耐热高分子材料设计的理论依据

耐热高分子材料设计的理论依据
耐热高分子材料设计的理论依据

有机高分子材料在长期高温环境中,会发生两种变化。一是物理变化,如软化、熔融等,破坏尺寸稳定性;另一种是化学变化,如发生分解、氧化、环化、交联、降解等反应,破坏成分稳定性。在低温或超低温环境中,高分子材料则可能出现硬化、脆化等现象。材料发生这些变化将导致性能下降,寿命缩短,乃至失去使用价值。评价高分子材料的耐热性和耐寒性,即要求在使用的温度环境中,材料在相对长时间内不发生上述变化。

对于结晶度高的材料,其使用温度主要由熔点Tm决定;对于无定型高分子材料,使用温度主要由玻璃化温度Tg决定。对于塑料来讲,Tg是其耐热性的标志,对于橡胶而言,Tg则是耐寒性的标志。此外,表征材料热性能的参数还有:分解温度Td(通常Td>Tm或Tf)和脆化温度Tb(Tb

提高材料耐热性的关键是提高材料的Tg、Tm和Td,主要方法为:

1)提高分子链的刚性,在主链中减少单键,引入共轭双键或环状结构。大部分耐热高分子主链上有此类结构,如聚砜,Tg=190℃。

2)提高分子链的规整性,提高结晶度;或引入极性基团,使分子间产生氢键,增强分子间作用力,提高Tg。如普通的无规聚苯乙烯(a-PS)的Tg=100℃,而全同立构聚苯乙烯(i-PS)可以结晶,其熔点Tm=240℃。

3)采用交联方法,限制分子链运动,既提高耐热性,又提高物理、力学性能。如辐射交联的聚乙烯,耐热温度达250℃,远高于聚乙烯的熔点;又如具有交联结构的热固性树脂,其耐热性一般都较好。

4)采用复合方法,如尼龙-66的热变形温度约80℃,将其与30%的玻璃纤维复合后,不仅强度提高,热变形温度也升高到250℃。

5)关于橡胶材料的耐热性。为了保证橡胶高弹性不受损,不能采用提高分子链刚性、或结晶、交联等方法,原则上只能从提高分子化学键键能着手(选用耐热橡胶品种),使之不易发生热降解或热交联。

改善橡胶材料的耐寒性。原则上应考虑增大分子链柔顺性,减少分子间作用力,削弱分子链中规整部分的化学结构和组成,降低Tg,降低结晶能力。

主要方法有:

1)增塑法。采用凝固点低、粘度大、沸点高、蒸汽压低的增塑剂,降低Tg。

2)改性法。改变橡胶分子链结构(如顺式、反式结构比例),降低结晶速度。硅橡胶(聚二甲基硅氧烷)是一种既耐热又耐寒的优良橡胶。使用温度从-70℃到250℃,原因在于一则Si—O键的键能大(大于C—C键),不易热分解,二则其内旋转位垒低,分子链柔顺性好。

高分子材料化学基础知识试题

《高分子材料化学基本知识》 试题部分: 一、单选题 1)基本难度(共24题) 1.在烷烃的自由基取代反应中,不同类型的氢被取代活性最大的是()。 A、一级 B、二级 C、三级 D、都不是 2.引起烷烃构象异构的原因是()。 A、分子中的双键旋转受阻 B、分子中的单双键共轭 C、分子中有双键 D、分子中的两个碳原子围绕C—C单键作相对旋转 3.下列物质通入三氯化铁溶液显色的是()。 A、苯甲酸 B、苯甲醇 C、苯酚 D、甲苯 试剂指的是()。 A、R-Mg-X B、R-Li C、R2CuLi D、R-Zn-X 5.下列能进行Cannizzaro(康尼查罗)反应的化合物是()。 A、丙醛 B、乙醛 C、甲醛 D、丙酮. 6.下列化合物中不能使溴水褪色的是()。 A、丙烯 B、丙炔 C、丙烷 D、环丙烷 7.下列不属于邻、对位定位基的是()。 A、甲基 B、氨基 C、卤素 D、硝基 8.下列化合物可以和托伦试剂发生反应的是()。 A、CH3CH2OH B、CH3COOH C、CH3CHO D、CH3COCH3 9.脂肪胺中与亚硝酸反应能够放出氮气的是()。 A、季胺盐 B、叔胺 C、仲胺 D、伯胺 10.下列化合物进行硝化反应时最容易的是( )。 A、苯 B、硝基苯 C、甲苯 D、氯苯 11.涤纶是属于下列哪一类聚合物() A、聚酯 B、聚醚 C、聚酰胺 D、聚烯烃 12.吡啶和强的亲核试剂作用时发生什么反应() A、-取代 B、-取代 C、环破裂 D、不发生反应 13.盖布瑞尔合成法可用来合成下列哪种化合物( ) A、纯伯胺 B、纯仲胺 C、伯醇 D、混合醚 14.尼龙-66是下列哪组物质的聚合物( ) A、己二酸与己二胺 B、己内酰胺 C、对苯二甲酸与乙二醇 D、苯烯 15.下列有机物命名正确的是() A、2,2,3-三甲基丁烷 B、2-乙基戊烷 C、2-甲基-1-丁炔 D、2,2-甲基-1-丁烯 16.一对单体共聚时,r1=1,r2=1,其共聚行为是() A、理想共聚 B、交替共聚 C、恒比点共聚 D、非理想共聚

高分子材料在各领域的应用与前景

200810230129 许莎莎08材化(一)班(材料合成与加工课程论文) 高分子材料在各领域的应用及前景 1高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进?步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 2 高分子材料各领域的应用 (1)高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “以塑代钢”、

“塑代铁”成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。PEFC的发展离不开新材料的发现及其在燃料电池中的应用, 今后随着高性能、低成木的高分子材料开发研究, 有希望促进实现商业应用, 成为

高分子材料与工程实习报告

南京林业大学 认知实习报告 学院:理学院 专业:高分子材料与工程 姓名:陈凯 学号:101102203 指导老师:陈泳 实习时间:2012年10月22日——2012年10月28日 实习地点:南京林业大学校内 一、目录 二、实习目的和意义 三、实习内容 “聚氨酯材料”讲座 “玻璃钢复合材料”讲座 “玻璃钢复合材料”讲座

参观实验室 三、认知实习总结 一、实习目的和意义 通过认识实习,使学生了解高分子材料的一些典型成型方法,了解高分子材料的应用领域。通过认识实习,学生应该将正在学习的聚合物加工基础、塑料橡胶成型原材料、塑料橡胶成型工艺与设备等专业理论知识与生产实际相结合,进一步理解和深化过去学到的知识为即将要学习塑料橡胶模具设计等课程积累生产实践经验。 二、实习内容 “聚氨酯材料”讲座 聚氨酯全称为聚氨基甲酸酯,英文名称是polyurethane,CASNo.:51852-81-4分子式:(C10H8N2O2·C6H14O3)x,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”是主链上含有重复氨基甲酸酯基团(NHCOO)的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。反应式如下:-N=C=O+HO-→-NH-COO-,聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲,脲基甲酸酯等基团。(氰酸说明:H—O—C≡N(正)氰酸H—N=C=O(异氰酸)有(正)氰

酸和异氰酸两种。游离酸是二者混合物,未曾分离开业,但其酯类则有两种形式。氰酸是有挥发性和腐蚀性的液体。有强烈的乙酸气味。密度1.14。沸点23.6℃。在水溶液中显示极强酸性。性不稳定,容易聚合。水解时生成氨和二氧化碳。与醇类作用时生成氨基甲酸酯。(正)氰酸酯R—O—C≡N易聚合,并易水解,很难得到纯态物。异氰酸酯R—N=C=O或O=C=N—R—N=C=O,一般是带有不愉快气味的液体。氰酸可由氰尿酸经加热分解而制得。) 聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。 根据所用原料的不同,可有不同性质的产品,一般为聚酯型和聚醚型两类。聚醚型聚氨酯主要是针对制备聚氨酯材料中的多元醇定义的,即制备聚氨酯的多元醇完全由聚醚型多元醇或者是在该体系中占有绝大部分。 聚醚多元醇分子结构中,醚键内聚能低,并易旋转,故有它制备的聚氨酯材料低温柔顺性能好,耐水解性能优良,虽然机械性能不如聚酯型聚氨酯,但原料体系粘度低,易与异氰酸酯、助剂等组份互溶,加工性能优良。 聚酯多元醇一般所指的是由二元羧酸与二元醇等通过缩聚反应得到的聚酯多元醇。广义上是含有酯基(COO)或是碳酸酯基

高分子材料常见知识简答

简单题: 1.超高分子量聚乙烯的性能特点,加工特点? 答:超高分子量聚乙烯为线型结构,其具有极佳的耐磨性,突出额高模量,高韧性,优良的自润滑性以及耐环境应力开裂性,摩擦系数低,同时还具有优异的化学稳定性和抗疲劳性。由于其相对分子质量极高,因而它的熔体粘度就极大,熔体流动性能非常差,几乎不流动,所以其不宜采用注射成型,宜采用粉末压制烧结。其与中相对分子质量聚乙烯、低相对分子质量聚乙烯、液晶材料或助剂共混后,具有了流动性。 2.硅烷交联两步法(水解、接枝) 两步法的原理是首先将乙烯基硅烷在熔融状态下接枝到聚乙烯分子上,在接枝过程中通常采用有机过氧化物作为引发剂。过氧化物受热分解产生的自由基能夺取聚乙烯分子链上的氢原子,所产生的聚乙烯大分子链自由基就能与硅烷分子中的双键发生接枝反应。接枝后的硅烷可通过热水或水蒸气水解而交联成网状的结构。 3.论述聚丙烯结构与性能特点,加工特性? 聚丙烯具有优良的抗弯曲疲劳性,强度、刚度、硬度比较高,具有优异的电绝缘性能,主要用于电信电缆的绝缘和电气外壳,具有良好的耐热性,在室温下不溶于任何溶剂,但可在某些溶剂中发生溶胀。耐候性差,易燃烧。 加工性能:

①其吸水率低,因此成型加工前不需要对粒料进行干燥处理。 ②聚丙烯的熔体接近于非牛顿流体,粘度对剪切速率和温度都比较敏感,提高压力或增加温度可以改善其熔体流动性。 ③聚丙烯是结晶类聚合物,所以成型收缩率比较大,且具有较明显的后收缩性。 ④聚丙烯受热时容易氧化降解,在高温下对氧特别敏感,为防止其在加工过程中发生热降解,一般在树脂合成时即加入抗氧剂。 ⑤聚丙烯一次成型性优良,几乎所有的成型加工方法都可适用,其中最常采用的是注射成型和挤出成型。 4.简述聚1-丁烯与其它聚烯烃相比,聚1-丁烯的特点? 1、具有刚性 2、较高的拉伸强度 3、好的耐热性 4、良好的化学腐蚀性以及抗应力开裂性,在油、洗涤剂和其它溶剂中,不会像高密度聚乙烯等其它聚烯烃一样产生脆化,只有在98%浓硫酸,发烟硝酸,液体溴等强度氧化剂的作用下,才会产生应力开裂。 5、优良的抗蠕变性,反复绕缠而不断,即使在提高温度时,也具有特别好的抗蠕变性 6、具有超高相对质量聚乙烯相媲美的非常好的耐磨性 7、可容纳大量的填料,在90-100℃下可长期使用。 5.论述聚氯乙烯结构与性质的关系?

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

高分子材料毕业设计

ChuZhou Vocational Technology College 高分子材料应用技术专业 毕业论文 课题名称:多层共挤高阻隔薄膜的工艺流程 学号:QQ:359973519 班级:09级高分子材料应用技术 姓名: DChris 指导教师:老师好 2011年10月30日

目录 摘要 前言 第一章多层共挤高阻隔薄膜的概述 第一节高阻隔薄膜的概念及特点 1.1.1 概念 1.1.2 产品特点 1.1.3 应用方向 第二节高阻隔薄膜产品的成分 1.2.1 阻隔树脂 1.2.2 肉类包装膜(七层高阻隔薄膜)结构分析 1.2.3 EVOH的性能与特点 第三节肉类包装膜 1.3.1 肉品包装的必要性 1.3.2 肉类包装膜产品特点 第二章多层共挤高阻隔薄膜的生产工艺 第一节多层共挤高阻隔薄膜的工艺介绍 2.1.1 生产工艺 2.1.2 工艺特点 第二节多层共挤高阻隔薄膜的生产原理及设备 2.2.1 原材料的选择和质量控制 2.2.2 生产设备(七层共挤吹塑薄膜的机组设备及型号)第三节肉类包装膜的生产工艺流程 2.3.1 多层共挤包装薄膜(肉类包装膜)成型原理 2.3.2 生产工艺 2.3.3 生产工艺流程示意图及设备 第四节影响阻隔性的主要因素 第三章多层共挤高阻隔薄膜的展望 第一节肉类高阻隔薄膜的发展趋势 3.1.1 肉类高阻隔薄膜的发展及展望 3.1.2 七层以上高阻隔共挤吹塑薄膜生产技术的发展趋势第四章多层共挤高阻隔薄膜的总结 指导老师评语 致谢 参考文献

多层共挤高阻隔薄膜的生产工艺流程设计 摘要 本次的论文主要是讨论和研究多层共挤高阻隔薄膜的生产工艺及应用方向,并特别举例介绍目前市场上所销售的肉类包装膜(火腿肠),其外包装即为七层共挤薄膜,具有很强的阻气阻油性能,市场需求量也很大。在叙述生产过程的同时,也对高阻隔薄膜的前景进行了分析讨论,目前在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 关键词:多层高阻隔薄膜工艺 前言 改革开放几十年来,我国塑料包装行业得到稳步的高速发展,已经从一个初期分散性的行业发展成为独立的、产品门类齐全的现代化产业体系,对塑料制品的年均需求增长率在不断攀升。塑料制品行业成为了增长速度最快,是具有广阔发展前景的朝阳产业。其中,薄膜是用量最大的塑料包装材料,由于其无毒、质轻、包装美观、成本低的特点,因而应用领域在不断拓展,几乎渗透到工农产品和日常生活用品的各个方面,塑料包装薄膜行业的投资正在快速增长。因此,把握国际、国内塑料包装薄膜的技术和市场发展的总体趋势,对于审时度势地进行前瞻性正确决策具有重要现实意义。 随着社会的发展和人们生活水平的提高,产品的分类越来越细,对于产品的包装并不仅仅局限在视觉效果上,而是要根据产品的特点和市场的需求,朝功能化、多样化方向纵深开发。近年来,技术的进步使得塑料包装薄膜的功能化发展趋势日渐明显,高要求、高技术含量的塑料包装薄膜正成为许多企业的支柱产业和研发目标,其包装功能是多样的,除对一般薄膜的抗静电、抗粘连要求外,主要通过原材料、助剂或工艺的调整赋予包装薄膜某些特殊的功能,如适应香烟和饮料包装挺括性与紧贴性需要的热收缩性、适应蔬菜和水果包装需要的透气性、适应电子元件包装需要的导电性、适应可透视包装需要的高光学性能、适应金属设备和仪器包装需要的防锈性以及日益在食品、化妆品、医药方面广泛需要的阻隔性和抗菌性等,薄膜的功能化提高了产品的附加值。 其中阻隔性塑料包装薄膜是目前发展最快的功能薄膜之一。在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 近年来,在日本、欧洲阻隔性薄膜的消费量每年以10%左右的速度增长;而美国阻隔性树脂的消费年均增长13.6%,尽管在我国阻隔性薄膜只是近几年才引起薄膜生产企业的重视,但早已在食品、医药等行业得到广泛的应用,消费市场巨大,有很大的发展空间,发展速度也很快,国内许多相关企业都在根据人们的生活习惯和各类阻隔性包装的实际要求,认真研究相关的包装市场,找准切入点,以期有所收获。综观阻隔性材料的开发及其包装薄膜生产工艺技术的发展状况,笔者认为有一点应该引起我国相关部门的重视,无论是阻隔性原料树脂,还是阻隔性薄膜的生产设备和相关工艺技术,国内科研院所和企业的自主开发能力缺乏,严重依赖进口,国内绝大多数企业实际上还停留在来料加工的初级阶段,包装行业技术整体落后的局面依然

高中化学选修5之知识讲解_应用广泛的高分子材料 功能高分子材料_基础-

应用广泛的高分子材料 功能高分子材料 【学习目标】 1、了解常见功能高分子材料的成分及优异性能,了解“三大合成材料”的结构、性能和用途; 2、了解功能高分子材料在人类生产、生活中的重要应用,了解治理“白色污染”的途径和方法; 3、了解各类功能高分子材料的优异性能及其在高科技领域中的应用; 4、以合成高分子化合物的背景,了解有机合成在发展经济、提高生活质量方面的贡献。 合成材料品种很多,按用途和性能可分为合成高分子材料(包括塑料、合成纤维、合成橡胶、黏合剂、涂料等);功能高分子材料(包括高分子分离膜、液晶高分子、导电高分子、医用高分子、高吸水性树脂等)和复合材料。其中,被称为“三大合成材料”的塑料、合成纤维和合成橡胶应用最广泛。 【要点梳理】 要点一、塑料【应用广泛的高分子材料 功能高分子材料#应用广泛的高分子材料 功能高分子材料】 1.塑料的成分。 塑料的主要成分是合成高分子化合物即合成树脂。在塑料的组成中除了合成树脂外,还有根据需要加入的具有某些特定用途的加工助剂以改进其性能。如,提高柔韧性的增塑剂,改进耐热性的热稳定剂,防止塑料老化的防老化剂,赋予塑料颜色的着色剂等。 3.几种重要的塑料的性质。 (1)聚乙烯塑料的性质。 ①聚乙烯塑料无嗅、无毒、具有优良的耐低温性能,最低使用温度可达- 100℃;化学稳定性好,能耐大多数酸、碱的腐蚀;常温下不溶于一般溶剂,吸水性小;电绝缘性能优良。 ②聚乙烯塑料品种很多,应用广泛,主要有:薄膜(低密度聚乙烯,有良好的透明度和一定的抗拉强度)用于各种食品、医药、衣物、化肥等的包装;中空制品(高密度聚乙烯,强度较高)用于塑制各种瓶、桶、罐、槽等容器;管板材(高密度聚乙烯)用于铺设地下管道和建筑材料;纤维(线型低密度聚乙烯)用于生产渔网绳索;包覆材料,用做包覆电缆、电线的高频绝缘材料。 (2)酚醛树脂。 ①酚醛树脂是用酚类(如苯酚)与醛类(如甲醛)在酸或碱的催化下相互缩合而成的高分子化合物。 ②酚醛树脂属于热固性塑料,体型酚醛树脂受热后都不能软化或熔融,也不溶于任何溶剂。 ③酚醛树脂主要用做绝缘、隔热、难燃、隔音器材和复合材料。 要点二、合成纤维【应用广泛的高分子材料 功能高分子材料#合成纤维】 1.化学纤维是人造纤维和合成纤维的统称。 天然纤维:如棉花、羊毛、麻等 化学纤维: 人造纤维:如黏胶纤维 合成纤维:如“六大纶”、光导纤维等 纤维

高分子材料在交通运输中的应用

高分子材料在交通运输中的应用 随着科学技术的不断进步,具有质轻、高强、耐腐蚀、易成型等优点的高分子材料及其复合材料越来越多地在现代交通运输业(包括基础设施建设和海上陆地交通运输工具)中得到广泛的应用。应用于交通运输行业的高分子材料主要包括塑料及其复合材料和橡胶两大类,当然其他以高分子材料为基础原料的材料如胶粘剂、油漆等也大量用于交通运输业,但用量远远低于塑料和橡胶。 ??? 交通运输行业中,目前得到广泛应用的高分子材料主要包括塑料及其复合材料、橡胶、胶粘剂等,本文分别从塑料及其复合材料和橡胶两个方面介绍高分子材料及其复合材料在交通运输行业包括交通运输基础设施和交通运输工具上的应用现状。 一、塑料及其复合材料在交通运输中的应用 ??? 塑料及其复合材料在基础设施建设方面,主要应用于路基、高等级公路的护栏,各种交通标识、标牌;高速铁路的钢轨扣件(包括绝缘板、垫和挡板座等),轨道的填充材料、弹性枕木等部件。而在交通运输工具方面,应用塑料材料最多的是汽车工业,而在机车上,塑料则主要用于无油润滑部件、制动盘摩擦片、车窗玻璃等,在其他类型的交通运输工具上,塑料及其复合材料的应用也越来越广泛。 ??? 1、基础设施 ???(1)公路基础设施 ??? 根据我国公路交通的阶段发展目标,到2010年全国公路总里程将达到210~230万公里,到2020年全国公路总里程将达到260~300万公里,高速公路里程达到7万公里以上。虽然我国高等级公路建设发展迅速,但因交通量大、车辆超载严重、车速快,对路基路面的危害导致我国一部分高等级公路路面损坏现象十分严重,对路基路面的强度和稳定性都提出了更高的要求。 ??? 聚苯乙烯(PS)泡沫板材在国外作为路基填充材料已有30年历史,在美国和欧洲已被普遍采用。PS泡沫板材在公路建设上的应用,可有效改善路面质量,更好地保证道路完好平坦。由于PS泡沫比强度高、质量小、可承受较大的交通负荷、轻质防水,能更有效地防止路面在使用过程中雨雪对路基的侵蚀,提高了防止路面局部塌陷的能力。PS泡沫材料的优异性能能够在一些特殊地段大显身手,如在沼泽地带的路段上用作路基填料,可大大减少路面的沉降及侧压力,利于保持路面的稳定完好及地下排水系统的畅通;用于冻土地区还可减少冰冻现象;在雨雪较多的山地,还可提高坡体的稳定性,使坡体变得稳定坚固,能有效减少山体滑坡现象的发生。用聚苯乙烯泡沫板作路基填料的费用低廉,维护工作量和费用也大大降低。另外,路基用PS泡沫板还可以采用包装材料的回收料来制作,为包装废弃物寻找了一个合理的去处。尽管我国开发路基用聚苯乙烯泡沫板材才刚刚起步,但在沪宁高速苏州段路基上的应用已经为我们展示了良好的市场前景。 ??? 高等级公路防护栏也是塑料及其复合材料应用的一个重要方面。现在高等级公路使用的防护栏多用钢材制成,但钢护栏自重大,安装维修不方便;耐腐蚀性差,易受汽车尾气的严重侵蚀;标识能力差,且耐撞击性能也有待提高。所以,现在很多国家都在大力研究塑料复合材料护栏,并已经取得了一些突破性进展。玻璃纤维增强塑料(GFRP)强度高,刚度小,受撞击

高分子材料化学基本知识

《高分子材料化学基本知识》 试题部分:一、单选题 1)基本难度(共24题) 1.在烷烃的自由基取代反应中,不同类型的氢被取代活性最大的是()。 A、一级 B、二级 C、三级 D、都不是 2.引起烷烃构象异构的原因是()。 A、分子中的双键旋转受阻 B、分子中的单双键共轭 C、分子中有双键 D、分子中的两个碳原子围绕C—C单键作相对旋转 3.下列物质通入三氯化铁溶液显色的是()。 A、苯甲酸 B、苯甲醇 C、苯酚 D、甲苯 4.Grignard试剂指的是()。 A、R-Mg-X B、R-Li C、R2CuLi D、R-Zn-X 5.下列能进行Cannizzaro(康尼查罗)反应的化合物是()。 A、丙醛 B、乙醛 C、甲醛 D、丙酮. 6.下列化合物中不能使溴水褪色的是()。 A、丙烯 B、丙炔 C、丙烷 D、环丙烷 7.下列不属于邻、对位定位基的是()。 A、甲基 B、氨基 C、卤素 D、硝基 8.下列化合物可以和托伦试剂发生反应的是()。 A、CH3CH2OH B、CH3COOH C、CH3CHO D、CH3COCH3 9.脂肪胺中与亚硝酸反应能够放出氮气的是()。 A、季胺盐 B、叔胺 C、仲胺 D、伯胺 10.下列化合物进行硝化反应时最容易的是 ( )。 A、苯 B、硝基苯 C、甲苯 D、氯苯 11.涤纶是属于下列哪一类聚合物?() A、聚酯 B、聚醚 C、聚酰胺 D、聚烯烃 12.吡啶和强的亲核试剂作用时发生什么反应?() A、-取代 B、-取代 C、环破裂 D、不发生反应 13.盖布瑞尔合成法可用来合成下列哪种化合物? ( ) A、纯伯胺 B、纯仲胺 C、伯醇 D、混合醚 14.尼龙-66是下列哪组物质的聚合物? ( ) A、己二酸与己二胺 B、己内酰胺 C、对苯二甲酸与乙二醇 D、苯烯 15.下列有机物命名正确的是() A、2,2,3-三甲基丁烷 B、2-乙基戊烷 C、2-甲基-1-丁炔 D、2,2-甲基-1-丁烯 16.一对单体共聚时,r1=1,r2=1,其共聚行为是()? A、理想共聚 B、交替共聚 C、恒比点共聚 D、非理想共聚 17.在缩聚反应的实施方法中对于单体官能团配比等物质量和单体纯度要求不是很严格的缩聚是()。 A、熔融缩聚 B、溶液缩聚 C、界面缩聚 D、固相缩聚 18.下列哪种物质不是聚合物?() A、葡萄糖 B、聚乙烯 C、纤维素 D、胰岛素 19.单体含有下列哪种官能团时不能进行缩聚反应()? A、-COOH B、-NH2 C、-OH D、-NO2 20.下列哪种物质不能作为阳离子聚合的引发剂()。 A、正碳离子盐 B、有机碱金属 C、质子酸 D、路易斯酸 21.苯醌是常用的分子型阻聚剂,一般用单体的百分之几就能达到阻聚效果()。 A、1.0%-0.5% B、1.0%-2.0% C、2.0%-5.0% D、0.1%-0.001% 22.下列哪种物质不是高效阻聚剂()。

高分子材料基本知识

链段:从高分子链中划分出来的最小运动单元 柔顺性:高分子链能改变其构象的性质 近程结构:即第一层次结构,指单个高分子的一个或几个结构单元的化学结构和立体化学结构 远程结构:即第二层次结构,指单个高分子的大小和在空间所在的各种形态 结构:组成高分子不同尺度的结构单元在空间的排列 构型:分子中由化学键所固定的原子在空间的几何排列 构象:由于单键的内旋转而产生的分子在空间的不同形态 高弹性:小应力作用下,由于高分子链段的运动而产生的很大的可逆变形 强迫高弹性:玻璃态聚合物在外力作用下,出现的高弹形变 力学松弛:高聚物的力学性质随时间的变化表现的性质 蠕变:在恒温恒负载下,高聚物材料的形变随时间的延长而逐渐增大的现象5 应力松弛:在恒温和保持形变不变的情况下,高聚物内部应力随时间延长逐渐衰减的现象 滞后现象:在交变应力作用下,高聚物应变落后于应力变化的现象 内耗:橡胶及其他高分子材料在形变过程中,一部分弹性形变转变热能的损耗的现象 冷拉:高聚物材料的低温下受外力作用而产生大变形的现象 银纹屈服:在拉伸应力作用下,高聚物某些脆弱部分由于应力集中而产生空化条纹形变区 剪切屈服:高聚物在拉伸或压缩应力作用下,与负载方向呈45度截面上产生最大剪切力,从而引发高分子链沿最大剪切面方向上产生滑移形变,从而导致材料形状扭的现象 高聚物材料发生脆性断列时,其断裂面比较光滑;韧性断裂时,由于分子间滑移,断裂面较为粗糙,有凹凸不平的丝状物 流变性:物质流动与变形的性能及其行为表现 牛顿流体:流动规律符合牛顿粘性定律的流体 剪切流动:产生横向速度梯度的场的流动 拉伸流动:产生纵向速度梯度的场的流动 剪切变稀流体:随剪切应力或剪切速率的升高表观黏度降低的流体 挤出胀大:橡胶等高聚物熔体基础口型后,挤出物的尺寸及断面形状与口型不同的膨胀 可塑度:施加一定负载在一定温度的时间下,测定形变负载移去后变形保持的能力 切力增稠流体:随剪切速率增加,切应力增加的速率增大,即切黏度随切应力。剪切速率的增大而上升的流体 熔融指数:由标准熔体流动速率测定仪测定,用来表征热塑性塑料的流动性 门尼黏度:一定温度(100)一定转子速度(2r/min)条件下测定未硫化胶对转子的转动阻力。橡胶工业中作为胶料流动的指标 焦烧:所谓焦烧,是胶料在硫化前的操作或停放过程中,发生了不应有的提前硫化现象。其表现为在胶料中有较硬的硫化小粒子存在,胶料塑性明显减少。 1.高分子特征: 1分子量很高或分子链很长2数目很大的结构单元通过共价键重复连接而成3结构具有不均一性4大多数高分子分子链有一定柔顺性 2.线性:细长的线/能溶解熔融,易加工成型 支链性:空间中二维增长形成/更以溶解,强度低,易老化 交联型:三维网状大分子/不溶解,能溶胀,不熔融,强度高,弹性好 3.柔顺性比较:1)PE>PP>PS取代基体积,单键内旋转位阻大,柔顺性差2)PP>PVC>PAN 取代基极性大,分子间的相互作用大,分子链内旋转受阻,柔顺性差3)氯丁橡胶〉PP>PVC取代基数目多,非键合原子数目多,阻力大4)BR>NR>SBR取代基体积大(同1) 4.结晶度:指结晶部分用质量或体积表示的百分数 结晶度对高聚物性能的影响:1)力学强度模量增大,韧性抗冲击强度降低2)光学性质透明度降低3)耐热性抗渗透性增强 5.取向方式:1)单轴,取向方向上强度增加,垂直与取向方向上强度降低2)双轴,平面方向上强度增加 6.高分子热运动的特点:1运动单元多重性(键长键角原子链节链段大分子链)2高分子运动的时间依赖性(松弛特性大分子运动需要较长时间)3高分子运动温度依赖性(运动单元松弛特性的温度依赖性) 7、试画出高聚物材料典型的应力-应变曲线,并从分子运动的角度对曲线加以解释,并简单介绍一下其影响因素。 2)原因:a分子链长度不够一个链段长度时运动单位为大分子,所以Tg、Tf重合,M↑分子链解冻需Q↑Tg↑ b M>链段M,运动单元为整个大分子和链段,体现链段运动的高弹态出现。链段大小主要取决于分子链段柔顺性和邻近分子间的相互影响,所以,Tg不变,M↑大分子间相对位移阻力↑,所以Tf↑ 10.影响玻璃化转变温度Tg的因素 1)分子结构的影响:柔性增加,Tg下降

常用高分子材料汇总

常用高分子材料汇总

————————————————————————————————作者:————————————————————————————————日期: 2

常用高分子材料总结 塑料:1、热固性塑料 2、热塑性塑料:①通用塑料(五大通用塑料) ②工程塑料(通用工程塑料特种工程塑料) 工程塑料具有更高的力学强度,能经受较宽的温度变化范围和较苛刻的环境条件,具有较高的尺寸稳定性, 五大通用工程塑料为:聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚。 分 类 名称概述性能特点加工性能主要应用 酚醛树脂(PF)酚类和醛类缩聚而 成的合成树脂的总 称。最常用的是苯 酚和甲醛 力学强度高;性能稳定;坚硬耐磨; 耐热、阻燃、耐腐蚀;电绝缘性良好; 尺寸稳定性好;价格低廉;色深,难 于着色 本身很脆,成型时需排气,须加入纤 维或粉末状填料。有层压和模压 电绝缘材料(俗称电 木)、家具零件、日用品、 工艺品、耐酸用的石棉 酚醛塑料 3

热固性塑不饱和聚酯 (UP) 由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨 基 塑 料 脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电 弧性和一定的机械强度,有自熄性、 无臭、无味、耐热性、耐水性比酚醛 塑料稍差,外观美丽鲜艳,耐霉菌, 制造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低, 而且耐沸水煮,耐热性也优于脲醛塑 料一般可在150-200℃范围内使用, 并有抗果汁、洒类饮料的沾污,密胺 餐具而出名 (UMF)制品具有优良 的耐电弧性能和很高的 机械强度,以及良好的 电绝缘性和耐热性;耐 电弧防爆电器设备配 件,要求高强度的电器 开关和电动工具的绝缘三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 4

第四章 高分子材料的配方设计

高分子材料加工工艺 Polymer Processing Engineering
青岛科技大学材料科学与工程学院 材料物理教研室
1

高分子材料加工工艺
第四章 高分子材料的配方设计
2

Contents
高分子材料制品设计的一般原则和程序
高分子材料配方设计
3

第四章 高分子材料的配方设计
需求是高分子材料研究、开发的原动力,汽车轻量化、火 车提速、宇宙揭秘、海洋开发等都对高分子材料提出了新的要 求。 研制新的高分子材料,实现产业化、开发产品的新价值, 造福于人类,是高分子材料科学与技术工作者的职责。另一方 面,高分子材料的性能是左右其工业价值的重要因素。 高分子化合物的结构与性能、材料的组成是影响材料性能的 主要因素;制造方法对材料性能具有一定的影响。
4

在配方设计时,需注意以下因素对材料性能的影响: ? 制样条件(成型方法、成型条件、试样形状等) ---例:当采用注射成型、挤出成型和模压成型制作试样 时,成型压力依次递减,试样的分子取向程度也依次递减, 结果性能也不同; ---如:注射成型时,料筒和模具的温度越高,试样分子取 向的程度越低。 ---对于薄的试样,由于表面层所占的比例较大,其对拉伸 强度等的影响比厚试样的大。 ---对于结晶性高分子,成型条件不仅影响分子取向,而且 也影响结晶性,对性能的影响较显著。
5

? 性能测试条件 如:升温速度、作用力的形式及速度)。 ?外界因素 如:温度、湿度、使用环境及光的波长等,如耐热性受氧 的影响大;耐候性受光,尤其是紫外光的影响显著。 一方面,制品对性能的要求是多方面的,也是干差万别 的;另一方面,测定的性能是受制样条件、测试条件及外界 因素等影响的相对值。 作为从事高分子材料成型加工技术人员必须了解这些影 响因素,并在制品的设计和配方设计时充分考虑到这些影 响。
6

耐热高分子材料及其应用

耐热高分子材料及其应用 二耐热高分子材料的分类 耐热高分子材料按结构可分为:①芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酰胺等;②杂环聚合物类,如聚酰亚胺、聚苯并咪唑、聚喹 啉等;③梯形聚合物类,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹 啉类梯形聚合物等;④元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物;⑤无机聚合物类。 三影响耐热高分子材料耐热性的因素 环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐照等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指材料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一般热塑性聚合物的耐热性低于热稳定性。 四提高耐热高分子材料耐热性的措施

①提高分子中原子间的键能;②增加分子中的环结构和共轭程度;③增加分子链间的交联程度;④增加分子的取向度和结晶度;⑤加入稳定剂。但在采取上述措施时,则不同程度地降低了可加工性。目前,合成在500℃以上、于空气中能长期使用的高分子材料,仍然是人们追求的目标。然而,耐热高分子材料研究工作的发展趋势,已不是单纯创制耐热等级更高的新品种,而是着重解决提高耐热性与可加工性之间的矛盾,并不断降低成本,以便进一步扩大应用范围。 五耐热高分子的选用条件 ①在热或热、氧同时耐热高分作用下,不发生化学变化,一般选用元素高分子(如含氟高分子、有机硅高分子)和杂环高分子;②除用作烧蚀材料外,要求在使用温度下仍能保持一定的物理、力学性能,一般选用分子链刚性大的、玻璃化温度较高的材料或适度交联的材料。 六耐热高分子材料的发展及应用 在芳杂环耐热高分子材料中,以聚酰亚胺和芳香族聚酰胺这两类聚合物发展最快,并已实现相当规模的工业化生产。聚酰亚胺在315℃的空气中,能耐1000h,其高温机械性能仍然良好,且耐磨、耐辐射、耐燃性能优异,短期能经受482℃的高温处理。聚酰亚胺的产品已系列化,有薄膜、层压材料、塑料、纤维、涂料、胶粘剂、浸渍漆、分离膜、泡沫塑料、光致抗蚀剂、半导体器件用绝缘涂层等各种形式,因而在航天、电气、电子等许多工业部门中,都得到了越来越广泛的应用。芳香族聚酰胺已被广泛用作高强度和高模量有机纤维、抗燃纤维、反渗透膜、耐热电气绝缘材料等。各国为了解决石棉产品引起的环境公害问题,正在使用芳香族聚酰胺纤维作为石棉的替代品之一,并用于高性能复合材料方面。

高分子材料课程设计

2011级高分子材料课程设计题目:羟丙基纤维素合成 学院名称:材料工程学院 专业:化学工程与工艺 班级: 学号: 姓名: 指导教师姓名: 二零一四年六月

一、绪论 (1) 1.羟丙基纤维素发展简史 (1) 2.羟丙基纤维素的特性和结构式 (1) 3. 羟丙基纤维素的应用 (2) 3.1 HPC在医药工业的应用 (3) 3.2 HPC在食品工业中的应用 (4) 3.3 HPC在聚氯乙烯(PVC)悬浮聚合中的应用¨ (4) 3.4 HPC在建筑行业的应用 (5) 3.5 其他应用 (5) 二、羟丙基纤维素合成方法 (5) 2.1 非均相法 (5) 2.1.1 液相法 (5) 2.1.2 气相法 (7) 2.2 均相法 (7) 三、原料 (8) 四、有关设计参数 (8) 五、物料衡算 (9) 六、性能检测设计 (11) 1.温度对HPC 溶液流变性的影响 (11) 2. HPC 质量分数对HPC 溶液流变性能的影响 (12) 3. 醚化剂用量对HPC 溶液流变性能的影响 (13) 4. HPC 溶液的非牛顿指数 (14) 七、参考文献 (17)

一、绪论 1.羟丙基纤维素发展简史 纤维素是自然界最丰富的可更新资潭,自1973年世界上出现了石油涨价之后, 再一次引起了人们的重视.纤维素衍生种类很多. 一般可分为纤维素醋和纤维素醚两大类, 纤维素醚又可分 为离子型和非离子型. 轻丙基纤维索(H P C)是国外继乙墓纤维素( E C )、羚乙基纤维素( H E C )、经乙基甲基纤维素(H E M C )之后工业化生产较早的非离子型纤维索醚之一。国外离子型纤维素醚的生产和用量都很大, 可广泛应用于建筑、石油开采、涂料、食品及食品包装. 高分子合成医药辅料等各个行业, 其生产量约占纤维素醚总产量的一半左右. 发展速度远远超过离子 型纤维素醚类. 我国纤维素衍生物工业虽然已有几十年的发展史, 但除几 种纤维素醋和纤维素醚中的玫甲基纤维素钠( 离子型. 年产量 约3 万吨) 具有一定的生产规模外, 世界上用量越来越大的非 离子型纤维素醚, 产盘甚徽。因此, 我国的纤维素醚, 特别是非离子型纤维素醚的发展应引起有关部门和广大科技人员的高度 重视. 2.羟丙基纤维素的特性和结构式 羟丙基纤维素(HPC)是一种水溶性的非离子型纤维素醚,它是一种以天然纤维素为原料经化学改性制得的半合成型高分子 聚合物,HPC具有热塑性、胶结能力、乳化能力、发泡能力以及

耐热高分子材料及其应用

耐热高分子材料及其应用 姓名 (常州轻工职业技术学院常州 213164) 摘要:随着尖端科学技术的发展,特别是高速飞行、火箭、宇宙航行、无线电、工程技术等的飞跃发展,对高分子材料的耐热性提出了越来越高的要求。近年来世界各国科学家正在开发这方面新技术,很多材料已经进行大规模生产。耐高温高分子材料一直是大家关注的热点,本文首先对耐热高分子材料作一概述,然后从多方面介绍耐热高分子材料在实际中的应用以及对其未来的展望。 关键词:耐热高分子耐热性高分子材料耐热材料应用 1 耐热高分子材料 1.1 耐热高分子材料的定义 耐热高分子材料一般是指在250℃下连续使用仍能保持其主要物理性能的聚合物材料[1]。在电气绝+缘材料范畴,通常把使用温良长期在150℃以上的高分子材料称为谢热高分子绝缘材科. 1.2 耐热高分子材料的影响因素 环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐射等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指树料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一种热塑性聚合物的耐热性低于热稳定性。 1.3 耐热高分子材料的分类 耐热高分子材料按结构可分为: (1)芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酷咬等; (2)杂环聚合物类,如聚酰亚胺、聚苯并咪唑、喹恶林等; (3)梯形聚合物,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹恶林类梯形聚合物等: (4)元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物; (5)无机聚合物类. 2 高分子材料的耐热性与结构 2.1 对高分子材料耐热性的要求 关于高分子材料的耐热性,至今尚无完全统一的规定,不同研究者往往有不同的解释[2]。Eirich,等人在1961年曾对高分子材料的耐热性提出三条基本要求:有高熔点和高软化点;高的抗热解性;有良好的耐热氧化性和耐化试学剂性。但通常首先注意材料的最高工作

智能高分子材料的应用与进展 论文

智能高分子材料的应用与进展 (华北科技学院化工B082班卫星红 200801034207) 摘要智能材料已成为当今借界高度关注的热点和焦点 ,它有着广阔的应用前景 ,取得了丰富的研究成果。从合成、加工、新产品开发及其应用诸方面综述了智能高分子材料,如智能高分子凝胶、形状记忆高分子材料、智能织物、智能高分子膜和智能高分子复合材料等的研究进展,并展望了其发展前景。 关键词高分子材料智能高分子材料响应速率进展 0 引言 20世纪80年代中期,人们提出了智能材料的概念,智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料[ l ]。智能材料在目前文献中的提法大都为机敏材料( Smart Material )、机敏结构( Smarts Structure)、自适应结构 (A daptive Strueture)、智能材料( Intelligent Material )、智能结构( Intelligent Strueture),这些概念国内外至今尚无统一的定论。关于“机敏”(Smart)和“智能”( Intelligent)的讨论,不少文献资料进行了说明[2~5]。 智能材料的基础是功能材料功能材料通常可分为 2 大类一类被称为驱动材料,它可以根据温度、电场或磁场的变化来改变自身的形状、尺寸、位置、刚性、阻尼、内耗或结构等 ,因而对环境具有自适应功能,可用来制成各种执行器;另一类被称为感知材料,它是指材料对于来自外界或内部的刺激强度及变化(如应力、应变、热、光、电、磁、化学和辐射等)具有感知,可以用来做成各种传感器.同时具有敏感材料与驱动材料特征的材料,被称为机敏材料。智能材料通常不是一种单一的材料,而是一个由多种材料系统组元通过有机的紧密或严格的科学组装而构成的一体化系统 ,是敏感材料、驱动材料和控制材料(系统)的有机合成。智能材料是材料科学不断向前发展的必然结果,是信息技术溶入材料科学的自然产物,它的问世,标志和宣告第 5 代新材料的诞生,也预示着在 2 1 世纪将轰生一次划时代的材料革命。近年来,智能材料的研究在世界范围内已成为材料科学与工程领域的热点之一 ,甚至有人把21世纪称之为智能材料世纪。智能材料可用1作出描述。迄今为止, 人们已开发出很多种智能高分子材料。 图1 智能 材料示意图

相关文档
最新文档