最新高中物理模型-斜面模型

最新高中物理模型-斜面模型
最新高中物理模型-斜面模型

(完整word版)高中物理传送带模型总结

“传送带模型” 1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示. 2.建模指导 水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. 水平传送带模型: 1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2 .(1)求旅行包经过多长时间到达传送带的右端; (2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少? 2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运, 传送带下表面离地面的高度h不变。如果物体开始沿曲面下滑时距传送带表面 的高度为H,初速度为零,g取10m/s2.求: (1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。 (2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。 (3) H在什么范围内时,物体离开传送带后的落地点在同一位置。

高中物理二十四种模型

高中物理二十四种模型 ⒈"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. ⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. ⒊"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. ⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. ⒌"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. ⒍"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. ⒎"斜面"模型:运动规律.三大定律.数理问题. ⒏"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). ⒐"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). ⒑"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. ⒒"人船"模型:动量守恒定律.能量守恒定律.数理问题. ⒓"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. ⒔"爆炸"模型:动量守恒定律.能量守恒定律. ⒕"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. ⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. ⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. ⒘"磁流发电机"模型:平衡与偏转.力和能问题.

⒙"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. ⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. ⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 24.远距离输电升压降压的变压器模型.

高中物理之平抛运动和斜面组合模型及其应用

平抛运动和斜面组合模型及其应用 平抛运动可以分解为水平方向的匀 速直线运动和竖直方向的自由落体运 动,其运动轨迹和规律如图1所示,会 应用速度和位移两个矢量三角形反映 的规律灵活的处理问题。设速度方向与初速度方向的夹角为速度偏向角φ,位移方向与初速度方向的夹角为位移偏向角θ,若过P点做与初速度平行的直线,则该直线与位移方向的夹角可以看作是构造的虚斜面的倾角,这样平抛运动模型和斜面模型就组合在一起了。在中学物理中有大量的模型,平抛运动和斜面模型是重要的模型,这两个模型组合起来进行考查,是近几年高考的一大亮点。为此,笔者就该组合模型的特点和应用,归纳如下。 一.斜面上的平抛运动问题 例1.(2006·上海)如图2所示,一足够长的固定斜面与水平面的夹角为370,物体A以初速度v 1从斜面顶端水 平抛出,物体B在斜面上距顶端L=15m处同时以 速度v2沿斜面向下匀速运动,经历时间t物体A 和物体B在斜面上相遇,则下列各组速度和时间

中满足条件的是(sin37O =,cos370=,g =10 m/s 2) A .v 1=16 m/s ,v 2=15 m/s ,t =3s B .v 1=16 m/s ,v 2=16 m/s ,t =2s C .v 1=20 m/s ,v 2=20 m/s ,t =3s D .v 1=20m/s ,v 2=16 m/s ,t =2s 解析:设物体A 平抛落到斜面上的时间为t , 由平抛运动规律得 t v x 0=,22 1gt y = 由位移矢量三角形关系得 x y =θtan 由以上三式解得g v t θ tan 20= 在时间t 内的水平位移g v x θtan 220=;竖直位移g v y θ 220tan 2= 将题干数据代入得到3v 1=20t ,对照选项,只有C 正确。 将v 1=20 m/s ,t =3s 代入平抛公式,求出x ,y A s ==75m , B s =v 2t =60m , 15A B s s L m -==,满足题目所给已知条件。 结论1:物体自倾角为θ的固定斜面抛出,若落在斜面上,飞行

高中物理模型总结汇总

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2 022 121 mv mv - ② 对木块 fs=02 12-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022 )(21v v M m M -? ④ ②+④得 f l =})]([2121{212 12 1 2 120220222 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2 。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

高中物理 斜面模型-word文档 1

斜面模型训练 1、(2021·湖南省长郡中学高三上学期开学摸底)如图所示,倾角为θ的斜面体A固定在电梯里的水平地板上,电梯静止时在斜面体A上轻轻放上一个小斜劈B,斜劈B的上表面水平,下列说法正确的是() A. 若斜劈B恰好静止在斜面体A上,则当电梯匀加速上升时,斜劈B将相对斜面体A加速下滑 B. 若斜劈B恰好静止在斜面体A上,则在斜劈B上再放上一个物块C时,斜劈B和物块C均能静止 C. 若斜劈B沿斜面匀加速下滑,则在斜劈B上再施加一个竖直向下的力时,斜劈B的加速度不变 D. 若斜劈B沿斜面匀加速下滑,则在斜劈B上再放上一个物块C时(斜劈B、物块C相对静止),斜劈B的加速度变大 2.、如图所示,质量为m的物体A在沿斜面向上的拉力F作用下沿斜面匀速下滑,此过程中斜面体B仍静止,斜面体的质量为M, 则以下说法正确的是( ) A. 水平地面对斜面体无摩擦力 B. 水平地面对斜面体有水平向左的摩擦力 C. 水平地面对斜面体支持力为(m+M)g D.物体A受的摩擦力小于F 3、如下图所示,物体B叠放在物体A上,A,B的质量均为m,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C匀速下滑,则( ) A.A、B间没有静摩擦力 B.A受到B的静摩擦力方向沿斜面向上 C.A受到斜面的滑动摩擦力大小为2mgsinθ

D .A 与B 间的动摩擦因数μ=tanθ 4、(2021·辽宁省渤大附中育明高中高三上学期第一次联考)如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A 点,竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心,已知在同一时刻a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道AM 、BM 运动到M 点;c 球由C 点自由下落到M 点,则( ) A. a 球最先到达M 点 B. b 球最先到达M 点 C. c 球最先到达M 点 D. b 球和c 球都可能最先到达M 点 5、(2021·河北省保定市高三上学期摸底测试)小物块从一固定斜面底端以初速度0v 冲上斜面,如图所示,已知小物块与斜面间动摩擦因数为0.5,斜面足够长,倾角为37?,重力加速度为g 。则小物块在斜面上运动的时间为(cos370.8?=,sin370.6?=)( ) A. 0 2v g B. 03v g C. 0 (51) v g + D. 0 (61) v g + 6、如图所示,用一根细线系住重力为G ,半径为R 的球,其与倾角为α的光滑斜面劈接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O 固定不动,斜面劈缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是( ) A .细绳对球的拉力先减小后增大 B .细绳对球的拉力先增大后减小 C .细绳对球的拉力一直增大 D .细绳对球的拉力最小值等于Gsinα

高中物理模型总结整理

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022121 mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121 202202220 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

高中物理模型汇总

学习资料收集于网络,仅供参考 高中物理模型汇总大全 模型组合讲解一一爆炸反冲模型 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例?如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m, 当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系 2 式E k二丄知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能 2m E, =-mv1 = E,E2 =1mvf M一E,由于平抛的射高相等,两次射程的比等于抛出时初 2 2 M +m 速度之比,即:处亠=.M,所以S2 M。 sv.YM+m *M+m 思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为平面成B角 发射出去,炮弹对地速度为v0,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为 V o COSV,设炮车后退方向为正方向,则(M -m)v-mv o COSV - 0,v = mV ° C ° S M —m 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒P i二p2,有其他形式的能单向转化为动能。所以“爆 m的炮弹沿着与水

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

高中物理模型-水平方向上的碰撞弹簧模型

模型组合讲解——水平方向上的碰撞+弹簧模型 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220 )2(21 21v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例 2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这 类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由

高中物理模型-斜面模型

模型组合讲解——斜面模型 康世界 [模型概述] 斜面模型是中学物理中最常见的模型之一,各级各类考题都会出现,设计的内容有力学、电学等。相关方法有整体与隔离法、极值法、极限法等,是属于考查学生分析、推理能力的模型之一。 [模型讲解] 一. 利用正交分解法处理斜面上的平衡问题 例1. 相距为20cm 的平行金属导轨倾斜放置(见图1),导轨所在平面与水平面的夹角为?=37θ,现在导轨上放一质量为330g 的金属棒ab ,它与导轨间动摩擦系数为50.0=μ,整个装置处于磁感应强度B=2T 的竖直向上的匀强磁场中,导轨所接电源电动势为15V ,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取2 /10s m g =,为保持金属棒ab 处于静止状态,求: (1)ab 中通入的最大电流强度为多少? (2)ab 中通入的最小电流强度为多少? 解析:导体棒ab 在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。

(1 )ab 中通入最大电流强度时受力分析如图2,此时最大静摩擦力N f F F μ=沿斜面向下,建立直角坐标系,由ab 平衡可知,x 方向: )sin cos (sin cos max θθμθ θμ+=+=N N N F F F F y 方向:)sin (cos sin cos θμθθμθ-=-=N N N F F F mg 由以上各式联立解得: A BL F I L BI F N mg F 5.16,6.6sin cos sin cos max max max max max ====-+=有θ μθθθμ (2)通入最小电流时,ab 受力分析如图3所示,此时静摩擦力N f F F ''μ=,方向沿斜面向上,建立直角坐标系,由平衡有: x 方向:)cos (sin 'cos 'sin 'min θμθθμθ-=-=N N N F F F F y 方向:)cos sin ('cos 'sin 'θθμθθμ+=+=N N N F F F mg 联立两式解得:N mg F 6.0cos sin cos sin min =+-=θ θμθμθ 由A BL F I L BI F 5.1,min min min min === 评点:此例题考查的知识点有:(1)受力分析——平衡条件的确定;(2)临界条件分析的能力;(3)直流电路知识的应用;(4)正交分解法。 说明:正交分解法是在平行四边形定则的基础上发展起来的,其目的是用代数运算来解决矢量运算。正交分解法在求解不在一条直线上的多个力的合力时显示出了较大的优越性。建立坐标系时,一般选共点力作用线的交点为坐标轴的原点,并尽可能使较多的力落在坐标

板块模型-高中物理讲义

简单学习网课程讲义 学科:物理 专题:板块模型 金题精讲 题一 题面:如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上。A ,B 质量分别为6.0 kg 和2.0 kg ,A 、B 之间的动摩擦因数为0.2。在物体A 上施加水平方向的拉力F ,开始时F =10 N ,此后逐渐增大,在增大到45N 的过程中,以下判断正确的是( ) A .两物体间始终没有相对运动 B .两物体间从受力开始就有相对运动 C .当拉力F <12 N 时,两物体均保持静止状态 D .两物体开始没有相对运动,当F >18 N 时,开始相对滑动 题二 题面:如图所示,光滑水平面上有一块木板,质量M = 1.0 kg ,长度L = 1.0 m .在木板的最左端有一个小滑块 (可视为质点),质量m = 1.0 kg .小滑块与木板之间的 动摩擦因数μ = 0.30.开始时它们都处于静止状态.某时刻起对小滑块施加一个F = 8.0 N 水平向右的恒力,此 后小滑块将相对木板滑动. 假设只改变M 、m 、μ、F 中一个物理量的大小,使得小滑块速度总是木板速度的2倍,请你通过计算确定改变后的那个物理量的数值(只要提出一种方案即可)。 题三 题面:如图所示,质量为M 的木板长为L ,木板的两个端点分别为A 、B ,中点为O ,木板置于光滑的水平面上并以v 0的水平初速度向右运动。若把质量为m 的小木块(可视为质点)置于木板的B 端,小木块的初速度为零,最终小木块随木板一起运动。小木块与木板间的动摩擦因数为μ,重力加速度为g 。求: (1)小木块与木板相对静止时,木板运动的速度;

第 - 1 - 页 (2)小木块与木板间的动摩擦因数μ的取值在什么范围内,才能使木块最终相对于木板静止时位于OA 之间。 题四 题面:质量M =8 kg 的小车放在水平光滑的平面上,在小车左端加一水平恒力F ,F =8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻放上一个大小不计,质量为m =2 kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长,求从小物块放上小车开始,经过t =1.5 s ,小物块通过的位移大小为多少? 讲义参考答案 题一答案:A 题二答案:令F =9 N 。 题三答案:(1) 0+M v M m (2))(20m M gL Mv +≥ μ ≥)(220m M gL Mv + 题四答案:2.1 m.

高中物理连体模型总结

精讲3 牛顿运动定律连体问题 ?在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问 题。 常见的连体模型:①用轻绳连接②直接接触 ③靠摩擦接触 a

连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。处理方法:整体法与隔离法相结合 整体法:就是把整个系统作为一个研究对象来分析的方法。不必考虑系统内力的影响,只考虑系统受到的外力,根据牛顿第二定律列方程求解. 例1:如图所示,U形框B放在粗糙斜面上刚好静止。若将物体A放入放入U形框B内,问B是否静止。 隔离法:是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。 此时系统内部各物体间的作用力(内力)就可能成为研究对象的外力,在分析时要加以注意。需要求内力时,一般要用隔离法。

例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。原来说F约为mg,为什么? 拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。(g取10m/s2) 例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。

若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么? 例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少? 拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于() A.1:1 B.m1:m2 C.m2:m1D.m12:m22

高中物理重要方法典型模型突破9-模型专题(1) - 斜面模型

专题九模型专题(1)斜面模型 【模型解读】 在高中物理学习过程中,把物理问题进行抽象化处理,建立物理模型,在具体的物理问题的分析、解决的过程中,物理模型方法是解决问题的桥梁和工具作用,进一步培养通过建构模型来应用物理学知识和科学方法的意识,体会到物理问题解决过程中要有简化、抽象等科学思维 斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。物体之间可以细绳相连,也可以弹簧相连。求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。 图示或释义 与斜面相关的滑块运动问题 规律或方法(1)μ=tan θ,滑块恰好处于静止状态(v0=0)或匀速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变 (2)μ>tan θ,滑块一定处于静止状态(v0=0)或匀减速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变) (3)μ

高中物理解题模型详解总结

高考物理解题模型 目录 第一章运动和力................................................. 一、追及、相遇模型............................................ 二、先加速后减速模型.......................................... 三、斜面模型................................................. 四、挂件模型................................................. 五、弹簧模型(动力学)........................................ 第二章圆周运动................................................. 一、水平方向的圆盘模型........................................ 二、行星模型................................................. 第三章功和能 ................................................... 一、水平方向的弹性碰撞........................................ 二、水平方向的非弹性碰撞...................................... 三、人船模型................................................. 四、爆炸反冲模型 ............................................. 第四章力学综合................................................. 一、解题模型: ............................................... 二、滑轮模型................................................. 三、渡河模型................................................. 第五章电路...................................................... 一、电路的动态变化............................................ 二、交变电流................................................. 第六章电磁场 ................................................... 一、电磁场中的单杆模型........................................ 二、电磁流量计模型............................................ 三、回旋加速模型 ............................................. 四、磁偏转模型 ...............................................

高中物理模型法解题——斜面问题模型

高中物理模型法解题模板 ————斜面问题模型 【模型概述】在每年各地的高考卷中几乎都有关于斜面模型的试题.我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图1-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图1-1甲 2.自由释放的滑块在斜面上(如图1-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图1-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M 对水平地面的静摩擦力依然为零. 图1-1乙 4.悬挂有物体的小车在斜面上滑行(如图2-2所示):

图1-2 (1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v 0平抛一小球(如图2-3所示): 图1-3 (1)落到斜面上的时间t =2v 0tan θg ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ . 6.如图1-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止(斜面光滑). 图1-4 7.在如图1-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时, ab 棒所能达到的稳定速度v m =mgR sin θB 2L 2 . 图1-5

高中物理常见的物理模型及分析

高三物理总复习 专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2 (1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示): 图9-3 (1)落到斜面上的时间t= 2v0tan θ g ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c= v0tan θ g 小球距斜面最远,最大距离d= (v0sin θ)2 2g cos θ . 6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止. 图9-4 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m= mgR sin θ B2L2 .

高考物理知识归纳力学模型及方法

╰ α 高中物理知识归纳(二) ----------------------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg(g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv E m L · m2 m1 F B A F1 F2 B A F

F m 整体下摆2mgR=mg 2R +'2 B '2A mv 21mv 2 1+ 'A 'B V 2V = ? ' A V = gR 53 ; 'A 'B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0< gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失 即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。 求水平初速及最低点时绳的拉力? 换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒 例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少? 4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动 1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动 用同体积的水去补充 5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大; ③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。 ◆弹性碰撞:m 1v 1+m 2v 2=' 22' 11v m v m +(1) '222'12221mv 2 1mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换 大碰小一起向前;质量相等,速度交换;小碰大,向后返。 ◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)' v 20mv 21='2M)v m (2 1++E 损 E 损=20mv 21一'2 M)v (m 2 1+= 0202 0E m M M m 21m)(M M M)2(m mM k v v +=+=+ a 图9 θ

高中物理模型(完整资料).doc

【最新整理,下载后即可编辑】 一.行星模型 [模型概述] 所谓“行星”模型指卫星绕中心天体,或核外电子绕原子旋转。它们隶属圆周运动,但涉及到力、电、能知识,属于每年高考必考内容。 [模型要点] 人造卫星的运动属于宏观现象,氢原子中电子的运动属于微观现象,由于支配卫星和电子运动的力遵循平方反比律,即21F r ∝ ,故它们在物理模型上和运动规律的描述上有相似点。 一. 线速度与轨道半径的关系 设地球的质量为M ,卫星质量为m ,卫星在半径为r 的轨道上运行,其线速度为v ,可知22GMm v m r r =,从而v =设质量为'm 、带电量为e 的电子在第n 条可能轨道上运动,其线速度大小为v ,则有222n n ke v m r r =,从而1v v =∝即 可见,卫星或电子的线速度都与轨道半径的平方根成反比 二. 动能与轨道半径的关系 卫星运动的动能,由22GMm v m r r =得12k k GMm E E r r =∝即,氢原子核外电子运

动的动能为:21 2k k n n ke E E r r =∝即,可见,在这两类现象中,卫星与电子的动能 都与轨道半径成反比 三. 运动周期与轨道半径的关系 对卫星而言,212224m m G mr r T π=,得232234,r T T r GM π=∝即.(同理可推导V 、a 与 半径的关系。对电子仍适用) 四. 能量与轨道半径的关系 运动物体能量等于其动能与势能之和,即k p E E E =+,在变轨问题中, 从离地球较远轨道向离地球较近轨道运动,万有引力做正功,势能减少,动能增大,总能量减少。反之呢? 五. 地球同步卫星 1. 地球同步卫星的轨道平面:非同步人造地球卫星其轨道平面可与地轴有任意夹角且过地心,而同步卫星一定位于赤道的正上方 2. 地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。 3. 地球同步卫星的轨道半径:据牛顿第二定律 有2002,GMm m r r r ωω==得与地球自转角速度相同,所以地球同步卫星的轨道半径一定,其离地面高度也是一定的 4. 地球同步卫星的线速度:为定值,绕行方向与地球自转方向相同 [误区点拨] 天体运动问题:人造卫星的轨道半径与中心天体半径的区别;人造卫星的发射速度和运行速度;卫星的稳定运行和变轨运动;赤道上的物体与近地卫星的区别;卫星与同步卫星的区别 人造地球卫星的发射速度是指把卫星从地球上发射出去的速度,速度越大,发射得越远,发射的最小速度,混淆连续物和卫星群:连续物是指和天体连在一起的物体,其角速度和天体相同,双星系统中的向心力中的距离与圆周运动中的距离的差别 二.等效场模型 [模型概述] 复合场是高中物理中的热点问题,常见的有重力场与电场、重力场与

相关文档
最新文档