系统,如低粘度液体的蒸馏、空气增湿等),应采用填料塔,因填料层中气相呈湍流,液相为膜状流。反之,受液相控制的系统,应采用板式塔,因为板式塔中液相呈湍流,气体在液层中鼓泡。(2)对于较大的液体负荷,可选用填料塔;若采用板式塔时,应选用气液并流的塔型,如喷射型塔盘,或选用板上液流阻力较小的塔型,如筛板和浮阀。此外,导向筛板塔盘和多降液管筛板塔盘都能承受较大的液体负荷。

(3)对于较低的液体负荷,不宜选用填料塔,因为填料塔要求一定数量的喷淋密度。如果特殊需要用填料塔,可以选用网体填料,这样可以适度地提高喷淋密度,但其应用的范围较窄。(4)从气液比波动的适宜性看,板式塔要优于填料塔,所以对于气液比波动较大的就适宜用板式塔.(5)从操作弹性看,板式塔的操作弹性要比填料塔

宽。在板式塔中,以浮阀塔为最大,泡罩塔次之,一般地说,穿流塔的操作弹性最小。

30:从经济角度上,填料塔和板式塔的设计选用各有哪些不同?

答:经济适用是当前设计工作中选用设备的一个重要指标。(1)多数情况下,塔径大于800mm 时,宜用板式塔.塔径小于800mm 时,宜用填料塔.但也有例外,在大型填料塔中使用鲍尔环及某些选型填料的效果可优于板式塔.同样,塔径小于800mm 时,也有使用板式塔的。(2)一般填料塔比板式塔重。(3)大塔以板式塔造价较经济.因为填料的价格约与塔体的容积成正比,板式塔按单位面积计算价格,随着塔径增大而减小。

31:塔设备承受哪些荷载的作用?

答:凡安装在室外的塔设备均承受下列荷载的作用(1)操作压力。(2)重力荷载。(3)风荷载。(4)地震荷载。(5)偏心荷载。

32:塔设备强度和稳定性校核包括哪几方面?

答:在各种荷载共同作用时,塔体和裙座的稳定性校核包括以下内容:(1)塔体壁厚要求其强度或稳定性既满足操作压力引起的周向应力校核条件,又满足各种荷载综合作用引起的轴向组合应力校核条件。(2)塔体和裙座的连接焊缝强度。(3)裙座体承受的轴向组合应力(4)基础螺栓的大小和数量。(5)基础环板弯曲强度校核。(6)基础混凝土的抗压强度。

33:在塔类设备裙座的结构设计时应考虑哪些问题?

答:为了制作方便,裙座一般为圆形。对于直径小又细高的塔(直径小于1 米,且塔高与直径之比大于25;或者说,且塔高与直径之比大于30 的),为了增加设备的稳定性,降低地脚螺栓和环支撑面上的应力,可以采用圆锥形裙座。裙座直接焊接在塔釜封头上,可采用对接焊缝,焊后要对焊缝进行打磨处理。特别是低温塔及高寒地区的室外自支撑塔,为了减少应力集中,不宜采用加高焊缝结构,对较高或细长的塔,焊缝要进行探伤检查。采用这种结构时,如果裙座及封头等壁厚,封头切线至裙座顶的距离可查相关的设计规定。搭接焊缝因承受剪切载荷,受力状况较差,只是因为安装方便,才在一些小型塔或焊缝受力较小的情况下采用。

34:风载荷对塔体产生哪些作用?

答:(1)产生平行于风向的静弯矩。产生垂直于风向的诱导共振弯矩。

36:设计时对于填料塔填料选取的原则是什么?

答:(1)以传质效率高为选取原则。要求填料能提供较大的气、液接触面积,也就是要求填料具有较大的比表面积,并要求填料表面易被液体湿润,只有湿润了的表面才是气液接触面。(2)以生产能力大,气体的压力降小为原则选取。要求填料层的空隙大。(3)以不易引起偏流和沟流为原则选取。(4)以经久耐用为选取原则。要求所选填料具有良好的耐腐蚀性、较高的机械强度和必要的耐热性。以取材容易、价格便宜为选取原则。

37:电磁流量计有什么优点?

答:(1)测量导管内无可动部件或突出于管内的部件,因而压力损失小;(2)在采用防腐衬里的条件下,可以测量各种腐蚀性液体的流量;(3)可用来测量含有颗粒、悬浮物等液体的流量;(4)它的电流输出与流量具有线性关系,且不受液体的物理性质的影响,也不受流动状态的影响;(5)电磁流量计的口径范围大,可从1m 到2m 以上;(6)可测量范围宽,量程比一般为10:1,最高可达100:1;(7)它没有惰性,反应速度快,可用于测量脉动流量等。

38:电磁流量计有何不足和局限性?

答:(1)被测流体必须导电;(2)不能测量气体和蒸汽、石油制品等介质的流量;(3)由于受变送器衬里材料的限制,一般使用温度为0~200℃,压力也不能太高。

39:关于填料塔内的填料支撑装置?

答:填料在塔内无论是乱堆还是整砌,均堆放在支撑装置上。支撑装置必须要有足够的强度以承受填料层的重量(包括所持液体的重量);支撑装置的气体通道面积大于填料层的自由截面积(数值上等于孔隙率),否则不仅在支撑装置处有过大的气体阻力,而且当气速增大时将首先在支撑装置处出现拦液现象,降低塔的通量。常用的支撑装置为栅板式,它是由树立的扁钢组成的,扁钢条之间的距离一般为填料外径的倍左右。支撑装置也有采用升气管式的,它的功用是克服支撑装置的强度和自由截面积之间的矛盾,特别是适应

了高孔隙率填料的要求。气体由升气管上升,通过顶部的孔和侧面的齿缝进入填料层,而液体经底板上的许多小孔流下。

40:填料塔的液体分布装置结构形式有几种?

答:(1)莲蓬式喷洒器,这种分布器具有半球形外壳,在壳壁上有许多供液体喷淋的小孔,它的优点是结构简单,缺点是小孔容易堵塞,而且液体的喷洒范围与压头的关系较大,所以这种喷洒器一般用于直径在600mm 以下的塔中。(2)多孔管式喷淋器,多孔管式喷淋器一般在管底部钻有Φ3-6mm 的小孔,多用于直径600mm 以下的塔中。(3)齿槽式分布器,多用于大直径塔中,这种分布器对气体的阻力小,但安装要求超水平,以保证液体均匀地流出齿槽。(4)筛孔盘式分布器,这种分布器适用于直径800mm 的塔中,液体加至分布盘上,再由盘上的筛孔流下。缺点是加工复杂。其它新型的分布器。

41:塔设备安全阀的选用原则?

答:(1)选用安全阀时,最关键的问题是它的排量,即塔类设备所用安全阀的排量必须大于它的安全泄放量,只有这样才能保证容器超压时,安全阀开放后能及时地把气体排出,避免容器内的压力继续升高。(2)应注意安全阀的压力范围,因为每种安全阀都有一定的工作压力范围。不应把高压用的弹簧式安全阀过分卸载用于低压容器上,也不能把低压用的安全阀过分加载用于较高压力的塔类设备上,选用时应按塔类设备的工作压力采用级别相同的弹簧。(3)应考虑塔类设备的工艺条件及工作介质的特点,一般塔类设备宜采用弹簧式安全阀,对于压力较低而又没有振动影响的塔类设备,可以用杠杆式安

全阀。若塔类设备的工作介质中存在有毒、易燃、易爆气体,或其它污染大气的气体时,应选用封闭式安全阀。

42:什么叫名义厚度、有效厚度?

答:名义厚度是由设计壁厚向上圆整,到钢板标准规格的厚度,它就是图样标准厚度。有效厚度是名义厚度与壁厚附加量之差。

43:为防止罐壁焊缝因冷却速度快,造成裂纹,施焊时应采

取哪些措施?

答:(1)环境温度在5°C 以上施焊;(2)环境温度很低,工件较厚时,应预温,其温度应不低于l00℃;(3)电焊条要进行烘干;(4)六级以上风天不宜施焊;(5)雷雨天不宜施焊。

44:罐壁质量检查包括哪些内容?

答:(1)焊缝质量;(2)圆度;(3)垂直度;(4)局部凸凹变形量;(5)周长

45:焊前预热的作用是什么?

答:(1)减少焊缝金属与母材之间的温差,从而减少残余应力;(2)控制钢材组织转变,避免在热影响区形成脆性马氏体;(3)加速氢的扩散,消除热影响区高含量氢的集中;(4)降低冷却速度,便于造渣;(5)降低焊接所需热量,从而改善焊接工艺性。

46:简述金属结晶的一般过程?

答:液态金属的结晶过程包括晶核的形成和长大两个基本过程。(1)金属结晶时,首先从液态金属中形成一些极细小的晶体称为晶核,它不断吸附周围液体中的原子而长大;(2)与此同时,在液体中又不断产生新的晶核并且长大,直到全部液态金属凝固为止,最后金属便由许多外形不规则的小晶体组成。

47:金属加工硬化有何利弊?

答:金属加工硬化有利之处是:(1)强化金属提高强度、硬度和耐磨性;(2)有利于金属进行均匀的变形;(3)提高构件在使用过程中的安全性。金属加工硬化的不利之处是:(1)使金属塑性降低,给进一步塑性变形带来困难;(2)金属耐腐蚀性降低。

48:钢中存在哪些杂质?对钢的性能有何影响?

答:钢中的杂质有锰、硅、硫、磷,其对钢的性能影响如下:(1)锰:提高钢的强度和硬度;(2)硅:提高钢的强度和硬度,降低塑性和韧性;(3)硫:使钢材出现热脆现象;(4)磷:提高钢的强度和硬度,显着降低塑性和韧性,出现冷脆现象,使焊接性

变差。

49:测量塔及塔节直线度的方法有哪些?

答:目前,测量直线度的方法很多,如激光测定法、经纬线测定法和拉线测定法。实际生产中多采用拉线测定法。一般情况下各分段塔体的筒节组对是在胎上进行的,基本上可以保证其允许偏差,但组对成形后还应用拉线法进行复测,达到要求后方可进行焊接。

50:关于塔设备的保温支持圈的形式?

答:保温支持圈的形式一般有以下两种:(1)整圈焊接式。该种形式保温支持圈为一整圈扁铁形式,通常分成几等分后进行安装,上部满焊,下部断焊,整个一圈应与塔壁垂直。(2)带连接板形式。该种形式保温支持圈一般按圆周等分为1m 左右一段,连接板与支持圈数目相同,连接板与塔壁满焊牢固后,各支持圈均点焊搭接在支持板上。

51:何谓塔设备的有损检验?

答:有损检验也称为破坏性试验,即取一块与设备材料,焊接工艺条件完全相同的试件进行一系列的试验,确定其是否符合要求。52:塔器表面探伤有哪几种方法?

答:1、磁力探伤;2、荧光探伤;3、着色探伤;4、涡流探伤

53:塔类设备的整体试验含哪些内容?

答:塔类设备制造完成以后,应按设计图纸要求进行相关的试验合格后,才能交付使用。试验内容有以下几个方面:(1)液压试验;

(2)气压试验;(3)气密性试验;(4)煤油渗透试验;(5)氨渗透试验。% Z8

54:对塔类设备进行水压试验的目的是什么?

答:对塔类设备进行水压试验的目的有两个:1、检验设备的强度,以便在投入生产前及时发现材质或或制造中可能存在的缺陷,以便

采取适当的措施加以修补。2、可以起到部分地消除应力的作用。当进行水压试验时,在焊缝区产生局部屈服,使残余应力重新分配,从而降低了焊缝处的残余应力,减少了在一定的外加载荷作用下脆性破坏的危险性。

55:为什么要对塔类设备进行气密性试验?试验压力如何确定?答:进行气密性试验主要是为了检验设备的严密性。做过气压强度试验,并经检验

合格的设备可不另做气密性试验。气密性试验必须在液压试验合格后进行,其

试验压力为设计压力的倍。试验时压力应缓慢上升,达到规定试验压力后

保压10min,然后降至设计压力,在焊缝和连接部位进行渗漏检查。如有渗漏,修

补后重新进行液压试验和气密性试验。

56:简述水压实验前有哪些准备工作?

答:塔设备制作安装任务完成之后,必须进行整体水压试验,在水压试验之前应先对补强圈进行风压试验,风压压力一般为,用肥皂水试漏。具体的准备工作如下。(1)水压试验必须使用合格的压力表,量程为试验压力的倍,压力表的精度等级应符合规范的要求。(2)用作水压试验的水质必须洁净,对于不锈钢材质的塔类设备的

水压试验,为防止氯离子的腐蚀,当试压后不能保证除尽水渍时,必须要控制水质中的氯离子的含量不超过25x10-6。(3)试验温度包括水温和实验的环境温度,为防止材料特别是低合金高强度钢在试压中的低温脆性破坏,要求试验温度必须在材料在无塑性转变温度以上的某一温度下进行,例如16MnR 和碳素钢要求大于5 摄氏度,除低温钢外的其它合金钢要求大于15 摄氏度。

57:进行塔类设备的耐压试验需注意什么?

答:(1)检查各部尺寸及焊缝,清理塔类设备内杂物并进行必要的密封,合格后充满试验介质(一般以水做介质);(2)塔类设备壁与液体温度相同时,缓慢升压至规定试验压力;(3)根据塔类设备大小,试验压力保持10~30min;(4)将压力降到设计压力,至少保持10~30min,同时进行检查。

总结:

1.填料塔处理腐蚀性的物料时,选用填料塔较为有利,因为填料的用材很广泛,陶瓷、塑料等非金属材料均可,即便宜,效果也好。板式塔塔板的材料一般以金属为主,选择余地小。

2.板式塔和填料塔比较,一般情况下,(填料塔)的压力降较小,(填料塔)持液量较小一般情况下,塔径在800mm以下时,宜选用(填料塔);操作弹性比较大的是(浮阀塔);

精馏工艺操作基本知识

精馏工艺操作基本知识 1、何为相和相平衡: 答:相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间往往有一个相界面,把不同的相分别开。系统中相数的多少与物质的数量无关。如水和冰混合在一起,水为液相,冰为固相。一般情况下,物料在精馏塔内是气、液两相。 在一定的温度和压力下,如果物料系统中存在两个或两个以上的相,物料在各相的相对量以及物料中各组分在各个相中的浓度不随时间变化,我们称系统处于平衡状态。平衡时,物质还是在不停地运动,但是,各个相的量和各组分在各项的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。比如:在精馏系统中,精馏塔板上温度较高的气体和温度较低的液体相互接触时,要进行传热、传质,其结果是气体部分冷凝,形成的液相中高沸点组分的浓度不断增加。塔板上的液体部分气化,形成的气相中低沸点组分的浓度不断增加。但是这个传热、传质过程并不是无止境的,当气液两相达到平衡时,其各组分的两相的组成就不再随时间变化了。 2、何为饱和蒸汽压? 答:在一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度的升高而增加。众所周知,放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭容器里,并抽走上方的空气,当水不断蒸发时,水面上方气相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,气相压力

最中将稳定在一个固定的数值上,这时的压力称为水在该温度下的饱和蒸汽压。 应当注意的是,当气相压力的数值达到饱和蒸汽压力的数值是,液相的水分子仍然不断地气化,气相中的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,气体和液体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压时,气液两相即达到了相平衡。 3、何为精馏,精馏的原理是什么? 答:把液体混合物进行多次部分汽化,同时又把产生的蒸汽多次部分冷凝,使混合物分离为所要求组分的操作过程称为精馏。 为什么把液体混合物进行多次部分汽化同时又多次部分冷凝,就能分离为纯或比较纯的组分呢?对于一次汽化,冷凝来说,由于液体混合物中所含的组分的沸点不同,当其在一定温度下部分汽化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高。这就改变了气液两相的组成。当对部分汽化所得蒸汽进行部分冷凝时,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而为冷凝气中低沸点物的浓度比冷凝液中要高。这样经过一次部分汽化和部分冷凝,使混合液通过各组分浓度的改变得到了初步分离。如果多次的这样进行下去,将最终在液相中留下的基本上是高沸点的组分,在气相中留下的基本上是低沸点的组分。由此可见,多次部分汽化和多次部分冷凝同时进行,就可以将混合物分离为纯或比较纯的组分。 液体气化要吸收热量,气体冷凝要放出热量。为了合理的利用热量,我

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

精馏塔操作技巧基本学习知识

精馏操作基本知识 1、何为相和相平衡: 答:相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间往往有一个相界面,把不同的相分别开。系统中相数的多少与物质的数量无关。如水和冰混合在一起,水为液相,冰为固相。一般情况下,物料在精馏塔内是气、液两相。 在一定的温度和压力下,如果物料系统中存在两个或两个以上的相,物料在各相的相对量以及物料中各组分在各个相中的浓度不随时间变化,我们称系统处于平衡状态。平衡时,物质还是在不停地运动,但是,各个相的量和各组分在各项的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。比如:在精馏系统中,精馏塔板上温度较高的气体和温度较低的液体相互接触时,要进行传热、传质,其结果是气体部分冷凝,形成的液相中高沸点组分的浓度不断增加。塔板上的液体部分气化,形成的气相中低沸点组分的浓度不断增加。但是这个传热、传质过程并不是无止境的,当气液两相达到平衡时,其各组分的两相的组成就不再随时间变化了。 2、何为饱和蒸汽压? 答:在一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度的升高而增加。众所周知,放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭容器里,并抽走上方的空气,当水不断蒸发时,水面上方气相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,气相压力

最中将稳定在一个固定的数值上,这时的压力称为水在该温度下的饱和蒸汽压。 应当注意的是,当气相压力的数值达到饱和蒸汽压力的数值是,液相的水分子仍然不断地气化,气相中的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,气体和液体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压时,气液两相即达到了相平衡。 3、何为精馏,精馏的原理是什么? 答:把液体混合物进行多次部分汽化,同时又把产生的蒸汽多次部分冷凝,使混合物分离为所要求组分的操作过程称为精馏。 为什么把液体混合物进行多次部分汽化同时又多次部分冷凝,就能分离为纯或比较纯的组分呢?对于一次汽化,冷凝来说,由于液体混合物中所含的组分的沸点不同,当其在一定温度下部分汽化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高。这就改变了气液两相的组成。当对部分汽化所得蒸汽进行部分冷凝时,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而为冷凝气中低沸点物的浓度比冷凝液中要高。这样经过一次部分汽化和部分冷凝,使混合液通过各组分浓度的改变得到了初步分离。如果多次的这样进行下去,将最终在液相中留下的基本上是高沸点的组分,在气相中留下的基本上是低沸点的组分。由此可见,多次部分汽化和多次部分冷凝同时进行,就可以将混合物分离为纯或比较纯的组分。 液体气化要吸收热量,气体冷凝要放出热量。为了合理的利用热量,我

板式精馏塔项目设计方案

板式精馏塔设计方案 第三节精馏方案简介 (1) 精馏塔的物料衡算; (2) 塔板数的确定: (3) 精馏塔的工艺条件及有关物件数据的计算; (4) 精馏塔的塔体工艺尺寸计算; (5) 塔板主要工艺尺寸的计算; (6) 塔板的流体力学验算: (7) 塔板负荷性能图; (8) 精馏塔接管尺寸计算; (9) 绘制生产工艺流程图; (10) 绘制精馏塔设计条件图; (11) 对设计过程的评述和有关问题的讨论。 设计方案的确定及工艺流程的说明 原料液由泵从原料储罐中引岀,在预热器中预热至84 C后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽 流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25 C后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。 第四节:精馏工艺流程草图及说明

、流程方案的选择

1. 生产流程方案的确定: 原料主要有三个组分:C2°、C3二、C3°,生产方案有两种:(见下图A , B )如 任务书规定: 图(A ) 为按挥发度递减顺序采出,图(B )为按挥发度递增顺序采出。在基本有机化工 生产过程中,按挥发度递减的顺序依次采出馏分的流程较常见。 因各组分采出之 前只需一次汽化和冷凝,即可得到产品。而图(B )所示方法中,除最难挥发组 分外。其它组分在采出前需经过多次汽化和冷凝才能得到产品, 能量(热量和冷 量)消耗大。并且,由于物料的循环增多,使物料处理量加大,塔径也相应加大, 再沸器、冷凝器的传热面积相应加大,设备投资费用大,公用工程消耗增多,故 应选用图(A )所示的是生产方案。 2. 工艺流程分离法的选择: 在工艺流程方面,主要有深冷分离和常温加压分离法。 脱乙烷塔,丙烯精制 塔采用常温加压分离法。因为 C2, C3在常压下沸点较低呈气态采用加压精馏沸 点可提高,这样就无须冷冻设备,可使用一般水为冷却介质,操作比较方便工艺 简单,而且就精馏过程而言,获得高压比获得低温在设备和能量消耗方面更为经 济一些,但高压会使釜温增加,引起重组分的聚合,使烃的相对挥发度降低,分 离难度加大。可是深冷分离法需采用制冷剂来得到低温, 采用闭式热泵流程,将 精馏塔和制冷循环结合起来,工艺流程复杂。综合考滤故选用常温加压分离法流 程。 1、 脱乙烷塔:根据原料组成及计算:精馏段只设四块浮伐 塔板,塔顶采用分 凝器、全回流操作 2、 丙烯精制塔:混合物借精馏法进行分离时它的难易程度取决 于混合 物的沸点差即取决于他们的相对挥发度丙烷一丙烯的 C2 C3 = C3 ° iC4 W% 5.00 73.20 20.80 0.52 0.48 100 工艺特点: 原料 C 工 C 。 (A ) (B )

精馏塔基础知识

塔基础知识 1:化工生产过程中,是如何对塔设备进行定义的? 答:化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。 2:塔设备是如何分类的? 答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔(合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。 3:什么是塔板效率?其影响因素有哪些? 答:理论塔板数及实际塔板数之比叫塔板效率,它的数值总是小于1。在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成及平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。 4:塔的安装对精馏操作有何影响? 答::(1)塔身垂直.倾斜度不得超过1/1000,否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm,塔板水平度如果达不到要求,则会造成液层高度不均匀,使塔内上升的气相易从液层高度小的区域穿过,使气液两相不能在塔板上达到预期的传热,传质要求.使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向及该层塔板上液体的流动方向一致。(3)溢流口及下层塔板的距离应根据生产能力和下层塔板溢流堰的高度而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等

化工行业塔设备的基础知识

塔 第一节:概述 一、塔设备在炼油厂中的作用 在炼油、化工及轻工业生产中,气、液两相直接接触进行传质传热的过程是很多的,如精馏、吸收、解吸、萃取等。这些过程都是在一定的压力、温度、流量等工艺条件下,在一定的设备内完成的。由于其过程中两种介质主要发生的是质的交换,所以也将实现这些过程的设备叫传质设备;从外形上看这些设备都是竖直安装的圆桶形容器,形如“塔”,故习惯上称其为塔设备。 塔设备能够为气、液或液、液两相进行充分接触提供适宜的条件,即充分的接触时间、分离空间和传质传热的面积,从而起到相际间质量和热量交换的目的,实现工艺所要求的生产过程,生产出合格产品。所以塔设备的性能对整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等方面都有重大的影响。 塔设备的投资费用及钢材消耗仅次于换热设备。据统计,在化工和石油化工生产装置中,塔设备的投资费用占全部工艺设备总投资的25.39%,在炼油和煤化生产装置中占34.85%;其所消耗的钢材重量在各类设备中所占比例也是比较高的,如年产250万吨常减压蒸馏装置中,塔设备耗用钢材重量占45.5%,年产120万吨催化裂化装置中占48.9%,年产30万吨乙烯装置中占25~28.3%。可见塔设备是炼油、化工生产中最重要的工艺设备之一,它的设计、研究、使用对化工、炼油等工艺的发展起着重大的作用。 二、塔设备的分类及一般构造 随着炼油、化工生产工艺的不断改进和发展,与之相适应的塔设备也形成了形式繁多的结构和类型,以满足各种特定的工艺要求。为了便于研究和比较,人们从不同的角度对塔设备进行分类。如按工艺用途分类,按操作压力分类,也可按其内部结构进行分类。 (一)按用途分类 1.精馏塔利用液体混和物中各组分挥发度的不同来分离其各液体组分的操作称为蒸馏,反复多次蒸馏的过程称为精馏,实现精馏操作的塔设备称为精馏塔。如常减压装置中的常压塔、减压塔,可将原油分离为汽油、煤油、柴油以及润滑油等。 2.吸收塔、解吸塔利用混合气中各组分在溶液中溶解度的不同,通过吸收液体来分离气体的工艺操作称为吸收;将吸收液通过加热等方法使溶解于其中的气体释放出来的过程称为解吸。实现吸收和解吸操作过程的塔设备称为吸收塔、解吸塔。如催化裂化装置中的吸收、解吸塔,从炼厂气中回收汽油、从裂解气中回收乙烯和丙烯,以及气体净化等都需要吸收、解吸塔。 3.萃取塔对于各组分间沸点相差很小的液体混和物,利用一般的分离方法难以奏效,这时可在液体混和物 加入某种沸点较高的溶剂(称为萃取剂);利用混合液中各组分在萃取剂中溶解度的不同,将它们分离,这种方法称为萃取(也称为抽提)。实现萃取操作的塔设备称为萃取塔。如丙烷脱沥青装置中的抽提塔等。 4.洗涤塔用水除去气体中无用的成分或固体尘粒的过程称为水洗,所用的塔设备称为洗涤塔。 (二)按操作压力分类 塔设备根据其完成的工艺操作不同,其压力和温度也 不相同。但当达到相平衡时,压力、温度、气相组成和液相组成之间存在着一定的函数关系。在实际生产中,原料和产品的成分和要求是工艺确定的,不能随意改变,压力和温度有选择的余地,但二者之间是相互关联的,如一项先确定了,另一项则只能由相平衡关系求出。从操作方便和设备简单的角度来说,选常压操作最好,从冷却剂的来源角度看,一般宜将塔顶冷凝温度控制在30~40℃以便采用廉价的水或空气作为冷却剂。所以塔设备根据具体工艺要求,设备及操作成本综合考虑,有时可以在常压下操作、有时需要在加压下操作,有时还需要减压操作。相应的塔设备分别称为常压塔、加压塔和减压塔。

精馏塔设计图(参考)

1 / 2 ∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料1 2345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

精馏塔基础知识修订稿

精馏塔基础知识 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

塔基础知识 1:化工生产过程中,是如何对塔设备进行定义的? 答:化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。 2:塔设备是如何分类的? 答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔(合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。 3:什么是塔板效率其影响因素有哪些 答:理论塔板数与实际塔板数之比叫塔板效率,它的数值总是小于 1。在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。 4:塔的安装对精馏操作有何影响? 答::(1)塔身垂直.倾斜度不得超过1/1000,否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm,塔板水平度如果达不到要求,则会造成液层高度不均匀,使塔内上升的气相易从液层高度小的区域穿过,使气液两相不能在塔板上达到预期的传热,传质要求.使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向与该层塔板上液体的流动方向一致。(3)溢流口与下层塔板的距离应根据生产能力和下层塔板溢流堰的高度而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等部件的安装,检修情况都是要注意的。对于不同的塔板有不同的安装要求,只有按要求安装才能保证塔的生产效率。 5:塔设备中的除沫器有什么作用? 答:除沫器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除沫器。可有效去除3—5um的雾滴,塔盘间若设置除沫器,不仅可保证塔盘的传质效率,还可以减小板间距。所以丝网除沫器主要用于气液分离。 6:塔器在进行设备的材料选择时,应考虑哪些问题? 答:(1)在使用温度下有良好的力学性能,即较高的强度,良好的塑性和冲击韧性以及较低的缺口敏感性。(2)要求具有良好的抗氢,氮等气体的腐蚀性能。(3)要求具有较好的制造和加工性能,并具有良好的可焊性。(4)热稳定性好 7:精馏塔的精馏段与提馏段是怎样划分的,二者的作用是什么?

精馏塔基础知识精编版

精馏塔基础知识 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

塔基础知识 1:化工生产过程中,是如何对塔设备进行定义的? 答:化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。 2:塔设备是如何分类的? 答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔(合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。 3:什么是塔板效率其影响因素有哪些 答:理论塔板数与实际塔板数之比叫塔板效率,它的数值总是小于 1。在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。 4:塔的安装对精馏操作有何影响? 答::(1)塔身垂直.倾斜度不得超过1/1000,否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm,塔板水平度如果达不到要求,则会造成液层高度不均匀,使塔内上升的气相易从液层高度小的区域穿过,使气液两相不能在塔板上达到预期的传热,传质要求.使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向与该层塔板上液体的流动方向一致。(3)溢流口与下层塔板的距离应根据生产能力和下层塔板溢流堰的高度而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等部件的安装,检修情况都是要注意的。对于不同的塔板有不同的安装要求,只有按要求安装才能保证塔的生产效率。 5:塔设备中的除沫器有什么作用? 答:除沫器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除沫器。可有效去除3—5um 的雾滴,塔盘间若设置除沫器,不仅可保证塔盘的传质效率,还可以减小板间距。所以丝网除沫器主要用于气液分离。 6:塔器在进行设备的材料选择时,应考虑哪些问题?

分离乙醇水精馏塔设计(含经典实用工艺流程图和塔设备图)

分离乙醇-水的精馏塔设计 设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水; (2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容: 1、设计说明书的内容 1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算;

5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分 数,下同),其余为水;产品的乙醇含量不得低于90%;塔 顶易挥发组分回收率为99%,生产能力为50000吨/年90% 的乙醇产品;每年按330天计,每天24小时连续运行。塔顶 压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽 压力低压蒸汽(或自选)单板压降≤0.7kPa。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF==0.1740

精馏塔常识

1,液泛? 在精馏操作中,下层塔板上的液体涌至上层塔板,破坏了塔的正常操作,这种现象叫做液泛。 液泛形成的原因,主要是由于塔内上升蒸汽的速度过大,超过了最大允许速度所造成的。另外在精馏操作中,也常常遇到液体负荷太大,使溢流管内液面上升,以至上下塔板的液体连在一起,破坏了塔的正常操作的现象,这也是液泛的一种形式。以上两种现象都属于液泛,但引起的原因是不一样的。 2,雾沫夹带? 雾沫夹带是指气体自下层塔板带至上层塔板的液体雾滴。在传质过程中,大量雾沫夹带会使不应该上到塔顶的重组分带到产品中,从而降低产品的质量,同时会降低传质过程中的浓度差,只是塔板效率下降。对于给定的塔来说,最大允许的雾沫夹带量就限定了气体的上升速度。 影响雾沫夹带量的因素很多,诸如塔板间距、空塔速度、堰高、液流速度及物料的物理化学性质等。同时还必须指出:雾沫夹带量与捕集装置的结构也有很大的关系。虽然影响雾沫夹带量的因素很多,但最主要的影响因素是空塔速度和两块塔板之间的气液分离空间。对于固定的塔来说,雾沫夹带量主要随空塔速度的增大而增大。但是,如果增大塔板间的距离,扩大分离空间,则相应提高空塔速度。 3,液体泄漏? 俗称漏液,塔板上的液体从上升气体通道倒流入下层塔板的现象叫泄漏。在精馏操作中,如上升气体所具有的能量不足以穿过塔板上的液层,甚至低于液层所具有的位能,这时就会托不住液体而产生泄漏。 空塔速度越低,泄漏越严重。其结果是使一部分液体在塔板上没有和上升气体接触就流到下层塔板,不应留在液体中的低沸点组分没有蒸出去,致使塔板效率下降。因此,塔板的适宜操作的最低空塔速度是由液体泄漏量所限制的,正常操作中要求塔板的泄漏量不得大于塔板上液体量的10%。泄漏量的大小,亦是评价塔板性能的特性之一。筛板、浮阀塔板和舌形塔板在塔内上升气速度小的情况下比较容易产生泄漏。4,返混现象? 在有降液管的塔板上,液体横过塔板与气体呈错流状态,液体中易挥发组分的浓度降沿着流动的方向逐渐下降。但是当上升气体在塔板上是液体形成涡流时,浓度高的液体和浓度低的液体就混在一起,破坏了液体沿流动方向的浓度变化,这种现象较做返混现象。返混现象能导致分离效果的下降。 返混现象的发生,受到很多因素的影响,如停留时间、液体流动情况、流道的长度、塔板的水平度、水力梯度等。 5,最适宜的进料板位置确定 最适宜的进料板位置就是指在相同的理论板数和同样的操作条件下,具有最大分离能力的进料板位置或在同一操作条件下所需理论板数最少的进料板位置。 在化学工业中,多数精馏塔都设有两个以上的进料板,调节进料板的位置是以进料组分发生变化为依据的。当进料组分中的轻关键组分比正常操作较低时,应将进料板的位置向下移,以增加精馏段的板数,从而提高精馏段的分离能力。反之,进料板的位置向上移,则是为增加提馏段的板数,以提高提馏段的分离能力。总之,在进料板上进料组分中轻关键组分的含量应该小于精馏段最下一块塔板上的轻关键组分的含量,而大于提馏段最上一块塔板上的轻组分的含量。这样就使进料后不至于破坏塔内各层塔板上的物料组成,从而保持平稳操作。 6,精馏操作的影响因素 除了设备问题以外,精馏操作过程的影响因素主要有以下几个方面:塔的温度和压力(包括塔顶、塔釜和某些有特殊意义的塔板);进料状态;进料量;进料组成;进料温度;塔内上升蒸汽速度和蒸发釜的加热量;回流量;塔顶冷剂量;塔顶采出量和塔底采出量。塔的操作就是按照塔顶和塔底产品的组成要求来对这几个影响因素进行调节。 7,进料组成的变化对精馏操作的影响 进料组成的变化,直接影响精馏操作,当进料中重组分的浓度增加时,精馏段的负荷增加。对于固定了精馏段板数的塔来说,将造成重组份带到塔顶,使塔顶产品质量不合格。

精馏塔设计过程

化工原理课程设计任务书 苯-甲苯分离过程板式精馏塔设计1设计条件 原料含量(质量分数)处理能力(T/Y)馏出液中含量(质 量分数) 釜液中含量(质量 分数) 塔类型 0.36 65000 0.91 0.03 筛板 每年实际生产天数:330(一年中有一个月检修) 精馏塔塔顶压强:4Kpa 冷却水温度:30℃ 饱和水蒸汽压力:2.52 / k cm gf 2 设计任务 完成精馏塔工艺要求,精馏设备设计,有关附属设备的设计和选用,绘制大控制点工艺流程图,塔板结构简图,编制设计说明书 3 设计图要求 1、用1号图纸绘制装置图一张:一主视图,一俯视图,四个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。 2、用2号图纸绘制设备流程图一张。 3、用坐标值绘制溶液的y-x图一张,并用图解法求理论塔板数。

目录 1绪论 (4) 1.1 设计方案 (4) 1.2选塔依据 (5) 2 精馏塔的工艺设计 (5) 2.1 全塔工艺设计计算 (6) 2.1.1 进料组成的确定及物料衡算 (6) 2.1.2 平均相对挥发度的计算 (7) 2.1.3 最小回流比和适宜回流比的选定 (8) 2.1.4 精馏段和提馏段操作线方程 (8) 2.1.5 逐板法确定塔板数 (9) 2.1.6全塔效率 (10) 2.1.7 实际塔板数和实际加料位置 (11) 2.2 塔的工艺条件及物性数据计算 (11) 2.2.1 操作压强P (11) 2.2.2 操作温度T (12) 2.2.3 塔内各段气、液两相组分的平均分子量 (12) 2.2.4精馏段和提馏段各组分的密度 (13) 2.2.5 液体比热容 (14) 2.2.6 液体表面张力 (14) 2.2.7液体热导率................................................................. .. (15)

精馏工艺流程简述

2.3.1 精馏工序 2.3.1.1 脱气系统(回收乙炔) 合成粗醋酸乙烯(反应液:醋酸乙烯39.5%醋酸57.8%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)经预热器(E055301)粗分(T055303)塔气相预热后进入脱气塔(T055301)顶部,通过进料调节阀(LRC055301)控制塔液位,通过蒸汽调节阀(TRC055302)控制中温,使乙炔、部分高级炔烃、CO2从塔顶排出,并带了部分乙醛和醋酸乙烯,经脱气塔馏出冷凝器(E055302)12℃冷却水冷凝后液相回流至脱气塔顶部,气相从第一洗涤塔(T055310)底部进入,该塔用经过循环冷却水32℃冷却器(E055304)和从V055301来的回收液作为冷剂(E055305)冷却后的粗HAC35℃(T055303釜液)喷淋,以吸收脱气塔排出C2H2气(62%)中的乙醛(5.5%)和VAC(32.5%)。第一洗涤塔釜液流回脱气塔顶,第一洗涤塔(T055310)顶排出的C2H2气带有少量醋酸蒸汽(10%),进入第二洗涤塔(T055311),用二级脱盐水吸收醋酸,釜出至醋酸精制塔回收醋酸(18%),塔顶排出乙炔气(98%)水(1.6%)经第二洗涤塔气液分离器(Y055301)除液滴后进入乙炔气缓冲槽(V055318)经鼓风机(C055301)送乙炔净化处理。 2.3.1.2 粗馏系统(脱除乙醛) 脱气后的粗醋酸乙烯(醋酸乙烯39%醋酸59%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)由脱气塔釜液泵(P055302)通过流量调节(FRC055303)控制送到脱乙醛塔(T055302); 脱乙醛塔顶气相(72℃)经脱乙醛塔循环水分凝器(E055306)部分冷凝,冷凝液进入脱乙醛塔馏出槽(V05555302)与回收液槽(V055301)送来的回收液混合,由脱乙醛塔馏出泵(P055303)送出,通过流量控制(FRC05312)进行回流,通过(LRCA05332)调节分凝器冷却水量控制脱乙醛塔馏出槽(V055302)液位;分凝器(E055306)未凝气体72℃进入脱乙醛塔12℃冷却水全凝器(E055307)冷凝,冷凝液进

精馏塔设计图(参考)

∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料12345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

相关文档
最新文档