传热学课件-清华大学 (6)

§6-1 管内受迫对流换热

第六章单相流体对流换热及准则关联式

学习对流换热的目的:学会解决实际问题;会计算表面传热系数h

大多数是由大量的实验研究确定的

本章给出的具体函数形式Pr)(Re,Nu f =工程上、日常生活中有大量应用:

暖气管道、各类热水

及蒸汽管道、换热器

流动进口段:10[ : Re;05.0 ∈≈d

L

d L 紊流层流:?u

流动进口段: : Re;05.0 ∈≈d

L

d L 紊流层流:?u

热充分发展段:

常物性流体在热充分发展段:h = const

(1)管内流体平均速度

3、管内流体平均速度及平均温度∫∫=

?=

=R

R

m urdr

rdr

u f u G 0022πρπρρrdr u df u dG πρρ2?=?=G —质量流量[kg/s];V —体积流量[m 3/s];G=ρV

∫∫=

=

=R

m R m urdr

R

u urdr R u G 0202

2 ;2πρπρ

t?

(

管内对流换热进口段的局部Nusselt数

2、流体热物性变化对换热的影响

对于液体:主要是粘性随温度而变化流体平均温度相同的条件下,液体被加热时的表面传热系数高于液体被冷却加热时的值

?↑η t 对于气体:除了粘性,还有密度和热导率等

↓↑?↑λρη,,

t

液体:

1

=

C R+—

R螺旋管曲率半径

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

清华大学运筹学考试

一、不定向选择 1、若线性规划问题有可行解则: A其可行域可能无界 B其可行域为凸集 C至少有一个可行解为基本可行解 D可行域边界上点都为基本可行解 E一定存在某一可行解使目标函数达最优值 F任一可行解均能表示为所有可行域顶点线性组合表示 G某一可行解为最优解必要条件为它是一个基本解。 2、线性规划问题和其对偶问题关系: A对偶问题的对偶问题为原问题 B若原问题无解,其对偶问题有无界解 C若原问题无界解,其对偶问题无解或者无界解 D即使原问题有最优解,其对偶问题也未必有最优解 E原问题目标函数达到最大时,其对偶问题取最小值 F只有原问题达最优解时,其对偶问题才有可行解 G若原问题有无穷多最优解,其对偶问题有无界解。 二、已知线性规划问题,如下: max z=x1+x2-x3 -x1+2x2+x3<=2 st. -2x1+x2-x3<=3 x1,x2,x3>=0 据对偶理论分析此问题有解的情况(最优,无界或无解)三、已知线性规划问题 max z=x1+4x2+x3+2x4 x1+2x2 +x4<=8 x2 +2x4<=6 st. x2+x3+x4<=9 x1+x2+x3 <=6 x1,x2,x3,x4>=0 最优解为(0,2,4,2)据对偶理论找出其对偶问题最优解四、单纯形法解下列线性规划问题 max z=3x1+2x2

x1+2x2<=6 st. 2x1+x2<=8 -x1+x2<=1 x2<=2 x1,x2>=0 1)第一、二、四约束的影子价格为多少? 2)变量x1价值系数增加2,最优解是否变化? 五、运输问题单价表如下,确定总运费最小的调运方案 B1 B2 B3 B4 产量 A1 3 10 3 11 14 A2 2 8 1 9 8 A3 10 6 7 4 18 销量10 12 6 12 40 六、设备更新题:某设备收益r(万元),维修保养费w(万元) 更新费g(万元)与役龄t(年)关系如下: r(t)=10-1/2 t w(t)=1+5/4 t g(t)=1/2+4/5 t 考虑资金占用利率I ,试建立10年更新计划动态规划模型

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

高等传热学课件对流换热-第2章-1

第二章层流强制对流换热 §2-1 层流对流换热边界层微分方程的物理数学性质 由于对流换热基本方程组的非线性与耦合性,求解异常困难,在19世纪,对粘性流动与换热进行求解几乎是不可能的。自从1904年德国的著名力学家Prandtl提出边界层的理论后,借助于该理论对N-S 方程进行简化,在某些简单的情况下可进行理论求解,从而为现代流体力学的发展奠定了基础,同时也推动了对流换热理论的发展。到目前为止,已获得了十几个层流对流换热问题的分析解。下面介绍边界层理论的要点及边界层微分方程的数理性质。

一、边界层理论要点 1.流动边界层 绕流固体壁面的粘 性流体流场可分为 边界层区、主流区(势流 区)两个特征不同的流动 区域: (a). 壁面附近边界层:在垂直于壁面方向,速度变化剧烈,存在很大 的速度梯度,粘性应力起重要作用。速度分布,粘性 (b). 离壁面较远的主流区:速度梯度很小,可以忽略粘性应力,视为 理想流体的流动。 δ 。(尺度) (c). 边界层厚度δ远比流过的距离L小得多,即L (d). 边界层内存在层流、湍流、过度流等不同流态。(流态)

2.热边界层 (a). 壁面附近的热边界层:垂直于壁面方向,存在很大的温度梯度, 沿壁面法向的导热起主要作用。 (b). 离壁面稍远的主流区:混合剧烈,温度梯度很小,可忽略导热。 δ 。 (c).热边界层厚度t L (d). tδ与δ的关系,起决于流体物性。(r P数) (e). 热边界层的流动状态对换热起着决定性作用。 从物理本质上看,边界层是扩散效应(微观热运动)起主要或重要作用的区域;或者说是扩散效应的影响区域。 层流热边界层内:沿壁面法向的热流传递方式主要是导热。 湍流边界层内:粘性底层靠导热,湍流核心区的脉动对流占主要地位。

2015年清华大学826运筹学与统计学

2015年清华大学826运筹学与统计学(数学规划、应用随机模型、统计学各占1/3)考研复习参考书 科目:826 运筹学与统计学(数学规划、应用随机模型、统计学各占1/3)参考书:《运筹学(数学规划)(第3版)清华大学出版社,2004年1月 W.L.Winston 《运筹学》(应用随机模型)清华大学出版社,2004年2月 V.G. Kulkarni 《概率论与数理统计》(第1~9章)高等教育出版社,2001年盛聚等 考研复习方法,这里不详细展开。简单归纳为: 新祥旭考研提醒:首先,清楚考试明细,掌握真题,真题为本。通过真题,了解和熟知:考什么、怎么考、考了什么、没考什么;通过练习真题,了解:目前我的能力、复习过程中我的进步、我的考试目标。提醒一句:千万不要浪费大量时间做不相关的模拟题;千万不要把考研复习等同于做题目,搞题海战术。 其次,把握参考书,参考书为锚。弄懂、弄熟。考研复习如何才能成功?借用《卖油翁》里的一句话,那就是:手熟而已。明确考试之后,考研就基本上是一个熟悉吃透的过程。无论何时,参考书第一,不能轻视。所以,千万不要本末倒置,把做题凌驾于看书之上。如何才叫熟悉?我认为,要打破“讲速度,不讲效率”的做法,看了多少遍并不是检验熟悉与否的指标,合上书本,随时自我检测,能否心中有数、一问便知,这才是关键。 再次,制定计划,合理分配时间。不是每一本参考书都很重要,都一样重要,所以,在了解真题的基础上,要了解每一本书占多少分,如何命题考试,在此基础上,每一本参考书的主次轻重、复习方略也就清楚了,复习才不会像开摊卖药,平均用力。一个月制定一份计划书,每天写一句话鼓励自己,一个月调整一次复习重点,这都是必要的。 最后,快乐复习。考研复习是以什么样状态进行的,根源在于能否克服不良情绪。第一,报考对外汉语,你是因为喜欢这个专业吗?如果是,那么,就继续给自己这种暗示,那么你一定会发现,复习再紧张,也是愉悦的,因为你是为了兴趣而考研的;第二,规律的作息,不大时间战,消耗战,养精蓄锐。运动加休息,如果能每天都很规律,那么成功也就有了保障,负面情绪少了,效率也就高了。 总结为几个关键词,就是:知己知彼、本末分明。

清华大学工程热力学思考题答案

第一章 思考题参考答案 1.进行任何热力分析是否都要选取热力系统? 答:是。热力分析首先应明确研究对象,根据所研究的问题人为地划定一个或多个任意几何面所围成的空间,目的是确定空间内物质的总和。 2.引入热力平衡态解决了热力分析中的什么问题? 答:若系统处于热力平衡状态,对于整个系统就可以用一组统一的并具有确定数值的状态参数来描述其状态,使得热力分析大为简化。 3.平衡态与稳定态的联系与差别。不受外界影响的系统稳定态是否是平衡态? 答:平衡态和稳定态具有相同的外在表现,即系统状态参数不随时间变化;两者的差别在于平衡态的本质是不平衡势差为零,而稳定态允许不平衡势差的存在,如稳定导热。可见,平衡必稳定;反之,稳定未必平衡。 根据平衡态的定义,不受外界影响的系统,其稳定态就是平衡态。 在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。 4.表压力或真空度为什么不能当作工质的压力?工质的压力不变化,测量它的压力表或真空表的读数是否会变化? 答:由于表压力和真空度都是相对压力,而只有绝对压力才是工质的压力。表压力g p 与真空度v p 与绝对压力的关系为: b g p p p =+ b v p p p =- 其中b p 为测量当地的大气压力。 工质的压力不变化,相当于绝对压力不变化,但随着各地的纬度、高度和气候条件的不同,测量当地的大气压值也会不同。根据上面两个关系式可以看出,虽然绝对压力不变化,但由于测量地点的大气压值不同,当地测量的压力表或真空表的读数也会不同。 5.准静态过程如何处理“平衡状态”又有“状态变化”的矛盾? 答:准静态过程是指系统状态改变的不平衡势差无限小,以致于该系统在任意时刻均无限接近于某个平衡态。准静态过程允许系统状态发生变化,但是要求状态变化的每一步,系统都要处在平衡状态。 6.准静态过程的概念为什么不能完全表达可逆过程的概念? 答:可逆过程的充分必要条件为:1、过程进行中,系统内部以及系统与外界之间不存在不平衡势差,或过程应为准静态的;2、过程中不存在耗散效应。即“无耗散”的准静态过程才是可逆过程,因此准静态过程的概念不能完全表达可逆过程的概念。 7.有人说,不可逆过程是无法恢复到起始状态的过程,这种说法对吗? 答:不对。系统经历不可逆过程后是可以恢复到起始状态的,只不过系统恢复到起始状态后,外界却无法同时恢复到起始状态,即外界的状态必将发生变化。

(完整版)清华大学工程热力学思考题答案

《工程热力学》思考题参考答案 目录 第一章思考题参考答案 (2) 第二章思考题参考答案 (4) 第三章思考题参考答案 (9) 第四章思考题参考答案 (16) 第五章思考题参考答案 (21) 第六章思考题参考答案 (25) 第七章思考题参考答案 (27) 第八章思考题参考答案 (31) 第九章思考题参考答案 (34) 第十章思考题参考答案 (39) 第十二章思考题参考答案 (45)

第一章 思考题参考答案 1.进行任何热力分析是否都要选取热力系统? 答:是。热力分析首先应明确研究对象,根据所研究的问题人为地划定一个或多个任意几何面所围成的空间,目的是确定空间内物质的总和。 2.引入热力平衡态解决了热力分析中的什么问题? 答:若系统处于热力平衡状态,对于整个系统就可以用一组统一的并具有确定数值的状态参数来描述其状态,使得热力分析大为简化。 3.平衡态与稳定态的联系与差别。不受外界影响的系统稳定态是否是平衡态? 答:平衡态和稳定态具有相同的外在表现,即系统状态参数不随时间变化;两者的差别在于平衡态的本质是不平衡势差为零,而稳定态允许不平衡势差的存在,如稳定导热。可见,平衡必稳定;反之,稳定未必平衡。 根据平衡态的定义,不受外界影响的系统,其稳定态就是平衡态。 在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。 4.表压力或真空度为什么不能当作工质的压力?工质的压力不变化,测量它的压力表或真空表的读数是否会变化? 答:由于表压力和真空度都是相对压力,而只有绝对压力才是工质的压力。表压力g p 与真空度v p 与绝对压力的关系为: b g p p p =+

大学传热-清华期末-传热学考题答案

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

清华大学本科生考试试题答案(试题A ) 考试课程 传热学 一、选择题: 将选择出的答案写在题前的方括号内。(15分) 1. a 2. d 3. d 4. a 5.d 二、简要回答下列问题:(35分) 1. (7分)答:肋片效率为肋片的实际散热量与假设整个肋片温度都与肋根温 度 相 同 时 的 理 想 散 热 量 之 比 。 -------------------------------------------------3分 肋片效率的主要影响因素有: (1) 肋片材料的热导率:热导率愈大,肋片效率愈高; ----------------1分 (2) 肋片高度:肋片愈高,肋片效率愈低; -------------------------------1分 (3) 肋片厚度:肋片愈厚,肋片效率愈高; -------------------------------1分 (4)表面传热系数:表面传热系数愈大,肋片效率愈低。 ------------1分 2.(7分)答: λαδ= Bi ,表示物体内部导热热阻λδ 与物体表面对流换热热阻α 1的比值,

它和第三类边界条件有密切的联系。 --------------------------------------------------1.5分 2l a Fo τ = 是非稳态导热过程中的无量纲时间,表示非稳态导热过程进行的 深 度 。 --------------------------------------------------------------------------------------1.5分 0→Bi 意味着平板的导热热阻趋于零,平板内部各点的温度在任一时刻都趋于 均 匀 一 致 。 ( 见 下 图 b ) ----------------------------------------------------------------1.5分 ∞→i B 表明对流换热热阻趋于零,平板表面与流体之间的温差趋于零。(见下 图 a ) -------------------------------------------------------------------------------------------1.5分 ---------------------1分 3、(7分)答:水在1个大气压下大空间沸腾换热的沸腾曲线如图所示。随 着壁面过热度的增高,出现4个换热规律不同的区域。

清华大学工程热力学习题课

工程热力学课程习题 第一章 1-1 试将1物理大气压表示为下列液体的液柱高(mm),(1) 水,(2) 酒精,(3) 液态钠。它们的密度分别为1000kg/m3,789kg/m3和860kg/m3。 1-4 人们假定大气环境的空气压力和密度之间的关系是p=cρ,c为常数。在海平面上空气的压力和密度分别为×105Pa和m3,如果在某山顶上测得大气压为5×104Pa。试求山的高度为多少。重力加速度为常量,即g=s2。 1-7如图1-15 所示的一圆筒容器,表A的读数为360kPa,表B读数为170kPa,表示室Ⅰ压力高于室Ⅱ的压力。大气压力为760mmHg。试求(1) 真空室以及Ⅰ室和Ⅱ室的绝对压力;(2) 表C的读数;(3) 圆筒顶面所受的作用力。 图1-15 1-8 若某温标的冰点为20°,沸点为75°,试导出这种温标与摄氏度温标的关系(一般为线性关系)。 1-10 若用摄氏温度计和华氏温度计测量同一个物体的温度。有人认为这两种温度计的读数不可能出现数值相同的情况,对吗若可能,读数相同的温度应是多少 1-14一系统发生状态变化,压力随容积的变化关系为=常数。若系统初态压力为600kPa,容积为,试问系统容积膨胀至时,对外作了多少膨胀功。 1-15气球直径为,球内充满压力为150kPa的空气。由于加热,气球直径可逆地增大到,并且空气压力正比于气球直径而变化。试求该过程空气对外作功量。

1-161kg气体经历如图1-16所示的循环,A到B为直线变化过程,B到C为定容过程,C到A为定压过程。试求循环的净功量。如果循环为A-C-B-A则净功量有何变化 图1-16

高等传热学课件对流换热-第6章-1

第六章 高速流动对流换热
在前面几章介绍的强制对流换热中, 我们假设速度和速度梯度充 分小,以致动能和粘性耗散的影响可以忽略不计。现在考虑高速和粘 性耗散的影响。我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念
高速对流主要涉及以下两类现象: z 从机械能向热能的转换,导致流体中的温度发生变化; z 由于温度变化使流体的物性发生变化。 空气一类气体若具有极高的速度,将会导致超高温离解、质量浓 度梯度,并因此发生质量扩散,使问题变得更加复杂。这里仅限于关 注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温

度超过 2000K 或者马赫数高于 5 的情况。对液体,如果普朗特数足 够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。 我们的讨论仅限于普朗特数接近于 1 的气体。 有关高速对流的研究大都涉及对机械能转换和流体物性随温度 变化两个因素的总体考虑,很难看到它们单独的影响。这里,我们暂 不考虑变物性的影响,首先讨论能量转换问题。 能量转换过程能可逆地发生,也能不可逆地发生。比如,在边界 层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增 大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速) 则产生可逆的,或者非常接近可逆的能量转换。高速边界层滞止点的 比较能很好地说明这两种情况的明显区别。 z 在滞止点(图 6-1)处速度降低,边界层以外的压力和温度提高。 对于亚音速流动, 该过程几乎是等熵的, 流体粘度不起什么作用。 无论减速可逆还是不可

逆,滞止区边界层以外的流体 温度等于滞止温度, 也就是说, 流体温升来自于绝热减速:
? T∞
V2 = T∞ + 2c
(6.1.1)
V
若不考虑变物性影响,并
* 用 T∞ 代替 T∞ , 低速滞止点的解
也能适用于高速滞止点问题:
? qw = h (Tw ? T∞ )
图 6-1 滞止点的流动
(6.1.2)
z 但高速边界层问题有所不同。 如果自由速度很高, 边界层以内速 度梯度很大, 边界层内因粘性切应力产生粘性耗散。 如果物体是 绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理, 从靠近表面的向边界层外传递出去, 如图 6-2 所示。 稳态条件下, 在粘性耗散和热传导之间存在一种平衡状态, 导致图 6-2 所示的 温度分布。此条件下的表面温度就等于绝热壁面温度 Taw 。

06传热学试题A答案(清华大学考研资料)

扬州大学试题 (2005 — 2006学年第 二 学 期) 题目 -一一 -二二 -三 四 五 总分 得分 问答题:(42分,共6题,每题7 分) 團1示出了莒吻性、有均匀内热躱$ >二维德态导 热问题局部边界区域的网幡配蜀,试用热平衢法建立 节点o 的有區差分方程或(演&二谢人 t 4 t ° y y t 2 t ° 2 x t 3 t ° X --- y y t 1 t h X 2 y (t ⑺ 3 x y ① 2.蒸气与温度低于饱和温度的壁面接触时, 有哪两种不同的凝结形式?产生不同凝 结形式的原因是什么? 答:当凝结液体能很好地润湿壁面时,在壁面上将铺展一层液膜,这种凝结 方式称为膜状凝结。当凝结液体不能很好地润湿壁面时,凝结液体在壁面上形成 一个个液珠,且不断发展长大,并沿壁面滚下,壁面将重复产生液珠、成长、滚 落过程,这种凝结形式称为珠状凝结。

3.有人说:“常温下呈红色的物体表示该物体在常温下红色光的光谱发射率较其它单色光(黄、绿、蓝等)的光谱发射率高”。你认为这种说法正确吗?为什么?答:不正确。因为常温下物体呈现的颜色是由于物体对可见光中某种单色光的反射造成的。红色物体正是由于物体对可见光中的黄、绿、蓝等色光的吸收比较大, 反射比较小,而对红光的吸收比较小,反射比较大所致。根据基尔霍夫定律, ()(),可见红光的光谱发射率较其他单色光的光谱发射率低而不是高。 4 ?直径为d、单位长度电阻为R、发射率为的金属棒,初始时与温度为T的环境处于热平衡状态,后通过电流I,已知棒与环境的表面传热系数为h。试导出通电流期间金属棒温度随时间变化的规律,并写出处于新的热平衡状态的条件。(不用求解) 答:4. c ddT I2R hdTT d T4 T4 4 d 2 4 4 dT I R h d T T d T T d d2 c -- 4 dT d 12R h d T T d T4 T4

清华大学航天航空学院“传热学”实验报告

【实验(一)名称】瞬态热线法测量多孔介质的热导率 【实验原理】 图1.实验装置示意图 图2.物理模型 实验装置如图1所示,将一根细长白金丝埋在初始温度均匀的待测材料中,白金丝同时充当加热器和温度传感器,通电加热后,测定白金丝温度随时间的变化,据此推出其周围介质的热导率。该实验的特点是测量时间短,对试样尺寸无特殊要求。 物理模型如图2所示,单位长度上加热丝发出的热流为: 2//q I R l IU l ==(1) 式中,I 和U 为通过白金丝的电流与加载在白金丝上的电压,R 是白金丝的电阻值。 白金丝发热量较小,介质可视为无限体,导热微分方程、初始和边界条件: 221()p T T T c t r r r ρλ???=+???,0,0r r t <<∞>(2) 0T T =,0t = 02T r q r πλ ?-=?,0,0r r t => 解得加热丝表面处待测介质温度: 22200033 01exp(/) 2(,)(,) tu r q T r t T du u u αωπλω∞ ---=??(3)

式中,ω是试样与加热丝热容之比的2倍。 220101(,)[()()][()()]u uJ u J u uY u uY u ωω?=-+-(4) 式中,J 0(u),J 1(u)为第一类贝塞尔函数的零阶、一阶函数;Y 0(u)、Y 1(u)为第二类贝塞尔函数的零阶、一阶函数;u 为积分变量。 当t 足够大: 2 014r t α<<(5) 式(3)中指数积分可用级数展开近似,忽略小量,得到: 0020 4(,)[ln ]4q t T r t T C r απλ -= -(6) 式中,欧拉常数C =0.5772,α为介质的热扩散率。令过余温度00(,)T r t T θ=-,由式(6)可得: ln 4d q d t θπλ =(7) //4ln 4ln q d IU d d t l d t θθλππ==(8) 实验中白金丝长径比大于2000,可以忽略端部效应的影响,实验测得白金丝轴向平均温度0(,)T r t 可视为以上各式中的0(,)T r t ,白金丝平均温度0(,)T r t 与其电阻t R 的关系如下: () 0001(,)-t R R T r t T β??=+?? (9) 式中,0R 是初始温度0T (取当时室温)时白金丝的零点(不通电加热)电阻;通入较大电流后,t 时刻白金丝电阻和平均温度分别为t R 和0(,)T r t ;β为白金丝的电阻温度系数(0.0039K -1)。 【实验器材】 直流电源(Advantest R6243) 1台 多孔介质及样品槽 1套 安捷伦数据采集器(主机34970A ,模块34901A ) 1台 电压表 1台 白金丝(直径100μm ,99.99%) 若干 标准电阻 1个 铜康铜热电偶 1支 【实验流程】

运筹学教程 清华大学 第三版 课后习题题目

1.某饲养场饲养动物出售,设每头动物每天至少需700g蛋白质、30g矿物质、100mg维生素。现有五 种饲料可供选用,各种饲料每kg营养成分含量及单价如表1所示。 表1 要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。 2.某医院护士值班班次、每班工作时间及各班所需护士数如表2所示。每班护士值班开始时间向病房 报道,试决定: (1)若护士上班后连续工作8h,该医院最少需要多少名护士,以满足轮班需要; (2)若除22:00上班的护士连续工作8h外(取消第6班),其他班次护士由医院排定上1~4班的其中两个班,则该医院又需要多少名护士满足轮班需要。 表2 3.一艘货轮分前、中、后三个舱位,它们的与最大允许载重量如表3.1所示。现有三种货物待运,已 知有相关数据列于表3.2。 表3.1 表3.2 又为了航海安全,前、中、后舱实际载重量大体保持各舱最大允许载重量的比例关系。具体要求:前、

后舱分别与中舱之间载重量比例的偏差不超过15%,前、后舱之间不超过10%。问该货轮应该载A,B,C 各多少件运费收入才最大?试建立这个问题的线性规划模型。 4.时代服装公司生产一款新的时装,据预测今后6个月的需求量如表4所示,每件时装用工2h和10 元原材料费,售价40元。该公司1月初有4名工人,每人每月可工作200h,月薪2000元。该公司可于任一个月初新雇工人,但每雇1人需一次性额外支出1500元,也可辞退工人,但每辞退1人需补偿1000元。如当月生产数超过需求,可留到后面月份销售,但需付库存费每件每月5元,当供不应求时,短缺数不需补上。试帮组该公司决策,如何使用6个月的总利润最大。 5.篮球队需要选择5名队员组成出场阵容参加比赛。8名队员的身高及擅长位置见表5. 表5 出场阵容应满足以下条件: (1)只能有一名中锋上场; (2)至少一名后卫; (3)如1号和4号均上场,则6号不出场; (4)2号和8号至少有一个不出场。 问应当选择哪5名队员上场,才能使出场队员平均身高最高,试建立数学模型。 6.童心玩具厂下一年度的现金流(万元)如表6所示,表中负号表示该月现金流出大于流入,为此该 厂需借款。借款有两种方式:一是于上一年末借一年期贷款,一次得全部贷款额,从1月底起每月还息1%,于12月归还本金和最后一次利息;二是得到短期贷款,每月初获得,于月底归还,月息 1.5%。当该厂有多余现金时,可短期存款,月初存入,月末取出,月息0.4%。问该厂应如何进行存 贷款操作,既能弥补可能出现的负现金流,又可使年末现金总量为最大。

2007年清华大学传热学期末考题答案

清华大学本科生考试试题答案(试题A ) 考试课程 传热学 一、选择题: 将选择出的答案写在题前的方括号内。(15分) 1. a 2. d 3. d 4. a 5.d 二、简要回答下列问题:(35分) 1. (7分)答:肋片效率为肋片的实际散热量与假设整个肋片温度都与肋根温度相同时的理想散热量之比。 -------------------------------------------------3分 肋片效率的主要影响因素有: (1) 肋片材料的热导率:热导率愈大,肋片效率愈高;----------------1 分 (2) 肋片高度:肋片愈高,肋片效率愈低;-------------------------------1 分 (3) 肋片厚度:肋片愈厚,肋片效率愈高;-------------------------------1 分 (4)表面传热系数:表面传热系数愈大,肋片效率愈低。 ------------1分 2.(7分)答: λαδ=Bi ,表示物体内部导热热阻λδ与物体表面对流换热热阻α 1的比值,它 和第三类边界条件有密切的联系。--------------------------------------------------1.5分 2l a Fo τ = 是非稳态导热过程中的无量纲时间,表示非稳态导热过程进行的深度。--------------------------------------------------------------------------------------1.5分 0→Bi 意味着平板的导热热阻趋于零,平板内部各点的温度在任一时刻都趋于 均匀一致。(见下图b )----------------------------------------------------------------1.5分 ∞→i B 表明对流换热热阻趋于零,平板表面与流体之间的温差趋于零。(见下图a )-------------------------------------------------------------------------------------------1.5分

高等传热学课件对流换热-第3章-2

3-2 湍流对流换热的时均化方程一、时均化连续方程 瞬时量形式: () j j v x ? ? += ?? ρ ρ τ 时均化 () j j v x ? ? += ?? ρ ρ τ ?时均化连续方程: )与层流连续方程相比,时均化湍流连续方程增加了脉动引起的质 量流量散度 '' ()j j v x ? ? ρ 。

对不可压缩流体: 0j j v x ?=? ,时均化为: 即: 不可压缩流体湍流的时均化连续方程形式不变,时均速度散度为零。 很显然有: (3.2.3) 即:不可压缩流体的湍流脉动速度散度为零。上式称为脉动速度连续方程。

二、时均化动量方程 考虑常物性,不可压缩流体的应力形式动量方程。瞬时量形式: []m ji i i j i j i j v v p v B x x x ????+=?+????τρτ (a) m ji τ : 由分子热运动(扩散)引起的粘性应力(层流时应力)(分子热运动引起的动量输运)。时均化: 方程左边=' '[i i i j j j j v v v v v x x ???++????ρτ (b) 又 ''''''()i j j i j i j j j v v v v v v x x x ????=????? 对不可压缩流体: '0j j v x ?=?,所以

方程左边 = '' () [i j i i j j j v v v v v x x ? ?? ++ ??? ρ τ (c) 方程右边 m ji i i j p B x x ? ? =?+ ?? τ (d) 于是,应力形式的时均化动量方程为: 通常写作: 该方程又称为雷诺时均方程。

运筹学教程(第三版)清华大学出版社出版 郭耀煌 胡远权编著 习题答案习题答案

运筹学教程(第二版) 习题解答 8.1 证明在9座工厂之间,不可能每座工厂只与其他3座工厂有业务联系,也不可能只有4座工厂与偶数个工厂有业务联系。 解:将有联系的工厂做一条连线。 如果仅有9座工厂只与其他3座工厂有业务联系,说明顶点次数之和为27,矛盾。如果只有4座工厂与偶数个工厂有业务联系,其他5个工厂一定与奇数个工厂有业务联系,说明顶点次数之和还是奇数,矛盾。 8.2 有八种化学药品A、B、C、D、E、F、G、H要放进贮藏室。从安全角度考虑,下列各组药品不能贮存在同一室内:A—C,A—F,A—H,B—D,B—F,B—H,C—D,C—G,D—E,D—G,E—G,E—F,F—G,G—H,问至少需要几间贮藏室存放这些药品。 解:能贮存在同一室内的两种药品之间作一条连线。贮存在同一室内的药品应该构成一个完全图。ABG,CFH,DE构成完全图。故,存放这些药品最少需要3间储藏室。 8.3 6个人围成圆圈就座,每个人恰好只与相邻者不相识,是否可以重新就座,使每个人都与邻座认识? 解:两个人认识作一条连线。 8.4 判定图8-50中的两个图能否一笔画出,若能,则用图形表示其画法。 解:(a)图都是偶点,可以一笔画出。(b)图只有两个奇点,一个奇点为起点,另一个奇点为终点。 8.5求解如图8-51所示的中国邮路问题,A点是邮局。

8.6 分别用深探法、广探法、破圈法找出图8-52所示图的一个生成树。 8.7 设计如图5-53所示的锅炉房到各座楼铺设暖气管道的路线,使管道总长度最(单位:m)。 8.8 分别用避圈法和破圈法求图8-54所示各图的最小树。 8.9 给定权数1,4,9,16,25,36,49,64,81,构造—棵霍夫曼树。 8.10 如图8-55,v0是一仓库,v9是商店,求一条从v0到v9的最短路。 8.11 求图8-56中v1到各点的最短路。

高等传热学课件对流换热-第3章-1

3-1 湍流的基本概念与数学描述 一、湍流的结构特征 经长期研究发现: ?湍流是:连续介质中一种多尺度、随机的、非稳态(非定常)、三维、有旋流动。 ☆:湍流的随机性并非是完全不规则的运动,而是有结构的不规则运动,存在大尺度的拟序结构。 ?湍流的基本结构是:尺度大小、旋转方向、旋转强度不同的多维涡旋(eddy or vortex)。 ?涡旋的生成地点、范围和周期是随机的,在大涡中还包含有大量的小涡旋。

一方面,随着流动,涡旋从主流中获得能量,彼此间进行能量和动量传递,大尺度的涡旋由于变形可以破碎为小尺度的涡旋,而小尺度的涡旋由于粘性耗散而消失,使机械能转变为热能。 另一方面,扰动与速度梯度又会导致新涡旋产生,如此周而复始。 ? 一般来说,湍流中涡旋的尺度远大于分子的平均自由行程,所以每个涡旋仍可视为连续介质。 譬如,当空气以的100m/s (360km/h )的平均速度流动时,最小涡旋的尺度一般不小于31mm ,而31mm 立方体中约有710个气体分子,分子的平均自由行程约为-410mm 。

二、湍流产生的原因 研究结果已证实: ?扰动是湍流产生的起因。 若没有扰动就不会出现流态的转变,也就不会产生湍流。 微小的扰动在一定条件下会被放大,而引起层流结构的稳定性丧失,最终导致湍流。 ?产生扰动的因素很多。比如:(来流、壁面、流体物性、压力梯度) 1). 来流速度的不均匀性; 2). 壁面的粗糙度和不平整度; 3). 流体中杂质、汽泡等引起的物性突变(,p ρμλ等),以及换热引 ,,c 起的物性不均匀性都会产生扰动。 4). 压力梯度。

一般来说,流动的惯性力促使扰动放大,而粘性力对扰动产生阻尼作 用。所以,Re 转变为湍流,或湍流程度越高。 从cr Re 数的实验测量结果,可以看出扰动对流态转变的作用。 1883年,O.Reynolds 对一般圆管内的流动测量发现cr Re 2300=。 而如果采用光滑度很高的玻璃管,尽量消除来流的不均匀性、并使用纯净流体(如蒸馏水),则可获得比2300更高的cr Re 。 如:1910年,Elkman 测出cr 4Re 410=×。(管内) 20世纪70年代,美国加州理工学院的研究人员利用激光将管子对得很直,获得了高达510以上的cr Re 。(管内) 对平板绕流,同样也发现,在采取措施尽量消除扰动因素后,可获得比一般cr Re (553.510510=××~)高得多的cr Re 值(610以上仍为层流)。

相关文档
最新文档