导数的概念、导数公式与应用

导数的概念、导数公式与应用
导数的概念、导数公式与应用

导数的概念及运算

知识点一:函数的平均变化率

(1)概念:函数中,如果自变量在处有增量,那么函数值y也相应的有增量△y=f(x0+△x)-f(x0),其比值叫做函数从到+△x的平均变化率,即。

若,,则平均变化率可表示为,称为函数从到的平均变化率。

注意:

①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值;

②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。

③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数

没有变化,应取更小考虑。

(2)平均变化率的几何意义

函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。

如图所示,函数的平均变化率的几何意义是:直线AB的斜率。

事实上,。

作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念:

1.导数的定义:

对函数,在点处给自变量x以增量,函数y相应有增量。若极限

存在,则此极限称为在点处的导数,记作或,此时也称在点

处可导。

即:(或)

注意:

①增量可以是正数,也可以是负数;

②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。

2.导函数:

如果函数在开区间的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间的导函数,简称导数。

注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在

附近的变化情况。

3.导数几何意义:

(1)曲线的切线

曲线上一点P(x0,y0)及其附近一点Q(x0+△x,y0+△y),经过点P、Q作曲线的割线PQ,其倾斜角为当点Q(x0+△x,y0+△y)沿曲线无限接近于点P(x0,y0),即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。

若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。

即:。

(2)导数的几何意义:

函数在点x0的导数是曲线上点()处的切线的斜率。

注意:

①若曲线在点处的导数不存在,但有切线,则切线与轴垂直。

②,切线与轴正向夹角为锐角;,切线与轴正向夹角为钝角;,切线与轴平行。

(3)曲线的切线方程

如果在点可导,则曲线在点()处的切线方程为:

4.瞬时速度:

物体运动的速度等于位移与时间的比,而非匀速直线运动中这个比值是变化的,如何了解非匀速直线运动中每一时刻的运动快慢程度,我们采用瞬时速度这一概念。

如果物体的运动规律满足s=s(t)(位移公式),那么物体在时刻t的瞬时速度v,就是物体t到t+△t这段时间,当△t→0时平均速度的极限,即。

如果把函数看作是物体的位移公式),导数表示运动物体在时刻的瞬时速度。

规律方法指导

1.如何求函数的平均变化率

求函数的平均变化率通常用“两步”法:

①作差:求出和

②作商:对所求得的差作商,即。

注意:

(1),式子中、的值可正、可负,但的值不能为零,的值可以为零。若函数为常数函数时,。

(2)在式子中,与是相对应的“增量”,即在时,。

(3)在式子中,当取定值,取不同的数值时,函数的平均变化率不同;当取定值,取不同的数值时,函数的平均变化率也不一样。

2.如何求函数在一点处的导数

(1)利用导数定义求函数在一点处的导数,通常用“三步法”。

①计算函数的增量:;

②求平均变化率:;

③取极限得导数:。

(2)利用基本初等函数的导数公式求初等函数的导数。

3.导数的几何意义

①设函数在点的导数是,则表示曲线在点()处的切线的斜率。

②设是位移关于时间的函数,则表示物体在时刻的瞬时速度;

③设是速度关于时间的函数,则表示物体在时刻的加速度;

4.利用导数的几何意义求曲线的切线方程的步骤

①求出在处的导数;

②利用直线方程的点斜式得切线方程为。

类型一:求函数的平均变化率

1、求在到之间的平均变化率,并求,时平均变化率的值.

思路点拨:求函数的平均变化率,要紧扣定义式进行操作.

举一反三:

【变式1】求函数y=5x2+6在区间[2,2+]的平均变化率。

【变式2】已知函数,分别计算在下列区间上的平均变化率:

(1)[1,3];

(2)[1,2];

(3)[1,1.1];

(4)[1,1.001].

【变式3】自由落体运动的运动方程为,计算t从3s到3.1s,3.01s,3.001s各段的平均速度(位移s的单位为m)。【变式4】过曲线上两点和作曲线的割线,求出当时割线的斜率.

类型二:利用定义求导数

2、用导数的定义,求函数在x=1处的导数。

举一反三:

【变式1】已知函数

(1)求函数在x=4处的导数.

(2)求曲线上一点处的切线方程。

【变式2】利用导数的定义求下列函数的导数:

(1);

(2);

(3);

(4)。

3、求曲线y=x3+2x在x=1处的切线方程.

思路点拨:从函数在一点处的导数定义可求得函数y=x3+2x在x=1处的导数值,再由导数的几何意义,得所求切线的斜率,将x=1代入函数可得切点坐标,从而建立切线方程.

举一反三:

【变式】在曲线y=x2上过哪一点的切线:

(1)平行于直线y=4x―5;

(2)垂直于直线2x―6y+5=0;

(3)与x轴成135°的倾斜角。

知识点三:常见基本函数的导数公式

(1)(C为常数),

(2)(n为有理数),

(3),

(4),

(5),

(6),

(7),

(8),

知识点四:函数四则运算求导法则

设,均可导

(1)和差的导数:

(2)积的导数:

(3)商的导数:()

知识点五:复合函数的求导法则

或即复合函数对自变量的导数,等于已知函数对中间变量

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项式函

《导数的概念及其计算》综合练习

导数的概念及其运算 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1、函数2 1()ln 2 f x x x =- ,则()f x 的导函数'()f x 的奇偶性是 ( ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 2、若0()2f x '=,则=--→k x f k x f k 2) ()(lim 000 ( ) A.0 B. 1 C. —1 D.2 3、若曲线4x y =的一条切线l 与直线084=-+y x 垂直,则l 的方程为( ) A.034=--y x B.034=-+y x C.034=+-y x D.034=++y x 4、曲线423+-=x x y 在点)3,1(处的切线的倾斜角为( ) A.?30 B.?45 C.?60 D.?120 5、设))(()(,),()(),()(,sin )(112010N n x f x f x f x f x f x f x x f n n ∈'='='==+ ,则 2010()f x =( ) A.x sin B. x sin - C.cos x - D.cos x 6、曲线)12ln(-=x y 上的点到直线032=+-y x 的最短距离是( ) A.5 B.52 C.53 D.0 7、已知函数2log ,0, ()2,0.x x x f x x >?=?≤? 若'()1f a =,则a =( ) A.2log e 或22log (log )e B.ln 2 C.2log e D.2或22log (log )e 8、下列结论不正确的是( ) A.若3y =,则0y '= B.若3y x =,则1|3x y ='=

泰勒公式与导数的应用

泰勒公式与导数的应用

巩固练习 ★1.按)1(-x 的幂展开多项式43)(24++=x x x f 。 知识点:泰勒公式。 思路:直接展开法。求)(x f 按)(0x x -的幂展开的n 阶泰勒公式,则依次求)(x f 直到1+n 阶的导 数在0x x =处的值,然后带代入公式即可。 解:3()46f x x x '=+,(1)10f '=;2 ()126f x x ''=+,f (1)18''=; ()24f x x '''=,(1)24f '''=;24)()4(=x f ;24)1()4(=f ;0)()5(=x f ; 将以上结果代入泰勒公式,得 (4)23 4 (1)(1)(1)(1)()(1)(1)(1)(1)(1)1!2!3!4!f f f f f x f x x x x ''''''=+-+-+-+-432)1()1(4)1(9)1(108-+-+-+-+=x x x x 。 ★★2.求函数 x x f =)(按)4(-x 的幂展开的带有拉格朗日型余项的三阶泰勒公式。 知识点:泰勒公式。 思路:同1。 解 :()f x '= , 1(4)4f '=;321()4f x x -''=-,1 (4)32 f ''=-; 52 3()8f x x -'''=,3(4)256 f '''=;27 41615)(--=x x f )(;将以上结果代入泰勒公式,得 (4)23 4(4)(4)(4)()()(4)(4)(4)(4)(4)1!2!3!4!f f f f ξf x f x x x x ''''''=+-+-+-+- 42 7 32)4(1285)4(512 1 )4(641)4(412-- -+---+=x ξ x x x ,(ξ介于x 与4之间)。 ★★★3.把 2 2 11)(x x x x x f +-++= 在0=x 点展开到含4x 项,并求)0() 3(f 。 知识点:麦克劳林公式。 思路:间接展开法。)(x f 为有理分式时通常利用已知的结论 )(111 2n n x o x x x x +++++=-Λ。

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

(完整word版)导数的概念、导数公式与应用

导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y也相应的有增量△ y=f(x 0+△x)-f(x ),其比值叫做函数从到+△x的平均变化率,即。 若,,则平均变化率可表示为,称为函数从 到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线AB的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x以增量,函数y相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在 处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x 0,y )及其附近一点Q(x +△x,y +△y),经过点P、Q作曲线的割线PQ, 其倾斜角为当点Q(x 0+△x,y +△y)沿曲线无限接近于点P(x ,y ), 即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。 若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。 即:。

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数的概念及运算专题训练

导数的概念及运算专题训练 基础巩固组 1.已知函数f(x)=+1,则--的值为() A.- B. C. D.0 2.若f(x)=2xf'(1)+x2,则f'(0)等于() A.2 B.0 C.-2 D.-4 3.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0 4.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为() A.1 B. C. D. 5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为() A.y=3x+1 B.y=-3x C.y=-3x+1 D.y=3x-3 6.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图象可以为() 7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是() A.4 s末 B.8 s末 C.0 s末与8 s末 D.4 s末与8 s末 8.函数y=f(x)的图象在点M(2,f(2))处的切线方程是y=2x-8,则=. 9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为. 10.已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=. 11.函数f(x)=x e x的图象在点(1,f(1))处的切线方程是. 12.若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是. 综合提升组 13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0 14.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(- 1)=() A. B.- C. D.-或 15.直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

导数的概念、几何意义及其运算

导数的概念、几何意义及其运算 常见基本初等函数的导数公式和常用导数运算公式 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1 )(log ;1)(ln ''== 法则1: )()()]()([' ''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾: 1.导数的定义:函数)(x f y =在0x 处的瞬时变化率 x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈, 都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/ y ,即)(/ x f =/ y = x x f x x f x ?-?+→?) ()(lim 0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 /x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y == )(0/x f 。 2. 由导数的定义求函数)(x f y =的导数的一般方法是: (1).求函数的改变量 )()(f x f x x f -?+=?; (2).求平均变化率 x x f x x f x ?-?+= ??)()(f ; (3).取极限,得导数/ y =x x ??→?f lim 0。 3.导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率。 基础练习: 1.曲线324y x x =-+在点(13), 处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° 2.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B . 1 2 C .1 2 - D .1 -

泰勒公式及其应用

泰勒公式及其应用 [摘 要] 文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问题, 即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值. [关键词] 泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式. 1 引言 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识 定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有 '''200000()() ()()()()1!2! f x f x f x f x x x x x =+-+-+ ()000() ()(())! n n n f x x x o x x n +-+- (1) 这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式. 当0x =0时,(1)式变成)(! )0(!2)0(!1)0()0()()(2'''n n n x o x n f x f x f f x f +++++= ,称此式 为(带有佩亚诺余项的)麦克劳林公式.

定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则 ''()' 2 0000000()()()()()()()...()()2!! n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ , (2)这里 ()n R x 为拉格朗日余项(1)10() ()()(1)! n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒 公式. 当0x =0时,(2)式变成''()' 2(0)(0)()(0)(0)...()2!! n n n f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式: 12)! 1(!!21+++++++=n x n x x n e n x x x e θ . )()! 12()1(!5!3sin 221 253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)! n n n x x x x x o x n =-+-++-+ . )(1 )1(32)1ln(11 32++++-+-+-=+n n n x o n x x x x x . )(111 2n n x o x x x x +++++=- +-+ +=+2 ! 2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得

泰勒公式及其应用(数学考研)

第2章 预备知识 前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的. 给定一个函数)(x f 在点0x 处可微,则有: )()()()(000x x x f x f x x f ?+?'+=?+ο 这样当1<

泰勒公式及其应用

泰勒公式的应用 内容摘要:泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面有重要的应用。本文着重对极限计算、敛散性的判断、中值问题以及等式与不等式的证明这四个方面进行论述。 关键词:泰勒公式皮亚诺余项级数拉格朗日余项未定式

目录 内容摘要 0 关键词 0 1.引言 (2) 2.泰勒公式 (2) 2.1具有拉格朗日余项的泰勒公式 (2) 2.2带有皮亚诺型余项的泰勒公式 (2) 2.3带有积分型余项的泰勒公式 (2) 2.4带有柯西型余项的泰勒公式 (3) 3.泰勒公式的应用 (3) 3.1利用泰勒公式求未定式的极限 (3) 3.2利用泰勒公式判断敛散性 (6) 3.3 利用泰勒公式证明中值问题 (11) 3.4 利用泰勒公式证明不等式和等式 (13) 4. 结束语 (19) 参考文献 (20)

1.引言 泰勒公式是数学分析中一个非常重要的内容,微分学理论中最一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。我们可以使用泰勒公式, 来很好的解决某些问题, 如求某些极限, 确定无穷小的阶, 证明等式和不等式,判断收敛性,判断函数的凹凸性以及解决中值问题等。本文着重论述泰勒公式在极限,敛散性判断,中值问题以及等式与不等式的证明这四个方面的具体应用方法。 2.泰勒公式 2.1具有拉格朗日余项的泰勒公式 如果函数()x f 在点0x 的某邻域内具有n+1阶导数,则对该邻域内异于0x 的任意点x,在0x 和x 之间至少?一个ξ使得: 当0x =0时,上式称为麦克劳林公式。 2.2带有皮亚诺型余项的泰勒公式 如果函数()x f 在点0x 的某邻域内具有n 阶导数,则对此邻域内的点x 有: 2.3带有积分型余项的泰勒公式

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算 考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y =c ,y =x ,y =x 2,y =x 3,y =1 x ,y =x 的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax +b ))的导数;6.会使用导数公式表. 知 识 梳 理 1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ?→ f (x 0+Δx )-f (x 0)Δx =0lim x ?→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ?→Δy Δx = lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 称为函数y =f (x )在开区间内的导 函数. 3.导数公式表 基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0

完整版导数的概念与计算练习题带答案

导数概念与计算 4 2 若函数f(x) ax bx c ,满足f '⑴ 2,贝y f'( 1)( 已知点P 在曲线f(x) x 4 x 上,曲线在点P 处的切线平行于直线 3x y 0,则点P 的 坐标为( ) A . (0,0) B . (1,1) C . (0,1) D . (1,0) 已知f(x) xln x ,若 f '(X 。) 2,则 X 。 ( ) 2 In 2 D . In2 A . e B . e C . 2 曲线y e r 在点 A(0,1)处的切线斜率为( ) A . 1 B . 2 C . e 1 D .- e 设 f °(x) sin x , f'x) f o '(x) , f 2(x) f 1 '(x) ,…,f n 1(x) f n '(x) , n N ,则 f 2013(X ) 等于( ) A . si n x B . si nx C . cosx D . cosx 已知函数 f (x) 的 勺导函数为f '(x),且满足 f(x :)2xf '(1) Inx ,则 f'(1)( ) A . e B . 1 C . 1 D . e 曲线y Inx 在与x 轴交点的切线方程为 _____________________ 过原点作曲线y e x 的切线,则切点的坐标为 _____________ ,切线的斜率为 求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (3) f (x) x ^ax 2 ln(1 x) 2 (5)y xe 1 cosx 1. 2. 3. 4. 5. 6. 7. & 9. B . 2 C . 2 D . 0 (1) f (x) ax 1 2ln x x (2) f(x) x e 2 1 ax (4) y xcosx sin x (6) y

浅谈泰勒公式及其应用

论文提要 泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具,它的用途很广泛,本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值。

浅谈泰勒公式及其应用 摘 要: 本文介绍了泰勒公式及几个常见函数的展开式,针对泰勒公式的应用讨论了八个问题.即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值. 关键词:泰勒公式 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 1 预备知识 定义 1.1 若函数f 在点0x 存在直至n 阶导数,则有()()()n n f x T x T x ==+ ()0n o x x +,即 ()()()()()()()()()().! !20002 00000n n n x x o x x n x f x x x f x x x f x f x f -+-+?+-''+ -'+=为⑴式. ⑴式称为函数f 在点0x 处的泰勒公式,()()()x T x f x R n n -=称为泰勒公式的余项,形如()n x x o 0-的余项称为佩亚诺型余项.所以⑴式又称为带有佩亚诺余项的泰勒公 式. 当00=x 时,得到泰勒公式: ()()()()()()() n n x o n f x f x f f x f ++?+''+'+=! 0!20002. 它也称为(带有佩亚诺余项的)麦克劳林公式. 定义1.2 若函数f 在[]b a ,上存在直至n 阶的连续导函数,在()b a ,内存在()1+n 阶导函数,则对任意给定的x ,[]b a x ,0∈,至少存在一点()b a ,∈ξ,使得

相关文档
最新文档