测量不确定度的来源有哪些

测量不确定度的来源有哪些
测量不确定度的来源有哪些

测量不确定度的来源有哪些

从影响测量结果的因素考虑,测量结果的不确定度一般来源于:被测对象、测量设备、测量环境、测量人员和测量方法。

1 被测对象

a 被测量的定义不完善

被测量即受到测量的特定量,深刻全面理解被测量定义是正确测量的前提。如果定义本身不明确或不完善,则按照这样的定义所得出的测量值必然和真实之间存在一定偏差。

b 实现被测量定义的方法不完善

被测量本身明确定义,但由于技术的困难或其它原因,在实际测量中,对被测量定义的实现存在一定误差或采用与定义近似的方法去测量。

例如:器具的输入功率是器具在额定电压,正常负载和正常工作温度下工作时的功率。但在实际测量中,电压是由稳压源提供的,由于稳压源自身的精度影响,使得器具的工作电压不可能精确为额定值,故测量结果中应考虑此项不确定因素。故只有对被测量的定义和特点,仔细研究、深刻理解,才能尽可能减小采用近似测量方法所带来的误差或将其控制在一个确定范围内。

c 测量样本不能完全代表定义的被测量

被测量对象的某些特征如:表面光洁度,形状、温度膨胀系数、导电性、磁性、老化、表面粗糙度、重量等在测量中有特定要求,但所抽取样本未能完全满足这些要求,自身具

有缺陷,则测量结果具有一定的不确定度。

d 被测量不稳定误差

被测量的某些相关特征受环境或时间因素影响,在整个测量过程中保持动态变化,导致结果的不确定度。

2 测量设备

计量标准器、测量仪器和附件以及它们所处的状态引入的误差。计量标准器和测量仪器校准不确定度,或测量仪器的最大允差或测量器具的准确度等级均是测量不确定度评定

必须考虑的因素。

3 测量环境

a 在一定变化范围或不完善的环境条件下测量

·温度·振动噪声·供给电源的变化

·温度·空气组成、污染·热辐射

·大气压·空气流动

b 对影响测量结果的环境条件认识不足

由于对相关环境条件认识不足,致使测量中或分析中忽视了对某些环境条件的设定和调整,造成不确定度。

4 测量人员

a 模拟式仪器的人员读数误差即估读误差,读取带指针仪表或带标线仪器的示值,即读取非整数刻度值时,由于估读不准而引起的误差。

b 人员瞄准误差

采用显微镜或等光学仪器通过使视场中的两个几何图形重合来对线进行测量,对线准确度与操作者经验和对线形状有关。

c 人员操作误差

如测量时间的控制、测点的布置。该项取决于人员的经验、能力、知识及工作态度、身体素质等。

5 测量方法

a 测量原理误差

测量方法本身就存在一定的原理误差,对被测量定义实现不完善。

例如在产品的电气强度试验中,由于耐压试验台自身内阻影响,使得加于样品两端的电压低于实际设定值。这样必然造成试验结果存在一定的不确定度。

b 测量过程

· 测量顺序

应严格按照测量规范规定的进行。遗漏或颠倒某一操作过程都有可能造成测量结果的误差,甚至使测量失去意义。

· 测量次数

一般来说测量次数不同,测量精度也不同,增加测量次数,可以提高测量精度。但n >10 以后,σ已减少得非常缓慢。此外,由于测量次数愈大,也愈难保证测量条件的恒定,从而带来新的误差,因此一般情况下取n=10 以内较为适应。

· 测量所需时间

有的测量规定必须在一定条件下,一定时间内完成超出则结果不准确。如器具潮态试验后的泄漏电流测试必须在5s 内完成。

·测量点数

操作规范规定测量若干点,但实际检测中,为节省时间或出于其它考虑减少或增加了测量点数,也对最终结果有影响。如在噪声测试中。

· 瞄准方式

测量方法不同,采用的测量仪器不同,对应的瞄准方式也不同,如采取目测或用光学瞄准,其瞄准精度必然不同。

· 方向性

测量结果须在一定稳态下获得,实验中以不同方向趋于稳态,对于有些测量设备,如具有滞后或磁滞性的仪器读数是不同的。

c 数据处理

· 测量标准和标准物质的赋值不准

标准器具本身不可避免存在着制造偏差,它是由更高一级的标准来检定的,这些高一级的标准本身也存在着误差。

· 物理常数或从外部资料得到的数据不准

外部资料中提供的数据很多,是由以前的测量为基础或单纯凭经验得出的,不可避免地存在着误差。

·算法及算法实现

采用不同的算法处理数据,如计算标准差σ ,分别运用贝塞尔法和极差法,所得结果必然不同。

· 有效位数

数据有效位数不同,精度不同,应根据测量要求或所采用的测量设备而定。

· 舍入

由于数字运算位数有限,数值舍入或截尾造成不确定度。

·修正

有些系统误差是可以修正的,但由于对误差因素本身的认识不充分,修正值也必然存在着不确定度。

总结:

须正确评定测量结果的不确定度,既不能过大,也不能过小,以保证产品质量,又不会造成误判。首先应充分考虑测量设备、测量人员、测量环境、测量方法等方面众多来源带来的不确定度分量,作到不遗漏、不重复、不增加。并正确评定其数值,其中设备来源不确定度可经过量值溯源,由上一级计量基标准的不确定度取得;也可利用所得到的检定校准证书,测试证书或有关规范所给的数据;方法不确定度经过研究和评定,其不确定度影响可能很小。评定不确定度的原则和框架,不能代替人的思维、理智和专业技巧。它取决于对测量和被测量的本质的深入了解和认识。因此,测量结果的不确定度评定的质量和实用性,主要取决于对不确定度影响量的认识程度和细致而中肯的分析。

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

CNAS-CL01-G003:2019《测量不确定度的要求》

CNAS-CL01-G003 测量不确定度的要求Requirements for Measurement Uncertainty 中国合格评定国家认可委员会

前言 中国合格评定国家认可委员会(CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,为满足合格评定机构、消费者和其他各相关方的期望和需求,CNAS制定本文件,以确保相关认可活动遵循国际规范的相关要求,并与国际认可合作组织(ILAC)等相关国际组织的要求保持一致。 本文件代替CNAS-CL01-G003:2018《测量不确定度的要求》。 本次修订主要为与CNAS-CL01:2018《检测和校准实验室能力认可准则》在表述上相协调,对相关条款作了编辑性修改。

测量不确定度的要求 1适用范围 本文件适用于检测实验室、校准实验室(含医学参考测量实验室)、能力验证提供者(PTP)和标准物质/标准样品生产者(RMP)等(以下简称为实验室)的认可。 2规范性引用文件 下列文件中的条款通过引用而成为本文件的条款。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 CNAS-CL01 检测和校准实验室能力认可准则(idt ISO/IEC 17025) CNAS-CL04 标准物质/标准样品生产者能力认可准则(idt ISO 17034) CNAS-CL07 医学参考测量实验室认可准则(idt ISO 15195) CNAS-GL015 声明检测和校准结果及与规范符合性的指南 CNAS-GL017 标准物质/标准样品定值的一般原则和统计方法(idt ISO指南35) GB/T 27418 测量不确定度评定和表示(mod ISO/IEC指南98-3,GUM)GB/T 8170 数值修约规则与极限数值的表示和判定 ISO/IEC指南98-4 测量不确定度在合格评定中的应用 ISO/IEC指南99 国际计量学词汇基础和通用概念及相关术语(VIM) ISO 80000-1 量和单位-第1部分:总则 ILAC-P14 ILAC对校准领域测量不确定度的政策 3术语和定义 ISO/IEC指南99(VIM)界定的以及下列术语和定义适用于本文件。 3.1校准和测量能力(Calibration and Measurement Capability,CMC) 按照国际计量委员会(CIPM)和ILAC的联合声明,对CMC采用以下定义:校准和测量能力(CMC)是校准实验室在常规条件下能够提供给客户的校准和测量的能力。 a) CMC公布在签署ILAC互认协议的认可机构认可的校准实验室的认可范围中; b) 签署CIPM互认协议的各国家计量院(NMIs)的CMC公布在国际计量

测量不确定度案例分析

标准不确定度A类评定的实例 【案例】对一等活塞压力计的活塞有效面积检定中,在各种压力下,测得10次活塞有效面积与标准活塞面积之比l(由l的测量结果乘标准活塞面积就得到被检活塞的有效面积)如下: 0.250670 0.250673 0.250670 0.250671 0.250675 0.250671 0.250675 0.250670

0.250673 0.250670 问l 的测量结果及其A 类标准不确定度。 【案例分析】由于n =10, l 的测量结果为l ,计算如下 ∑===n i i .l n l 1250672 01 由贝塞尔公式求单次测量值的实验标准差

()612 100521-=?=--=∑.n l l )l (s n i i 由于测量结果以10次测量值的平均值给出,由测量重 复性导致的测量结果l 的A 类标准不确定度为 6 10630-=?=.)l (u n )l (s A 【案例】对某一几何量进行连续4次测量,得到测量 值:0.250mm 0.236mm 0.213mm 0.220mm ,

求单次测量值的实验标准差。 【案例分析】由于测量次数较少,用极差法求实验标 准差。 )()(i i x u C R x s == 式中, R ——重复测量中最大值与最小值之差; 极差系数c 及自由度ν可查表3-2

表3-2极差系数c及自由度ν 查表得c n=2.06

mm ../mm )..()x (u C R )x (s i i 018006221302500=-=== 2)测量过程的A 类标准不确定度评定 对一个测量过程或计量标准,如果采用核查标准进行长期核查,使测量过程处于统计控制状态,则该测量过程的实验标准偏差为合并样本标准偏差S P 。 若每次核查时测量次数n 相同,每次核查时的样本标

标准不确定度的A类评定

标准不确定度的A类评定 减小字体增大字体作者:李慎安来源:https://www.360docs.net/doc/972212660.html, 发布时间:2007-04-28 08:52:07 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 5.1 A类评定的基本方法是什么? 用统计方法(参阅4.1)评定标准不确定度称为不确定度的A类评定,所得出的不确定度称为A类标准不确定度,简称A类不确定度。当它作为一个分量时,无例外地只用标准偏差表征。 标准不确定度A类评定的基本方法是采用贝塞尔公式计算标准差s的方法。 一个被测量Q(既可以是输入量中的一个,也可以是输出量或被测量)在重复性条件下或复现性条件下重复测量了n次,得到n个观测结果q1,q2,…,q n,那么,Q的最佳估计 即是这n个观测值的算术平均值: 由于n只是有限的次数,故又称为样本平均值,它只是无限多次(总体)平均值的一个估计。n越大,这个估计越可靠。 每次的测量结果q i减称为残差v i,v i=(q i-),因此有n个残差。 残差的平方和除以n-1就是实验方差s2(q i),即一次测量结果的实验方差,其正平方根即为实验标准差s(q i),当用它来表述一次测量结果的不确定度u(q i)时,有s(q)=u(q i),或简写成s=u。 请注意,今后不再把s作为A类不确定度的符号,把u作为B类不确定度的符号,而是不分哪一类,标准不确定度均用u表示。 上述的计算程序就是3.1给出的程序。 平均值的标准偏差s()或其标准不确定度u()为: 必须注意上式中的n指所用的次数。在实际工作中,为了得到一个较为可靠的实验标准偏差s(q i),往往作较多次的重复测量(n较大,自由度ν也较大);但在给出被测量Q i测量结果q时,只用了较少的重复观测次数(例如往往只有4次)。那么,4次的平均值的标准偏差就是s(q i)/4=0.5×s(q i) 但是,如果用于评定s(q i)时的n个观测值,直接用于评定s()(n个的平均),则成为下式: 5.2 除基本方法外还有哪些简化的方法?用于何种场合? 在JJF1059中提出了另外的一种简化方法,称之为极差法,极差R定义为一个测量列

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量不确定度基础知识试卷word版本

测量不确定度基础知 识试卷

测量不确定度基础知识 考核试题 分数: 一判断题 1. 测量不确定度是表征被测量之值分散性的一个参数() 2. 标准不确定度就是计量标准器的不确定度() 3. 测量不确定度是一个定性的概念() 4. 单次测量的标准差是一次测量得到的标准差() 5. 正态分布是t分布的一种极端情况(即样本数无穷大的情况)()二填空题 1.计算标准偏差的贝塞尔公式是 2.不确定度传播律的公式是 3.对服从正态分布的随机变量x来说,在95%的置信区间内,对应的 包含因子k = 4.已知随机变量x的相对标准不确定度为)(x u rel ,其(绝对)标准不确定度为)(x u= 5.已知某测量值y = 253.6kg,其扩展不确定度为0.37kg,,请正确表 达测量结果y = 三选择题 1.用对观测列进行统计分析的方法评定标准不确定度称为() A B类评定 B 合成标准不确定度 C 相对标准不确定度 D A类评定 2.一个随机变量在其中心值附近出现的概率密度较大,该随机变量 通常估计为() A 三角分布 B均匀分布 C 正态分布 D 梯形分布 3.对一个量x进行多次独立重复测量,并用平均值表示测量结果, 则应用()式计算标准偏差 A 1) ( ) ( 2 - - =∑ n x x x s k B )1 () ( ) ( 2 - - =∑ n n x x x s k

C n x ∑-=2)(lim )(μμσ D )1()()(2 --=∑∑n m x x x s k p 4. 若已知随机变量x 的变化范围为mm 0.6±;估计其分布为正态分布, 则标准不确定度为( ) A 2mm B 6mm C 1.8mm D 0.3mm 5. 用砝码检定一台案秤,对此项工作进行不确定度评定,则应评定的 量是( ) A 砝码的不确定度 B 台秤的不确定度 C 台秤的示值误差 D 台秤的示值误差的不确定度 四 计算题 1. 对某一物体质量进行6次测量,得到6个测量值 m 1=158.2g, m 2=158.3g, m 3=158.0g m 4=158.6g, m 5=158.1g, m 6=158.3g 求平均值的标准不确定度)(m u 2. 说明书给出电子秤的示值误差的范围为g 2.0±,资料未给出其他信 息,求示值误差给称量带来的标准不确定度)(m u ?。 3. 将以上两个不确定度合成,则合成标准不确定度为c u =? 4. 如欲使上题中计算出的不确定度达到大约95%的置信概率,则扩展 不确定度U =?(简易评定) 5. 正确表达最终的测量结果

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

测量不确定度评定例题

测量不确定度评定与表示 一.思考题 1.什么是概率分布? 答:概率分布是一个随机变量取任何给定值或属于某一给定值集的概率随取值而变化的函数,该函数称为概率密度函数。 2.试写出测量值X 落在区间[]b a ,内的概率p 与概率密度函数的函数关系式,并说明其物理意义。 答:()()dx x p b X a p b a ?= ≤≤ 式中,()x p 为概率密度函数,数学上积分代表面积。 物理意义 : 概率分布曲线 概率分布通常用概率密度函数随随机变量变化的曲线来表示,如图所示。 测量值X 落在区间[]b a ,内的概率p 可用上式计算 由此可见,概率p 是概率分布曲线下在区间[]b a ,内包含的面积,又称包含概率或置信水平。当9.0=p ,表明测量值有90%的可能性落在该区间内,该区间包含了概率分布下总面积的90%。在(一∞~+∞)区间内的概率为1,即随机变量在整个值集的概率为l 。当=p 1(即概率为1)表明测量值以100%的可能性落在该区间内,也就是可以相信测量值必定在此区间内。 3.表征概率分布的特征参数是哪些? 答:期望和方差是表征概率分布的两个特征参数。 4.期望和标准偏差分别表征概率分布的哪些特性? 答:期望μ影响概率分布曲线的位置;标准偏差σ影响概率分布曲线的形状,表明测量值的分散性。 5.有限次测量时,期望和标准偏差的估计值分别是什么? 答:有限次测量时,算术平均值X 是概率分布的期望μ的估计值。即:∑=n i i x n X 1 1= 有限次测量时,实验标准偏差s 是标准偏差σ的估计值。即:()() 1 1 2 --=∑=n X x x s n i i

CNAS-CL07测量不确定度的要求

CNAS-CL07 测量不确定度的要求( 2011年02月15日发布 2011年05月01日实施)Requirements for Measurement Uncertainty 目次 前言 (2) 1适用范围 (3) 2引用文件 (3) 3术语和定义 (3) 4通用要求 (3) 5对校准实验室的要求 (4) 6对标准物质/标准样品生产者的要求 (5) 7对校准和测量能力(CMC)的要求 (5) 8对检测实验室的要求 (6)

前言 中国合格评定国家认可委员会(CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 本文件代替CNAS-CL07:2006《测量不确定度评估和报告通用要求》。 测量不确定度的要求 1 适用范围 本文件适用于检测实验室、校准实验室(含医学参考测量实验室)和标准物质/标准样品生产者(以下简称为实验室)。 2 引用文件 下列文件中的条款通过引用而成为本文件的条款。请注意使用引用文件的最新版本(包括任何修订)。 2.1 ISO/IEC 指南98-3《测量不确定度表示指南》(GUM) 2.2 ISO/IEC 指南99《国际通用计量学基本术语》(VIM) 2.3 ISO 指南34《标准物质/标准样品生产者能力的通用要求》 2.4 ISO/IEC 17025《检测和校准实验室能力的通用要求》 2.5 ISO 指南35《标准物质定值的一般原则和统计方法》 2.6 ISO 80000-1《量和单位-第1部分:总则》 2.7 ISO 15195《医学参考测量实验室的要求》 2.8 ILAC-P14《ILAC对校准领域测量不确定度的政策》 3 术语和定义 本文件采用ISO/IEC Guide 99(VIM)中的有关术语及定义。 3.1 校准和测量能力(Calibration and Measurement Capability,CMC)按照CIPM(国际计量委员会)和ILAC的联合声明,对CMC采用以下定义:校准和测量能力(CMC)是校准实验室在常规条件下能够提供给客户的校准和测量的能力。CMC公布在: a) 签署ILAC互认协议的认可机构认可的校准实验室的认可范围中; b) 签署CIPM互认协议的各国家计量院(NMIs)的CMC公布在国际计量局(BIPM)的关键比对数据库(KCDB)中。 4 通用要求 4.1 实验室应制定实施测量不确定度要求的程序并将其应用于相应的工作。 4.2 CNAS在认可实验室时应要求实验室组织校准或检测系统的设计人员或熟练操作人员评估相关项目的测量不确定度,要求具体实施校准或检测人员正确应用和报告测量不确定度。还应要求实验室建立维护评估测量不确定度有效性的机制。

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

不确定度测定汇总

测量不确定度评定与表示 测量的目的是确定被测量值或获取测量结果。有测量必然存在测量误差,在经典的误差理论中,由于被测量自身定义和测量手段的不完善,使得真值不可知,造成严格意义上的测量误差不可求。而测量不确定度的大小反映着测量水平的高低,评定测量不确定度就是评价测量结果的质量。 图1 1 识别测量不确定度的来源 测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此必要时应尽可能画出测量系统原理或测量方法的方框图和测量流程图。 检测和校准结果不确定度可能来自: (1)对被测量的定义不完善; (2)实现被测量的定义的方法不理想; (3)取样的代表性不够,即被测量的样本不能代表所定义的被测量; (4)对测量过程受环境影响的认识不全,或对环境条件的测量与控制不完善; (5)对模拟仪器的读数存在人为偏移; (6)测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性,即导致仪器的不确定度; (7)赋予计量标准的值或标准物质的值不准确; (8)引用于数据计算的常量和其它参量不准确; (9)测量方法和测量程序的近似性和假定性; (10)在表面上看来完全相同的条件下,被测量重复观测值的变化。 分析时,除了定义的不确定度外,可从测量仪器、测量环境、测量人员、测量方

法等方面全面考虑,特别要注意对测量结果影响较大的不确定度来源,应尽量做到不遗漏、不重复。 2 定义 2.1 测量误差简称误差,是指“测得的量值减去参考量值。” 2.2 系统测量误差简称系统误差,是指“在重复测量中保持恒定不变或按可预见的方式变化的测量误差的分量。” 系统测量误差的参考量值是真值,或是测量不确定度可忽略不计的测量标准的测量值, 或是约定量值。系统测量误差及其来源可以是已知的或未知的。对于已知的系统测量误差可 以采用修正来补偿。系统测量误差等于测量误差减随机测量误差。 2.3 随机测量误差简称随机误差,是指“在重复测量中按不可预见的方式变化的测量误差的分量。” 随机测量误差的参考量值是对同一个被测量由无穷多次重复测量得到的平均值。随机测量误差等于测量误差减系统测量误差。 图2 测量误差示意图 2.4 测量不确定度简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。” 测量不确定度一般由若干分量组成。其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。 2.5 标准不确定度是“以标准偏差表示的测量不确定度。”

测量不确定度基础知识试卷资料

测量不确定度基础知识 考核试题 分数: 一判断题 1. 测量不确定度是表征被测量之值分散性的一个参数() 2. 标准不确定度就是计量标准器的不确定度() 3. 测量不确定度是一个定性的概念() 4. 单次测量的标准差是一次测量得到的标准差() 5. 正态分布是t分布的一种极端情况(即样本数无穷大的情况)() 二填空题 1.计算标准偏差的贝塞尔公式是 2.不确定度传播律的公式是 3.对服从正态分布的随机变量x来说,在95%的置信区间内,对应的包 含因子k = 4.已知随机变量x的相对标准不确定度为)(x u rel ,其(绝对)标准不确定度为) (x u= 5.已知某测量值y = 253.6kg,其扩展不确定度为0.37kg,,请正确表达 测量结果y = 三选择题 1.用对观测列进行统计分析的方法评定标准不确定度称为() A B类评定 B 合成标准不确定度 C 相对标准不确定度 D A类评定 2.一个随机变量在其中心值附近出现的概率密度较大,该随机变量 通常估计为() A 三角分布B均匀分布 C 正态分布 D 梯形分布 3.对一个量x进行多次独立重复测量,并用平均值表示测量结果, 则应用()式计算标准偏差 A 1) ( ) ( 2 - - =∑ n x x x s k B )1 () ( ) ( 2 - - =∑ n n x x x s k

C n x ∑-=2)(lim )(μμσ D )1()()(2 --=∑∑n m x x x s k p 4. 若已知随机变量x 的变化范围为mm 0.6±;估计其分布为正态分布, 则标准不确定度为( ) A 2mm B 6mm C 1.8mm D 0.3mm 5. 用砝码检定一台案秤,对此项工作进行不确定度评定,则应评定的 量是( ) A 砝码的不确定度 B 台秤的不确定度 C 台秤的示值误差 D 台秤的示值误差的不确定度 四 计算题 1. 对某一物体质量进行6次测量,得到6个测量值 m 1=158.2g, m 2=158.3g, m 3=158.0g m 4=158.6g, m 5=158.1g, m 6=158.3g 求平均值的标准不确定度)(m u 2. 说明书给出电子秤的示值误差的范围为g 2.0±,资料未给出其他信息,求示值误差给称量带来的标准不确定度)(m u ?。 3. 将以上两个不确定度合成,则合成标准不确定度为c u =? 4. 如欲使上题中计算出的不确定度达到大约95%的置信概率,则扩展不确定度U =?(简易评定) 5. 正确表达最终的测量结果

测量不确定度评定实例(完整资料).doc

此文档下载后即可编辑 测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 2 4 D v π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定度21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。 ①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()m m 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量

高度h 的6次测量平均值的标准差: ()m m 0026.0=h s 高度h 的误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围0.005mm ±,按均匀分布,示值的标准不确定度 0.0029 q u == 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3 由示值误差引起的高度测量的不确定度 q h u h V u ??= 3 由示值误差引起的体积测量的不确定度分量 ()()323233mm 04.1=+=h D u u u 3. 合成不确定度评定 ()()()3232221mm 3.1=++=u u u u c 4. 扩展不确定度评定 当置信因子3=k 时,体积测量的扩展不确定度为 3mm 9.33.13=?==c ku U 5.体积测量结果报告 () m m .93.88063±=±=U V V 考虑到有效数字的概念,体积测量的结果应为 () m m 48073±=V

测量不确定度的来源

测量不确定度的来源有哪些 从影响测量结果的因素考虑,测量结果的不确定度一般来源于:被测对象、测量设备、测量环境、测量人员和测量方法。 1 被测对象 a 被测量的定义不完善 被测量即受到测量的特定量,深刻全面理解被测量定义是正确测量的前提。如果定义本 身不明确或不完善,则按照这样的定义所得出的测量值必然和真实之间存在一定偏差。 b 实现被测量定义的方法不完善 被测量本身明确定义,但由于技术的困难或其它原因,在实际测量中,对被测量定义的 实现存在一定误差或采用与定义近似的方法去测量。 例如:器具的输入功率是器具在额定电压,正常负载和正常工作温度下工作时的功率。 但在实际测量中,电压是由稳压源提供的,由于稳压源自身的精度影响,使得器具的工 作电压不可能精确为额定值,故测量结果中应考虑此项不确定因素。故只有对被测量的 定义和特点,仔细研究、深刻理解,才能尽可能减小采用近似测量方法所带来的误差或

将其控制在一个确定范围内。 c 测量样本不能完全代表定义的被测量 被测量对象的某些特征如:表面光洁度,形状、温度膨胀系数、导电性、磁性、老化、 表面粗糙度、重量等在测量中有特定要求,但所抽取样本未能完全满足这些要求,自身 具 有缺陷,则测量结果具有一定的不确定度。 d 被测量不稳定误差 被测量的某些相关特征受环境或时间因素影响,在整个测量过程中保持动态变化,导致 结果的不确定度。 2 测量设备 计量标准器、测量仪器和附件以及它们所处的状态引入的误差。计量标准器和测量仪器 校准不确定度,或测量仪器的最大允差或测量器具的准确度等级均是测量不确定度评 定 必须考虑的因素。 3 测量环境 a 在一定变化范围或不完善的环境条件下测量 ·温度·振动噪声·供给电源的变化

一个简单的不确定度测量分析实例

一个简单的不确定度分析实例 摘自英国物理实验室出版的Measurement Good Practice Guide No.11《测量不确定度初学者指南》。 例3计算一根绳子长度的不确定度 步骤1.确定你从你的测量中需要得到的是什么,为产生最终结果,要决定需要什么样的实际测量和计算。你要测量长度而使卷尺。除了在卷尺上的实际长度读数外,你也许有必要考虑: λ卷尺的可能误差 卷尺是否需要修正或者是否有了表明其正确读数的校准? ?那么校准的不确定度是多少? 卷尺易于拉长吗?? 可能因弯曲而使其缩短吗?从它校准以来,它会改变多少?? ?分辩力是多少,即卷尺上的分度值是多少(如mm)? 由于被测对象的可能误差λ ?绳子伸直了吗?欠直还是过直? 通常的温度或湿度(或任何其它因素)会影响其实际长度吗?? ?绳的两端是界限清晰的,还是两端是破损的? 由于测量过程和测量人员的可能误差λ ?绳的起始端与卷尺的起始端你能对得有多齐? 卷尺能放得与绳子完全平行吗?? 测量如何能重复?? ?你还能想到其它问题吗? 步骤2.实施所需要的测量。你实施并记录你的长度测量。为了格外充分,你进行重复测量总计10次,每一次都重新对准卷尺(实际上也许并不十分合理!)。让我们假设你计算的平均值为5.017米(m),估计的标准不确定度为0.0021m(即2.1mm)。 对于仔细测量你还可以记录: ?你在什么时间测量的 你是如何测的,如沿着地面还是竖直的,卷尺反向测量与否,以及你如何使卷尺对准绳子的其它详细情况? ?你用的是哪一个卷尺 环境条件(如果你认为会影响你测量结果的那些条件)? ?其它可能相关的事项 步骤3.估计供给最终结果的各输入量的不确定度。以同类项(标准不确定度)表述所有的不确定度。你要检查所有的不确定度可能来源,并估计其每一项大小。假定是这样的情况:λ卷尺已校准过。虽然它没有修正必要,但校准不确定度是读数的0.1%,包含因子k=2(对正态分布)。在此情况下,5.017m的0.1%接近5mm。再除以2就给出标准不确定

计量基础知识试题答案D..

计量基础知识 一、填空题 1、《计量法》立法的宗旨是为了加强计量监督管理,保障国家计量单位制的统一和量值的准确可靠,有利于生产、贸易和科学技术的发展,适应社会主义现代化建设的需要,维护国家、人民的利益。 2、《计量法》规定,处理计量器具准确定度所引起的纠纷,以国家计量基准器具或者社会公用计量标准器具检定的数据为准。 3、《计量法》规定,县级以上人民政府计量行政部门可以根据需要设置计量检定机构,或者授权其他单位的计量检定机构,执行强制检定和其他检定、测试任务。 4、《计量法实施细则》规定,计量检定工作应当符合经济合理、就地就近的原则,不受行政区划和部门管辖的限制, 5、《计量法实施细则》规定,任何单位和个人不准在工作岗位上使用无检定合格印证或者超过周期检定以及经检定不合格的计量器具。 6、计量器具经检定合格的,由检定单位按照计量检定规程的规定,出具检定证书、检定合格证或加盖检定合格印。 7、检定证书、检定结果通知书必须字迹清楚、数据无误,有检定、核验、主管人员签字,并加盖检定单位印章。 8、检定合格印应清晰完整。残缺、磨损的检定合格印,应即停止使用。

9、计量检定人员出具的检定数据,用于量值传递、计量认证、技术考核、裁决计量纠纷和实施计量监督具有法律效力。 10、计量检定人员有权拒绝任何人员迫使其违反计量检定规程,或使用未经考核合格的计量标准进行检定。 11、强制检定的计量标准和强制检定的工作计量器具,统称为强制检定的计量器具。 12、在国际单位制的基本单位中,热力学温度的计量单位名称是开尔文,计量单位的符号是K。 13、在选定了基本单位之后,按物理量之间的关系,由基本单位以相乘、相除的形式构成的单位称为单位制。 14、在国家选定的非国际单位制单位中,旋转速度的计量单位名称是转每分,计量单位的符号是。 15、测量值为9998,修正值为3则真值为10001,测量误差为-3。 16、某仪表量程0~10,于示值5处计量检得值为4.995,则示值引用误差为0.05%,示值相对误差为0.1%。 17、对某级别量程一定的仪表,其允许示值误差与示值大小无关,其允许示值相对误差与示值大小有关。 18、误差分析中,考虑误差来源要求不遗漏、不重复。 19、对正态分布,极限误差取为三倍标准差的置信概率为0.9973,取为二倍标准差的置信概率为0.9545。 20、仪表示值引用误差是仪表示值误差与仪表全量程值之比。 21、对于相同的被测量,绝对误差可以评定不同的测量方法的测

不确定度基本教程

测量不确定度基础知识 中国电子产品可靠性与环境试验研究所 二零零零年 中国广州

目录 目录------------------------------------------------------------------------------ 1 第一章引言-------------------------------------------------------------------------- 1 一 的由来----------------------------------------------------------------- 1 第二章测量不确定度的基本概念----------------------------------------------- 2 一  测量不确定度的基本概念----------------------------------------------------- 5 三  测量不确定度的分类----------------------------------------------------------- 8 第三章测量不确定度的评定方法------------------------------------------------9一  合成标准不确定度的确定-------------------------------------- ------------11 三  何时用合成标准不确定度-------------------------------------- ------------14 二  结果的表达方法-------------------------------------------------------------- 14 四

不确定度评估基本方法

三、检测和校准实验室不确定度评估的基本方法 1、测量过程描述: 通过对测量过程的描述,找出不确定度的来源。 内容包括:测量内容;测量环境条件;测量标准;被测对象;测量方法;评定结果的使用。 不确定度来源: ● 对被测量的定义不完整; ● 实现被测量的测量方法不理想; ● 抽样的代表性不够,即被测样本不能代表所定义的被测量; ● 对测量过程受环境影响的认识不周全,或对环境的测量与控制不完善; ● 对模拟式仪器的读数存在人为偏移; ● 测量仪器的计量性能(如灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性; ● 测量标准或标准物质的不确定度; ● 引用的数据或其他参量(常量)的不确定度; ● 测量方法和测量程序的近似性和假设性; ● 在相同条件下被测量在重复观测中的变化。 2、建立数学模型: 建立数学模型也称为测量模型化,根据被测量的定义和测量方案,确立被测量与有关量之间的函数关系。 ● 被测量Y 和所有个影响量i X ),2,1(n i ,?=间的函数关系,一般可写为 ),2,1(n X X X f Y ,?=。 ● 若被测量Y 的估计值为y ,输入量i X 的估计值为i x ,则有),x ,,x f(x y n ?= 21。有时为简化 起见,常直接将该式作为数学模型,用输入量的估计值和输出量的估计值代替输入量和输出量。 ● 建立数学模型时,应说明数学模型中各个量的含义。 ● 当测量过程复杂,测量步骤和影响因素较多,不容易写成一个完整的数学模型时,可以分步评定。 ● 数学模型应满足以下条件: 1) 数学模型应包含对测量不确定度有显著影响的全部输入量,做到不遗漏。 2) 不重复计算不确定度分量。

测量不确定度评定 (讲义)第二章基础知识

第二部分基础知识 1测量结果的质量 检测或校准实验室用测量数据判定被测或被校准对象的质量,但测量数据的质量用什么来判定呢?最初是用测量误差。 1.1 测量误差的定义 测量误差=测量结果—真值 由于真值往往是不知道的,或者是很难知道的,所以测量误差也很难知道。测量误差的定义尽管是严格的正确的,能反映测量的质量和水平,但可操作性不强。人们需要找到一个能反映测量质量和水平又可操作的量。 1.2 测量不确定度是测量结果质量和水平的科学表达 尽管真值确切的大小人们并不知道,但真值的范围却是可能知道或可能估计的,例如本教室的长度大约是5m左右,即使用肉眼估计也不可能得出教室的长度为10m或2m的结论。如用钢卷尺来测量,哪怕粗糙一些也可有很大的把握认为教室的长度在 4.9~5.1m的范围内。既然真值的范围应该有可能知道或估计,那么测量的误差的范围也应该知道也有可能知道。于是,就诞生了测量不确定度最初的定义: ①由测量结果给出的被测量估计值的可能误差的度量 ②表征被测量的真值所处范围的评定 测量不确定度实质上就是对真值所处范围的评定,也是对测量误差可能大小的评定,也是对测量结果不能肯定的程度的评定,三种说法都是一样的,没有本质的区别。而这种评定必须与测量相联系。必须有可操作性,于是新的定义为: 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。 对这个定义进行层层解析: ①一个参数 ②一个表示被测量值分散性的参数 ③一个与测量结果相联系的参数 1) 没有测量结果就没有测量不确定度,定性分析不存在测量不确定度; 2) 仅给出测量结果而不给测量不确定度是没有意义的。 ④合理赋予的参数 1.3 测量不确定度与测量误差的联系与区别

相关文档
最新文档