CATIA逆向工程建模实例

CATIA逆向工程建模实例
CATIA逆向工程建模实例

第1章 CATIA逆向工程建模实例

1.1概述

CA TIA是法国达索公司的产品开发旗舰解决方案,它可以帮助制造厂商设计他们未来的产品,并支持从项目前阶段、具体的设计、分析、模拟、组装到维护在内的全部工业设计流程。逆向工程建模所使用的只是其中的几个模块,不管是对曲面还是实体,其表现都非常出色。

1.2主要逆向模块功能简介

1.2.1 DSE(Digitized Shape Editor数字编辑器模块)模块

根据输入的点云数据,进行采样、编辑、裁剪以达到最接近产品外形的要求,可生成高质量的三角网格曲面。

1.2.2 QSR(Quick Surface Reconstruction快速曲面重构)模块

根据输入的点云数据或者mesh以后的小三角片体,提供各种方式生成曲线,以供曲面造型,完全非参。

1.2.3 GSD(Generative Shape Design 通用曲面造型)模块

非常完整的曲线操作工具和最基础的曲面构造工具,除了可以完成所有曲线操作以外,可以完成拉伸、旋转、扫描、边界填补、桥接、修补碎片、拼接、凸点、裁剪、光顺、投影和高级投影,以及倒角等功能,连续性最高达到G2,生成封闭片体V olume,完全达到普通三维CAD软件曲面造型功能,比如Pro/E。

1.3应用实例

结合逆向工程原理以及CA TIA V5软件,我们给出了两个应用实例,分别说明曲面以及实体的逆向过程。其中,以某零件的模具面作为曲面造型模型,以某工业风扇作为实体造型模型,以上两个模型在工程中均比较常见,具有一定的代表性,其逆向过程包含了大部分的逆向手段和方法,具有一定的参考价值。

1.3.1曲面造型实例

在进行曲面逆向之前,我们需要制定一定的策略对其进行逆向,根据模型自己的特点,我们将其分为以下六个部分(如图1.1所示):顶面、顶槽、凸台、侧面、凹槽和底座。其中,顶面由一张自由曲面构成,顶槽由拉伸面和平面构成,凸台由锥面和平面组成,侧面由

一张拉伸面构成,底座有六张平面构成。下面我们按照这样的分块详细叙述该模型的逆向过程。 底座凸台凹槽顶槽侧面

顶面

图 1.1

(1)导入点云 单击按钮,出现图1.2所示对话框,选择模具点云文件的存储路径,参数设置默认,然后单击【应用】即可,点云模型如图1.3所示。

1.2

图1.3

(2)点云预处理

①单击按钮,出现图1.3所示对话框,设置如图,选择明显的噪声点并将其删除。

②单击按钮,出现图1.4所示对话框,设置默认,选择点云,系统会自动找出孔洞处,单击【应用】按钮即可修补点云孔洞。

图1.3 图1.4

(3)曲面重构

底座

①单击按钮,选择底平面点云,通过旋转视角,仔细去掉可能的噪声点,结果如

图1.5所示;单击按钮,出现图1.6所示对话框,设置如图,选择图1.4所示点云,通过图1.7所示四个箭头将平面拉伸至合适大小(将鼠标放置圆周上可旋转箭头方向),单击【应用】按钮即可构造需的低平面;按照同样的方法构造底座的剩下三张平面,结果如图1.8所示。

图1.5 图1.6

图1.7

侧面

①点击按钮,出现图1.9所示对话框,按照图示模式构建平面,选择低平面的法向

直线PlaneNormal.1和其端点,如图1.10所示,单击【确定】按钮即可,将此面作为基准平

面。

图1.9 图1.10

②单击按钮,出现图1.11所示对话框,设置如图,选择点云,以基准平面为截面,如图1.12所示,拖动图示箭头,使截面线在合适的位置,单击【应用】按钮即可。

图 1.11

图 1.12

③单击按钮,出现图1.13所示对话框,选择上一步生成的截面线(点云,非曲线),设置默认,单击【应用】按钮,生成如图1.14所示曲线。

④单击按钮,出现图1.15所示对话框,以生成的曲线为轮廓,基准平面法向为参考法向,通过拉伸图1.16所示的箭头设置拉伸面的尺寸(也可由限制1、2输入),待到合适的位置时,单击【确定】按钮。

图1.13 图1.14

图 1.15 图1.16

顶面

①单击按钮,选取顶面点云,如图1.17所示;单击按钮,选择所圈部分点云,设置如图1.18,拟合曲面如图1.19所示。

图1.17 图1.18

②单击按钮,出现图1.20所示对话框,第一项选择上一步的拟合曲面任一边界,第二项选择拟合曲面,选择曲率连续,拉伸图1.21所示箭头至合适位置。按照相同的方法,延伸拟合面的其他三条边界,结果如图1.22所示。

图1.19 图1.20

图1.21 图1.22

凹槽

①单击按钮,圈选其中一个凹槽;单击按钮,以基准平面为截面与所选点云求交;单击按钮,删除多余的截面线点云,结果如图1.23所示;单击按钮,将截面线点云转化为曲线,如图1.24所示

图 1.23 图1.24

②单击按钮,将所得曲线沿基准平面拉伸,如图1.25所示;单击按钮,将拉伸面的沿两侧进行延伸,如图1.26所示;单击按钮,圈选该凹槽的槽底点云,并将其拟合成一平面。

图1.25 图1.26

③单击按钮,圈选两处凹槽的底面点云;单击按钮,将底面拟合成平面,如图1.27所示。

图1.27

顶槽

①单击按钮,圈选顶部凹槽点云;单击按钮,以基准平面为截面与所选点云求交,结果如图1.28所示;单击按钮,以“坐标”方式在截面线上生成三个点,如图1.29

所示;单击按钮,以“三点”方式构建一个整圆;单击按钮,以“圆/球面/椭圆中心”方式构建圆心点,如图1.30所示;单击按钮,以圆心点位中心点,圆的半径为半径,基准平面方向为方向构建圆柱面,如图1.30所示。

图1.28 图 1.29

图 1.30

②单击按钮,圈选凹槽底面点云;单击按钮,将底面拟合成平面;按照同样的操作拟合凹槽顶面为一平面。

凸台

①单击按钮,圈选任意一个凸台的点云;单击按钮,将其拟合为圆锥面,结果如图1.31所示;单击按钮,将该锥面两端拉伸至适当位置,如图1.32所示(注意:四个凸台并非中心对称,需要对拟合凸台的相邻凸台拟合一次);单击按钮,圈选四个凸台的顶面点云;单击按钮,将其拟合为一平面。

图1.31 图1.32

②单击按钮,选择裁减后的凸台为“对象”,圆柱面为“参考元素”,设置见图1.33,结果如图1.34(需要对两个凸台分别进行该操作);按照同样的方法将对称的凹槽进行阵列,如图1.34所示。

图 1.33

图 1.34

(3)曲面裁减

此时所有曲面片均已构造完毕,单击按钮,出现图1.35所示对话框,按照次序将所有进行裁剪,其中即将裁减掉的曲面有一定的透明度,通过【另一侧/下一元素】按钮选择裁减部分,最终结果如图1.36所示;单击按钮,出现图1.37所示对话框,选择需要倒角的某条边或某张张均可,最终的结果如图1.38所示。

图 1.35

图 1.36

图 1.37

图 1.38

1.3.2实体造型实例

与上面的曲面造型类似,我们需要对风扇模型的结构以及曲面特征进行分析,如图1.39所示。可以发现,该某型为一装配体,主要包括三部分:电机、风扇以及进气罩,如图1.40所示。其中,电机包括底座、芯轴和电机罩(如图1.41所示)。在扫描点云时,零件之间彼此独立,没有确定的基准可供参考,若采取上一实例的方法逐个进行逆向操作,其最终的零件会无法装配,因此在逆向的过程中需要充分地考虑各零件之间的装配关系和尺寸。该模型的逆向过程,即包含逆向造型过程,也包含一定的正向设计过程,这在工程实践中非常常见。

电机

进气罩

图1.39 图1.40

电机罩

底座芯轴

图1.41

(1)进气罩

①单击按钮,导入进气罩点云,如图1.42所示;单击按钮,圈选进气罩顶部的平面区域点云;单击按钮,将其拟合成一张平面。

图 1.42

②单击按钮,以上一步生成的平面与进气罩点云求交,结果如图1.43所示;单击

按钮,以“坐标”方式在截面线上生成三个点;单击按钮,以“三点”方式构建一个整圆;单击按钮,以“圆/球面/椭圆中心”方式构建圆心点,如图1.44所示。

图 1.43 图1.44

③单击按钮,出现如图1.45所示对话框,设置如图,选择圆心点以及拟合的平面方向为参数,构建轴线,如图1.46所示。

图1.45 图1.46

④单击按钮,选择轴线和圆周上任意一点,以“通过点和直线”的方式构建平面;单击按钮,将构建好的平面与进气罩点云求交;单击按钮,对截面线点云进行裁剪;单击并对其进行裁剪;单击按钮,将裁剪后截面线点云拟合为曲线,结果如图1.47所示;单击按钮,选择刚刚拟合的曲线为“轮廓”,轴线为“旋转轴”,构建如图1.48所示的回转曲面。

图1.47 图1.48

⑤进入机械设计-零件设计模块,单击按钮,对拟合的曲面进行加厚(厚度已知,为1mm),其中黄色箭头指示曲面加厚的方向,结果如图1.49所示。

图 1.49

(2)风扇

显然,我们可以将风扇分成上、中、下三个部分进行构造,如图1.50所示。中部的叶片可以通过上部和下部的曲面裁减获得,待一个叶片完成后,其他叶片可由其阵列获得。由于风扇下部的底面存在一张较大的局部平面,因此我们可以从下部开始。

上部

中部

下部

图 1.50

待下部的平面构建完成后,我们可以采用与进气罩类似的方法构建下部以及上部曲面,如图1.51所示。

图1.51

下面我们主要讲述风扇中部叶片的构建方法:

①单击按钮,圈选出一个叶片的点云;单击按钮,将其拟合成一张曲面,并沿四个边界向外延伸,如图1.52所示。点击按钮,在叶片曲面上画出叶片的边界,最后由风扇的上、下部分曲面以及勾勒的曲线裁减叶片曲面。单击按钮,对所有曲面加厚,即可得到如图1.50所示的风扇实体模型。

延伸后的叶片曲面

勾勒出的边界

图1.52

(3)电机

由于电机形状相对比较简单,主要由一些回转曲面和平面构成,为保证最后的装配关系,其部分尺寸有图纸直接给出,拟合的实体模型如图1.41所示。

1.3小结

逆向建模是一件比较繁琐的工作,它需要你反复的去选取、处理点云,从而构造曲面,而且点云的选取以及采用何种方法构建曲面,对结果的影响都很大。对于有着丰富产品造型设计经验的工程师而言,其往往可以构造出品质更为出色的曲面,因为他能更好的通过对点云的观察去揣测原设计者的设计手法。因此,对于初学者而言,掌握基本的CAGD知识是非常重要的,只有这样你才可能更好、更快的掌握软件的使用,设计出更加符合原设计者意图的模型,也可以在此基础上设计自己的产品。

逆向工程三维建模关键技术

逆向工程与快速原型技术 (综合技能训练及评价) 题 目 逆向工程三维建模关键技术 综合创新训练 姓 名 ******* 学 号 *********** 专业班级 机制**** 授课教师 ****** 分 院 机电与能源工程分院 完成日期 **** 年 **月 *日 宁波理工学院

绪论 (3) 0.1什么是逆向工程 (3) 1.2逆向工程的基本操作步骤 (3) 第一章点云摆正综合练习 (4) 1.1目的和意义 (4) 1.2 点云数据摆正的原理及实现流程 (4) 1.3 点云数据摆正综合练习及具体实现步骤 (4) 第二章逆向建模特征线构建技术 (15) 2.1 目的和意义 (15) 2.2 曲面对齐与拼接的原理及实现流程 (15) 2.3曲面对齐与拼接综合练习及具体实现步骤 (15) 3.1 目的和意义 (32) 3.2 曲线构建的原理及实现流程 (32) 3.3 曲线构建及具体实现步骤 (32) 4.1 目的和意义 (36) 4.2 曲面重构的原理及实现流程 (36) 4.3点云拼接综合练习及具体实现步骤 (36) 第五章:点云数据修补综合练习 (41) 5.1 目的和意义 (41) 5.2 曲面重构的原理及实现流程 (41) 5.3点云拼接综合练习及具体实现步骤 (41) 第六章总结与反思 (49)

绪论 0.1什么是逆向工程 逆向工程技术与传统的产品正向设计方法不同,逆向工程是对已有的产品零件或原型进行CAD模型重建,即对已有的零件或实物原型,利用三维数字化测量设备准确的、快速的测量出实物表面的三维坐标点,并根据这些坐标点通过三维几何建模方法重建实物CAD模型的过程,它属于产品导向(product oriented)。逆向工程不是简单的再现产品原型,而是技术消化、吸收,进一步改进、提高产品原型的重要技术手段;是产品快速创新开发的重要途径。通过逆向工程掌握产品的设计思想属于功能向导。 1.2逆向工程的基本操作步骤

模型的逆向工程实体建模技术

基于STL模型的逆向工程实体建模技术 内容摘要:摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,实现产品数据在不同系统之间顺畅传递。模型重建1逆向工程CAD技术与STL模型逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。 摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,

实现产品数据在不同系统之间顺畅传递。 关键词:STL;逆向工程;实体建模;模型重建 1 逆向工程CAD技术与STL模型 逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。由于测量方式的不同,数字化测量设备可以分为接触式和非接触式。随着测量技术的发展,不论何种测量方式,产生的测量数据都是非常多的,尤其是非接触式的激光测量,可以产生几十万甚至上百万测量点的测量数据。我们将这种数据称为“点云”数据。一般来说,数字化测量设备都带有数据处理软件。这个软件的主要功能是对测量设备输出的数据进行初步处理,如去除明显噪声点、多块数据拼合、数据格式转换等。一般的测量设备除了按照自定义格式输出数据外,都提供IGES 格式的数据输出。随着软件功能的加强,目前很多测量设备可以在输出测量数据的同时输出三角网格数据(即经过三角化以后的数据)或者STL格式数据。但是这些STL格式数据一般没有经过测试(如不保证封闭性,可能存在裂隙等),不能直接用于逆向工程建模或RP制造。由测量设备输出的STL数据必须经过修补、纠错处理,才能用来进行逆向工程CAD建模。因此,逆向工程中重要的一个环节就是数据的预处理。

浅谈逆向工程技术

浅谈逆向工程技术 逆向工程(又称反向工程),是一种技术过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能性能规格等设计要素,以制作出功能相近,但又不完全一样的产品。逆向工程源于商业及军事领域中的硬件分析。其主要目的是,在不能轻易获得必要的生产信息下,直接从成品的分析,推导出产品的设计原理。 逆向工程可能会被误认为是对知识产权的严重侵害,但是在实际应用上,反而可能会保护知识产权所有者。例如在集成电路领域,如果怀疑某公司侵犯知识产权,可以用逆向工程技术来寻找证据。 需要逆向工程的原因如下: 1.接口设计。由于互操作性,逆向工程被用来找出系统之间的协作协议。 2.军事或商业机密。窃取敌人或竞争对手的最新研究或产品原型。 3.改善文档。当原有的文档有不充分处,又当系统被更新而原设计人员不在时,逆向工程被 4.用来获取所需数据,以补充说明或了解系统的最新状态。 5.软件升级或更新。出于功能、合规、安全等需求更改,逆向工程被用来了解现有或遗留软件系统,以评估更新或移植系统所需的工作。 6.制造没有许可/未授权的副本。 7.学术/学习目的。 8.去除复制保护和伪装的登录权限。 9文件丢失:采取逆向工程的情况往往是在某一个特殊设备的文件已经丢失了(或者根本就没有),同时又找不到工程的负责人。完整的系统时常需要基于陈旧的系统上进行再设计,这就意味着想要集成原有的功能进行项目的唯一方法便是采用逆向工程的方法分析已有的碎片进行再设计。 10.产品分析:用于调查产品的运作方式,部件构成,估计预算,识别潜在的侵权行为。 逆向工程能在拥有现有物理部件之上,利用激光扫描仪、结构光源转换仪或X射线断层成像之类3D扫描仪技术进行尺寸测量,再通过CAD、CAM、CAE或其他软件构筑3D 虚拟模型的方法。逆向工程经常被用于军事上,在二战和冷战中经常被用到。 1980年开始,欧美国家许多学校及工业界开始注意逆向工程领域。1990年初期,各国学术界团队大量投入逆向工程的研究并发表成果。逆向软件的演进约略可区分为三个阶段:2000年前,在逆向工程上,只能运用CATIA等CAD/CAM高阶曲面系统。市场后来发展出两套主流产品约在2003年前技术成熟,广为业界引用。到2007年后,发展出不同以往的逆向工程数学逻辑运算,速度快。1998年,NEWPOWER启动了逆向工程的一些项目,要求是把客户的现有源代码转变成设计,如果需要的话,进一步转化成产品需求规约。这恰恰与类似于V模型的标准开发过程模型相逆。这样一来,客户就可以容易地维护他们的产品(需求,设计,源代码等等),而不需要想以前那样,每次改动产品都需要直接修改源代码。截止2011年,逆向工程的应用已从单纯的技巧性手工操作,发展到采用先进的计算机及测量设备,进行设计、分析、制造等活动,如获取修模后的模具形状、分析实物模型、基于现有产品的创新设计、快速仿形制造等。 逆向工程被广泛地应用到新产品开发和产品改型设计、产品仿制、质量分析检测等领域,它的特点是: 1、缩短产品的设计、开发周期,加快产品的更新换代速度; 2、降低企业开发新产品的成本与风险; 3、加快产品的造型和系列化的设计; 4、适合单件、小批量的零件制造,特别是模具的制造,可分为直接制模与间接制模法。

ProE逆向工程应用实例

Pro/E逆向工程应用实例析:正向造型法 [摘要]:总有不少人,认为逆向一定要完全忠实于点云,所有点或线或面都完全根据点云 生成,其实对于一般的消费电子或通常的产品,逆向造型更多的是采用正向的方法。点云是提 供一个数据来源的参考而已。 密集点云在WildFire中的处理 1. 正向造型法对大多CAD软件来说,逆向造型和正向造型并没有本质的区别,唯一的不同是数据来源不同。所以对于一些特定类型的造型,可以考虑用正向造型的方法来实现的。如下图的点云(已转成stl),是nokia858手机的上壳,相对来说形状是比较规则的,并且主要的几个面构成也是比较直观的,所以适合用正向造型的方法来进行。 首先,我们在开始造型之前,应该进行仔细的分析,想像出各个面的主要构成方法以及过渡的可能方式,这样我们才能做到有的放矢。首先整体形状是有一个围侧面(1)和顶面(7)以及一个类圆角面(2)构成,对于侧面(1),在造形之前我们可以猜测它是扫出的或是混成的。对于类似这样顶面(7),我一般强烈倾向于扫出面,对于(2),一般用圆角搞定没问题(注意必要的时候切换成conic类型的圆角以更拟合实际情况)。 然后看局部和过度,(3)的面初步猜测应该是顶面offset一定的距离生成,至于是否有呆后面的验证。(5)面仔细观查会发现和顶面并非一个面,所以需要另一个扫出面来拟合。(6)面比较难点,是个典型的过度,从顶部的级差过度到侧面的消失,在目前来看可能的做法是作消失面,或者倒圆角(是否觉得不可思议?这里的判断需要建立在想像和经验上)。后面你会看到这个看似复杂的过度居然真的就可以用圆角搞定。(4)面什么难度,两个轨迹的可变扫出就可以轻松搞定。下面我们就开始动手了。不管形状如何,我想分型轮廓线应该是我们的工作的第一步。所以我们先作分型面,对于这个实体来说,分型面比较简单就是一个圆弧拉伸面 然后用投影到分型面的方法来创建分型轮廓线,注意在草绘的时候利用已有的点云作参考。。。目测就行啦。 接着创建分中的脊线。注意这时候应该刻意把类圆角面部分去掉,也就是草绘成尖角的,这样可以最后再作类圆角面以简化构建工作。并且草绘最好由尽量少的简单元素构成,比如圆弧和spline通常是比较好的选择。注意两个侧面最好是类似的构成,在这里都是用一个圆弧构成。如下图所示 对于另一个方向的脊线,因为没有明显的对称性,创建的位置就有点考究了,通常建议在一些

UG逆向工程应用实例析-正向造型法

UG逆向工程应用实例析-正向造型法 本文通过一个电子产品的外壳点云的逆向造型实例讲解UG中点云处理方法和规则外形的逆向造型基本原则,了解UG在处理不同的数据源下的逆向造型方法。掌握基本的外形拆分方法和外形判断方法。 1. 正向造型法对大多CAD软件来说,逆向造型和正向造型并没有本质的区别,唯一的不同是数据来源不同。所以对于一些特定类型的造型,可以考虑用正向造型的方法来实现的。如下图的点云(已转成stl),是nokia858手机的上壳,相对来说形状是比较规则的,并且主要的几个面构成也是比较直观的,所以适合用正向造型的方法来进行。 首先,我们在开始造型之前,应该进行仔细的分析,想像出各个面的主要构成方法以及过渡的可能方式,这样我们才能做到有的放矢。首先整体形状是有一个围侧面(1)和顶面(7)以及一个类圆角面(2)构成,对于侧面(1),在造形之前我们可以猜测它是扫出的或是混成的。对于类似这样顶面(7),我一般强烈倾向于扫出面,对于(2),一般用圆角搞定没问题(注意必要的时候切换成conic类型的圆角以更拟合实际情况)。

然后看局部和过度,(3)的面初步猜测应该是顶面offset一定的距离生成,至于是否有呆后面的验证。(5)面仔细观查会发现和顶面并非一个面,所以需要另一个扫出面来拟合。(6)面比较难点,是个典型的过度,从顶部的级差过度到侧面的消失,在目前来看可能的做法是作消失面,或者倒圆角(是否觉得不可思议?这里的判断需要建立在想像和经验上)。后面你会看到这个看似复杂的过度居然真的就可以用圆角搞定。(4)面什么难度,两个轨迹的可变扫出就可以轻松搞定。下面我们就开始动手了。不管形状如何,我想分型轮廓线应该是我们的工作的第一步。所以我们先作分型面,对于这个实体来说,分型面比较简单就是一个圆弧拉伸面 然后用投影到分型面的方法来创建分型轮廓线,注意在草绘的时候利用已有的点云作参考。。。目测就行啦。

逆向工程技术及其发展现状

摘要 与CAD/CAM系统在我国几十年的应用时间相比,逆向工程技术为企业所接受只有十几年甚至几年的时间。时间虽短,但是逆向工程技术广阔的应用前景和对企业竞争力的巨大推动作用,已经引起了很多企业的关注。 逆向工程实现了从实际物体到几何建模的直接转换。逆向工程技术涉与计算机图形学、计算机图像处理、微分几何、概率统计等学科。本文介绍了逆向工程的基本概念,重点分析的逆向工程技术过程,阐述了现代制造业中逆向工程的的发展前景以与逆向工程技术的重要应用领域。本文对于我们正确认识逆向工程技术有一定的意义。 【关键词】逆向工程CAD/CAM solidworks surfacer 反向工程、建模

目录 1 逆向工程简介 (1) 1.1逆向工程介绍............................. 错误!未定义书签。 1.2 逆向工程的应用 (3) 2 逆向工程应用实例 (6) 3 逆向工程的其他应用领域 (7) 参考文献 (8)

1 逆向工程介绍 1. 逆向工程的概念 逆向工程(Reverse Engineering,RE)是对产品设计过程的一种描述。在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程:设计人员首先构思产品的外形、性能和大致的技术参数等,然后利用CAD技术建立产品的三维数字化模型,最终将这个模型转入制造流程,完成产品的整个设计制造周期。这样的产品设计过程我们可以称之为“正向设计”。逆向工程则是一个“从有到无”的过程。简单地说,逆向工程就是根据已经存在的产品模型,反向推出产品的设计数据(包括设计图纸或数字模型)的过程。 随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的迅猛发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要经过逆向工程技术的处理才能获得产品的数字模型,进而输送到CAM系统完成产品的制造。因此,逆向工程技术可以认为是“将产品样件转化为CAD模型的相关数字化技术和几何模型重建技术”的总称。 逆向工程软件部分品牌包括Surfacer(Imageware)、ICEM、CopyCAD、Rapid Form等。逆向软件的演进约略可区分为三个阶段。十一年前在逆向工程上,只能运用CATIA等CAD/CAM高阶曲面系统。市场后来发展出两套主流产品约在七、八年前技术成熟,广为业界引用。到最近四年来,发展

CATIA逆向工程建模实例

第1章 CATIA逆向工程建模实例 1.1概述 CATIA是法国达索公司的产品开发旗舰解决方案,它可以帮助制造厂商设计他们未来的产品,并支持从项目前阶段、具体的设计、分析、模拟、组装到维护在内的全部工业设计流程。逆向工程建模所使用的只是其中的几个模块,不管是对曲面还是实体,其表现都非常出色。 1.2主要逆向模块功能简介 1.2.1 DSE(Digitized Shape Editor数字编辑器模块)模块 根据输入的点云数据,进行采样、编辑、裁剪以达到最接近产品外形的要求,可生成高质量的三角网格曲面。 1.2.2 QSR(Quick Surface Reconstruction快速曲面重构)模块 根据输入的点云数据或者mesh以后的小三角片体,提供各种方式生成曲线,以供曲面造型,完全非参。 1.2.3 GSD(Generative Shape Design 通用曲面造型)模块 非常完整的曲线操作工具和最基础的曲面构造工具,除了可以完成所有曲线操作以外,可以完成拉伸、旋转、扫描、边界填补、桥接、修补碎片、拼接、凸点、裁剪、光顺、投影和高级投影,以及倒角等功能,连续性最高达到G2,生成封闭片体V olume,完全达到普通三维CAD软件曲面造型功能,比如Pro/E。 1.3应用实例 结合逆向工程原理以及CATIA V5软件,我们给出了两个应用实例,分别说明曲面以及实体的逆向过程。其中,以某零件的模具面作为曲面造型模型,以某工业风扇作为实体造型模型,以上两个模型在工程中均比较常见,具有一定的代表性,其逆向过程包含了大部分的逆向手段和方法,具有一定的参考价值。 1.3.1曲面造型实例 在进行曲面逆向之前,我们需要制定一定的策略对其进行逆向,根据模型自己的特点,我们将其分为以下六个部分(如图1.1所示):顶面、顶槽、凸台、侧面、凹槽和底座。其中,顶面由一张自由曲面构成,顶槽由拉伸面和平面构成,凸台由锥面和平面组成,侧面由

C++ 逆向工程生成UML模型图

逆向工程生成UML模型图 这一节主要介绍用户如何使用Rose的逆向工程生成UML模型,并用来进行C++代码的结构分析。 Rational Rose可以支持标准C++和Visual C++的模型到代码的转换以及逆向工程。下面将详细地说明这两种C++project的逆向工程的步骤和具体操作。 ANSI C++(标准C++)逆向工程(Reverse Engineer) 使用标准C++逆向工程,需要在组件图(component view)中创建一个组件(component),设置好需要进行转换的组件的信息,也就是该组件的语言、所包含的文件、文件所在的路径、文件后缀等等信息,然后Reverse Engineer就可以根据给定的信息将代码转换成类图了。 (一)右键点击组件视图(Component View),选择New->Component,创建一个新的组件 (二)将component的language属性设定为ANSI C++ a)选中创建的component,点击右键,选中Open Specification

b)在这个对话框中将该component的language设定为ANSI C++ (三)配置该ANSI C++component,设置好该component中包含的C++代码文件,并进行C++语言的详细设置 a)选中该component,点击右键,选择ANSI C++->Open ANSI C++Specification

b)把Source file root directory设定为你的C++源码文件所在的路径,Reverse engineering root package中输入转换后的工程的名称,默认为C++Reverse Engineered,Reverse engineer directories as packages选项将以文件夹的形式在Rose的Logical View中生成与源文件相同的文档结构。点击Add Files将需要转换的文件添加到Project Files中,视你的需要来做其它的设定,比如:头文件扩展名等等。 (四)将设置好的component转换成模型图 a)选中设置好的component,点击右键,选中ANSI C++->Reverse Engineer

汽车逆向设计全程解析与案例讲解

汽车逆向设计全程解析与案例讲解 众所周知,车身的开发它需要大量资金的积累、技术的积累、人才的积累。我国汽车业尚没有形成很强的研发能力,很多专家认为:过去多年我们走的开发思路,一是完全自主开发,一切从零开始,这种开发思路实践证明不成功,因为我们没有那么大规模支持,更没有那么多的技术、管理积累;二是图省事,简单"拿来主义",购买技术,这样技术永远掌在别人的手里,不可能形成自主开发能力。 逆向工程技术就是迅速解决提升我们汽车车身研发水平重要手段之一。我们提升汽车自主开发能力,赶上世界水平唯一的办法,必须采取站在巨人的肩膀上,要消化、吸收、改进、创新。国、曰本都曾经走这条路,他们不是简单的把别人的车拿来装配,而是真正地消化、吸收,通过消化、吸收学习,缩短与世界水平的差距,逐步培养起自己的自主开发能力,因此成为今天的汽车开发世界强国。 逆向工程技术正是消化、吸收先进技术重要方法之一,尤其在车身开发方面,逆向工程技术是送我们走上巨人肩膀的强大武器。我们福田公司车身开发人员正是利用这先进技术开展了欧曼重卡车身的研发,并取得了成功。 一、逆向设计的概念 逆向工程(ReverseEngineering-RE)是对产品设计过程的一种描述。 在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程,即设计人员首先在大脑中构思产品的外形、性能和大致的技术参数等,然后通过绘制

图纸建立产品的三维数字化模型,最终将这个模型转入到制造流程中,完成产品的整个设计制造周期。这样的产品设计过程我们称为“正向设计”过程。逆向工程产品设计可以认为是一个“从有到无”的过程。简单地说,逆向工程产品设计就是根据已经存在的产品模型,反向推出产品设计数据(包括设计图纸或数字模型)的过程。从这个意义上说,逆向工程在工业设计中的应用已经很久了。早期的船舶工业中常用的船体放样设计就是逆向工程的很好实例。随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的迅猛发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要利用逆向工程技术建立产品的三维模型,进而利用CAM系统完成产品的制造。因此,逆向工程技术可以认为是将产品样件转化为三维模型的相关数字化技术和几何建模技术的总称。逆向工程的实施过程是多领域、多学科的协同过程。 作为一种新产品开发以及消化、吸收先进技术的重要手段,逆向工程和快速原型技术可以胜任消化外来技术成果的要求。它们的出现改变了传统产品设计开发模式,大大缩短了产品开发的时间周期,提高产品研发的成功率。 当今,各个行业越来越注重产品的外观设计,以此来吸引顾客,最终在商业上取得成功。这点在消费产品的设计中体现的尤为突出。特别是手机、数码相机、汽车等行业。 二、顺、逆向工程在设计流程中的比较与分析

(新)基于STL模型的逆向工程实体建模技术_

基于STL模型的逆向工程实体建模技术内容摘要:摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,实现产品数据在不同系统之间顺畅传递。模型重建1逆向工程CAD技术与STL模型逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。 摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP 系统与通用CAD系统之间的快速集成,实现产品数据在不同系统之间顺畅传递。 关键词:STL;逆向工程;实体建模;模型重建 1逆向工程CAD技术与STL模型 逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。由于测量方式的不同,数字化测量设备可以分为接触式和非接触式。随着测量技术的发展,不论何种测量方式,产生的测量数据都是非常多的,尤其是非接触式的激光测量,可以产生几十万甚至上百万测量点的测量数据。我们将这种数据称为“点云”数据。一般来说,数字化测量设备都带有数据处理软件。 这个软件的主要功能是对测量设备输出的数据进行初步处理,如去除明显噪声点、多块数据拼合、数据格式转换等。一般的测量设备除了按照自定义格式输出数据外,都提供IGES格式的数据输出。随着软件功能的加强,目前很多测量设备可以在输出测量数据的同时输出三角网格数据(即经过三角化以后的数据)或者STL格式数据。但是这些STL格式数据一般没有经过测试(如不保证封闭

一个Java Web项目的逆向工程应用案例

一个Java Web项目的逆向工程应用案例 摘要对于绝大多数企业来说,现有的许多系统要想彻底更换或者对其做大的调整,在经济能力上是不可想象的。因此,通常采用再工程的方法以延长其寿命,逆向工程为形式之一。本文就以Java Web网站项目中“用户登录模块”为例剖析逆向工程。 关键词逆向工程;用户登录模块;UML 1 概述 逆向工程是以复原软件的描述和设计为目标的软件分析过程。程序本身经过逆向工程过程并无变化。软件源程序代码总是能得到的,用它作为逆向工程过程的输入推倒出设计,并且文档化,逆向软件工程的目的是使软件得以维护。 2 一个逆向工程应用的案例 以Java Web网站项目中“用户登录模块”为例剖析逆向工程,运行效果如图1所示,包结构图如图2所示: 其中,登录页面login.jsp、欢迎页面main.jsp、转向控制类LoginServlet.java、对应数据库中用户信息表的通用数据模型的实体类User.java、完成用户信息的数据访问类LoginDAO.java、数据库公共连接类DBConnection.java、阻止非法IP 访问的过滤器类IPFilter.java、进行编码转换的过滤器类EncodingFilter.java、版权控制的过滤器类CopyrightFilter.java、阻止未登录用户访问主页的过滤器类LoginFilter.java、此外配置文件web.xml负责相关配置工作。 1)MVC的设计模式。 在进行逆向工程之前,首先需明白MVC设计模式的基本概念,即Model View Controller,把一个应用的输入、处理、输出流程按照Model、View、Controller 的方式进行分离,这样一个应用被分为三层:模型层、视图层、控制层,如图3所示。 2)基于MVC模式及包图结构图,构建出“用户登录模块”的组件图及部署图(如图4及图5所示)。 3)观察运行效果,利用软件建模方法分析“用户登录模块”,重构用例模型。 使用如图6所示的用例图来描述其关系。另外使用UML进行系统建模,并非只是意味着画出UML用例图,用例文档说明是同样重要的,这里不一一详述了,同时根据用例文档画出其活动图如图7所示。

逆向工程三维建模关键技术

逆向工程与快速原型技术 (综合技能训练及评价) 题目逆向工程三维建模关键技术 综合创新训练 姓名 ******* 学号 *********** 专业班级机制**** 授课教师 ****** 分院机电与能源工程分院 完成日期 **** 年 **月 *日 宁波理工学院

绪论 (3) 0.1什么是逆向工程 (3) 1.2逆向工程的基本操作步骤 (3) 第一章点云摆正综合练习 (4) 1.1目的和意义 (4) 1.2 点云数据摆正的原理及实现流程 (4) 1.3 点云数据摆正综合练习及具体实现步骤 (4) 第二章逆向建模特征线构建技术 (15) 2.1 目的和意义 (15) 2.2 曲面对齐与拼接的原理及实现流程 (15) 2.3曲面对齐与拼接综合练习及具体实现步骤 (15) 3.1 目的和意义 (32) 3.2 曲线构建的原理及实现流程 (32) 3.3 曲线构建及具体实现步骤 (32) 4.1 目的和意义 (36) 4.2 曲面重构的原理及实现流程 (36) 4.3点云拼接综合练习及具体实现步骤 (36) 第五章:点云数据修补综合练习 (41) 5.1 目的和意义 (41) 5.2 曲面重构的原理及实现流程 (41) 5.3点云拼接综合练习及具体实现步骤 (41) 第六章总结与反思 (49)

绪论 0.1什么是逆向工程 逆向工程技术与传统的产品正向设计方法不同,逆向工程是对已有的产品零件或原型进行CAD模型重建,即对已有的零件或实物原型,利用三维数字化测量设备准确的、快速的测量出实物表面的三维坐标点,并根据这些坐标点通过三维几何建模方法重建实物CAD模型的过程,它属于产品导向(product oriented)。逆向工程不是简单的再现产品原型,而是技术消化、吸收,进一步改进、提高产品原型的重要技术手段;是产品快速创新开发的重要途径。通过逆向工程掌握产品的设计思想属于功能向导。 1.2逆向工程的基本操作步骤

反求工程技术介绍及其应用举例复习课程

反求工程技术介绍及其应用举例

反求工程技术介绍及其应用举例 1.反求工程的概念 反求工程(逆向工程)是利用对实物测量的数据重新构造实物的计算机模型,然后利用CAD/CAE/CAM等计算机辅助技术进行分析、再设计、数控编程等操作,而后进行加工。反求工程现己发展为CAD/CAM中一个相对独立的范畴。通过实物模型产生CAD模型,可以使产品设计充分利用CAD技术的优势,并适应智能化、集成化的产品设计制造过程中的信息交换。实施反求工程可以充分发挥先进的测量设备的优越性,使其既可以作为CAD/CAM系统所需要的三维输入装置,又可以作为CAD/CAM系统处理后的误差检测评估装置,从而提高工业产品的设计,制造自动化程度,缩短产品的试制开发周期,降低生产成本。 将反求工程技术定义为没有工程图纸的情况下,对物体的物理模型进行测量,通过对测量信息的分析和处理来反求其CAD模型的过程。在这一意义下,反求工程可以定义为是将实物转变为CAD模型相关的数字化技术和几何模型重建技术的总称。反求工程是综合性很强的术语,它是以设计方法学为指导,以现代设计理论、方法、技术为基础,运用各种专业人员的工程设计经验、知识和创新思维,对己有新产品进行解剖、深化和再创造,是对己有设计的设计,特别强调再创造是反求的灵魂。从工程应用的目的出发,将反求工程的研究领域拓宽到工艺、材料、原理等方面的反求,是广义上的反求。应该看到反求工程有其独特的共性技术和内容,还是一门新兴的交叉学科分支。现行产品中的各种复杂高新技

术,在反求工程中都会遇到如何消化吸收并加以改进和提高。所以对于新兴技术的理解、消化和推广上,反求工程作用十分巨大。 现代人们通称的设计一般均指正向设计。它根据市场需要提出目标和技术要求,使设计意图变为产品。如何合理利用他人的设计思想,加快自身产品更新换代的能力,是在市场竞争日益激烈的今天站稳脚跟,持续发展的关键。实际上,在设计制造领域,任何产品的问世,包括创新、改进和仿制,都蕴含着对已有科学、技术的应用和借鉴改进。可以看出,反求思维在工程中的应用己源远流长,然而提出这种术语并作为一门学问去研究则出现于年代。反求工程是各国技术进步、发展,尤其是发展中国家迅速改变技术落后状况,提高综合设计、决策水平、制造水平,赶超世界先进水平的迅捷之路。战后日本工业恢复的需要使其首先对反求工程进行了较早的研究,日本提出“第一台引进,第二台国产化,第三台出口”的口号,用了近二十年时间迅速崛起成为世界经济强国就是一个生动的历史证明。 2.反求工程的作用及应用领域 反求工程是近年来发展起来的消化、吸收和提高先进技术的一系列分析方法以及应用技术的组合,其主要目的是为了改善技术水平,提高生产率,增强经济竞争力。世界各国在经济技术发展中,应用反求工程消化吸收先进技术经验,给人们有益的启示。据统计,各国百分之七十以上的技术源于国外,反求工程作为掌握技术的一种手段,可使产品研制周期缩短百分之四十以上,极大提高了生产率。因此研究反求工程技术,对我国国民经济的发展和科学技术水平的提高,具有重大的意义。

反求工程技术介绍及其应用举例

反求工程技术介绍及其应用举例 1.反求工程的概念 反求工程(逆向工程)是利用对实物测量的数据重新构造实物的计算机模型,然后利用CAD/CAE/CAM等计算机辅助技术进行分析、再设计、数控编程等操作,而后进行加工。反求工程现己发展为CAD/CAM中一个相对独立的范畴。通过实物模型产生CAD模型,可以使产品设计充分利用CAD技术的优势,并适应智能化、集成化的产品设计制造过程中的信息交换。实施反求工程可以充分发挥先进的测量设备的优越性,使其既可以作为CAD/CAM系统所需要的三维输入装置,又可以作为CAD/CAM系统处理后的误差检测评估装置,从而提高工业产品的设计,制造自动化程度,缩短产品的试制开发周期,降低生产成本。 将反求工程技术定义为没有工程图纸的情况下,对物体的物理模型进行测量,通过对测量信息的分析和处理来反求其CAD模型的过程。在这一意义下,反求工程可以定义为是将实物转变为CAD模型相关的数字化技术和几何模型重建技术的总称。反求工程是综合性很强的术语,它是以设计方法学为指导,以现代设计理论、方法、技术为基础,运用各种专业人员的工程设计经验、知识和创新思维,对己有新产品进行解剖、深化和再创造,是对己有设计的设计,特别强调再创造是反求的灵魂。从工程应用的目的出发,将反求工程的研究领域拓宽到工艺、材料、原理等方面的反求,是广义上的反求。应该看到反求工程有其独特的共性技术和内容,还是一门新兴的交叉学科分支。现行产品中的各种复杂高新技术,在反求工程中都会遇到如何消化吸收并加以改进和提高。所以对于新兴技术的理解、消化和推广上,反求工程作用十分巨大。 现代人们通称的设计一般均指正向设计。它根据市场需要提出目标和技术要求,使设计意图变为产品。如何合理利用他人的设计思想,加快自身产品更新换代的能力,是在市场竞争日益激烈的今天站稳脚跟,持续发展的关键。实际上,在设计制造领域,任何产品的问世,包括创新、改进和仿制,都蕴含着对已有科学、技术的应用和借鉴改进。可以看出,反求思维在工程中的应用己源远流长,然而提出这种术语并作为一门学问去研究则出现于年代。反求工程是各国技术进步、发展,尤其是发展中国家迅速改变技术落后状况,提高综合设计、决策水平、制造水平,赶超世界先进水平的迅捷之路。战后日本工业恢复的需要使其首先对反求工程进行了较早的研究,日本提出“第一台引进,第二台国产化,第三台出口”的口号,用了近二十年时间迅速崛起成为世界经济强国就是一个生动的历史证明。

逆向工程操作过程

《逆向工程技术》 课程作业 姓名:Tangmei 学号:051130104 专业:飞行器制造工程指导老师:谭昌柏 2014年12月

1.逆向工程简介(提示:字数500左右字,不得抄袭) 1.1 什么是逆向工程 逆向工程又称逆向技术,是一种产品设计技术再现过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能特性及技术规格等设计要素,以制作出功能相近,但又不完全一样的产品。逆向工程常指从现有模型经过一定的手段转化为概念模型和工程设计模型,如利用三坐标测量机的测量数据对产品进行数学模型的重构,或者直接将这些离散数据转化成NC程序进行数控加工而获取成品的过程, 1.2 逆向工程的基本流程 1、曲线处理过程:决定所要创建的曲线类型。曲线可以设计得与点的片段相同,或让曲线更光滑些;由已存在的点创建出曲面;检查/修改曲线,检查曲线与点或其它曲线的精确度、平滑度与连续的相关性。 2、误差分析:可以考虑被测物对机构引起的综合轨迹误差、逆向工程设计所依据的数据值存在的测量误差、设计中的被测物存在的加工误差、设计中的曲线拟合存在的拟合误差等方面。4、逆向工程是以一个模型或物理零件作为开始,进而决定下游工程。 3、点处理过程:主要包括点云分块、多视点云的拼合、点云过滤和数据精简等。本文由湖南华曙高科快速模型小编整理完成。 1.3逆向工程的主要应用领域和方向 向工程的应用模式主要包括:L给定产品样品,如家电的外壳、铸件等,采用逆向工程的手段,获取它的三维CAD模型、绘制产品图纸,完成产品的数榨编程及樟具设计,也就是人们常说的“产品仿制”;2、先用石膏等造型材料,按一定比例设计出产品的外形,然后,采用逆向工程的手段,获取它的三维CAD模型,这就是所谓的"工业产品设计";3、测量产品的三维点云,与CAD模型进行比较,分析产品的制造误差,即产品检测。 从逆向工程的概念和技术特点以看出,逆向工程的应用领域如图三所示,主要是飞机、汽车、玩具、电子业、鞋业、艺术品翻制、铸模、人造皮革和家用电器等与模具相关的行业;近年来随着生物、材料技术的发展,逆向工程技术也开始应用在人工生物骨骼、美容等医学领域。但是其最主要的应用领域还是在模具行业。

基于GEOMAGIC逆向工程实验报告

逆向工程也称反求工程,是指用一定的测量手段对实物或模型进行测量,根据测量数据通过三维几何建模方法重构实物CAD模型的过程。它改变了从图样到实物的传统设计模式,为产品的快速开发和创建设计提供了一条新途径。GEOMAGIC STUDIO 由美国RAINDROP公司出品,是逆向工程中应用最广泛的软件之一!利用GEOMAGIC STUDIO可轻易根据实物零部件扫描所得的点云数据创建出完美的多边形模型和网格,并自动转换为NURBS曲面,生成准确的数字模型!软件的工作流程与逆向工程技术的工作流程大致相似,其工作流程为点数 据阶段———多边形阶段———成形阶段。点数据阶段主要测量的数据点进行预处理,在多边形阶段主要是通过对多边形的编辑的已达到拟合曲面所需要的的优化数据,成形阶段是根据前一阶段编辑的数据,自动识别特征、创建NURBS曲面。NURBS是Non-Uniform Rational B-Splines的缩写,意为非统一有理B样条。简单地说,NURBS造型总是由曲线和曲面来定义的,所以要在NURBS曲面上生成一条有棱角的边是很困难的。正因为如此,NURBS曲面特别适合做出各种复杂的曲面造型和表现特殊的效果,如人的面貌或流线型的跑车等。 1.点数据处理 扫描仪得到的数据会引入数据误差而且数据量庞大,为了后续工作方便准确进行需要去除数据中的坏点、减少噪音、平滑数据、分块数据整合对齐、在保证精度和特征的条件下进行数据精简。同时由于测量方法和测量设备的影响会出现数据缺口,这就需要对数据进行编辑来补齐数据。数据处理主要有一下几个方面: ●噪声过滤 ●数据光顺 ●数据精简 2.多边形处理阶段 多边形处理阶段是在点云数据封装后通过一系列技术处理得到完整的多边形数据模型,为曲面处理打下基础。 在多边形处理阶段首先要“创建流型”来删除模型中非流型的三角形数据,否则在后续处理中由于存在非流型的三角形而无法继续处理。对于片状的模型可以创建“打开”的流型,对于封闭的多边型模型可以创建“封闭”的流型!本例中叶片模型需要创建“封闭”的流型来删除非流型的三角形。 即使是不同的模型,对于点阶段和多边形阶段的操作都相类似,以上涉及的命令在任何模型点云的处理过程中几乎都会用到。一般情况下,多边形阶段编辑的好坏将决定最终曲面质量的好坏,因为多边形阶段的编辑结果直接进入下一个阶段:成形阶段。 将经过综合处理的点云用Polygon Mesh(多边形网格)进行封装。操作如下,点击Points(点)——Wrap(封装),点击Surface(曲面)选项,点击OK(确定)即得到初始三角网格曲面。多边形处理阶段即是在此基础上进行后续的修饰处理,具体的操作包括: a.孔洞修补。由于扫描过程中在标记处或者点云缺失处存在三角面的孔洞,需要对其进行修补以获得完整的曲面。孔的填充方法有三种: 内部孔、边界孔和搭桥。针对模型中不同类型的孔,合理选择填充方法; 另外,对于边界比较杂乱的孔,可采取“先删后补”的方法使曲面模型更加光滑。用边界选择工具将边界上的三角面选中并删除,直到孔洞周边的三角面无翘曲、曲率基本一致。选取“基于曲率填充”选项进行修补,可获得近乎无痕迹的修补效果。某些部位虽无孔洞但三角面杂乱,也可以删掉杂乱三角形再进行修补。 b.去除毛刺。质量不好的点云重叠在一起,得到的三角网格曲面比较粗糙,需要进行光顺处理,以保证曲面质量。操作如下,点击Polygons(多边形)——Remove Spikes(去除毛刺),在

相关文档
最新文档