大坝变形监测doc资料

大坝变形监测doc资料
大坝变形监测doc资料

大坝变形监测

安徽建筑大学

毕业设计 (论文)

专业测绘工程

班级 2班

学生姓名翟凯

学号 11201050235

课题基于GPS大坝变形监测

指导教师施贵刚

2015年月日

摘要

大坝安全监测,着重于变形监测,是保证大坝运营安全,防止大坝

灾难性事故发生的重要手段。本文基于GPS测量的基本原理,通过大坝变形监测网的布设,处理采集到的前后两期观测数据,通过比

较监测点分别在WGS—84坐标系和1954北京坐标系下的坐标差值,得出的结果符合大坝变形的精度要求,从而得出某大坝尚未发生明

显变形这一结论。不足之处在于标志点在WGS—84坐标系中向1954北京坐标系的投影过程中产生了误差,使得控制点的两期坐标不等。由此可知,各坐标之间转换的时候,投影误差不可以忽略,精

度分析的时候,为减小误差,最好统一在WGS—84坐标系下进行解算、分析。

关键词;GPS ;变形监测;精度

ABSTRACT

The dam safety monitoring, focuses on the deformation monitoring, it is to ensure the safety of dam operation, prevent the catastrophic accidents. In this paper, based on the basic principle of GPS measurement, through the dam deformation monitoring network layout, processing, both before and after the period of observation data collected by comparing the monitoring points in the WGS - 84 coordinate system and 1954 Beijing coordinates the coordinates of the difference, the results conform to the requirements of the precision of the dam deformation, thus a dam has not yet occurred obvious deformation of the conclusion. Shortcoming in the landmark in the WGS - 84 coordinate system to the 1954 Beijing coordinate system

produced in the process of projection error, making the control points of the two coordinates. Therefore, the coordinate transformation between, projection error can not be ignored,Precision analysis, to reduce the error, it

is better to unify the WGS - 84 coordinates calculating and analysis.

Key words; GPS,deformation monitoring,precision

目录

摘要.........................................................................................错误!未定义书签。

Abstract ..........................................................................................错误!未定义书签。

插图或附表清单 ............................................................................错误!未定义书签。

注释说明清单.................................................................................错误!未定义书签。

第一章绪论 (4)

1.1 大坝变形监测的意义 (5)

1.2 GPS用于变形监测的现状 (5)

1.3研究内容 (6)

第二章基于GPS技术大坝变形监测的方法 (7)

2.1 控制网布设 (7)

2.2监测点布设 (8)

2.3大坝变形监测方案 (9)

2.3.1测侧区勘察 (9)

2.3.2资料收集 (9)

2.3.3确定布网方案 (9)

2.3.4GPS测量方法 (10)

2.3.5编写技术设计说明 (10)

2.3.6造标埋石 (10)

2.3.7投影带选取 (11)

2.3.8测量规范 (11)

第三章大坝变形监测数据处理 (11)

3.1 数据处理的方法 (11)

3.2 数据分析....................................................................... 1错误!未定义书签。

3.3 预测与预报 (17)

第四章结论与展望 (17)

4 .1 结论 (17)

4.2展望 (18)

参考文献 (18)

附录 (19)

谢辞 (20)

Contents

Abstract....................................................................................I Introduction (1)

Chapter 1 (2)

conclusion (7)

reference (11)

postscript or compliment (13)

resume of tutor (11)

一绪论

由于大型建筑物(如大坝)在国民经济建设中的重要性,其安全问

题受到普遍关注。一旦因为某种原因引起工程灾害,其后果将不堪

设想。因此,准确地掌握各类工程建筑物的变形状态,实现预测和

防治工程灾害的目的,显得十分必要。本文通过对某大坝实施变形

监测,主要的目的在于:1分析和评价大坝的安全状态,2验证设计

原理,反馈施工质量,3研究变形规律,对大坝变形合理预报。鉴

于当前的GPS测量精度已经达到毫米级,利用GPS进行水平位移观

测可获得小于±2mm精度的位移矢量,高程的测量误差也能获得不

大于±10mm的精度。因此,本文在详细总结了GPS技术应用于变形

监测方案设计的基础上,对某大坝建立变形监测网,根据监测网的数

据处理方法以及变形分析的方法,比较监测点在前后两期的坐标差值,对输出成果进行分析和预测,从而得出大坝的变形现状。通过GPS技术在某大坝变形监测的应用实例,充分说明了GPS定位技术是一种应用前景广阔的变形监测方法。

1.1大坝变形监测的意义

由于混凝土坝建成蓄水后,在水压力、泥沙压力、浪压力、扬压力及温度变化等因素作用下,往往会产生变形,影响大坝的正常使用,严重时会危及大坝的安全,引起坍塌,滑坡,沉陷,倾斜,裂缝等灾难性的后果,给社会和人民的生活带来巨大的损失。如法国67m高的马尔巴塞拱坝1959年垮坝,美国93m高的提唐土坝1976年溃决,财产经济损失严重。而我国隔河岩大坝外观变形GPS自动化监测系统在1998年长江抗洪错峰中发挥了巨大作用,确保了安全防汛,避免了荆江大堤溃塌。因此,对大坝进行安全评估的变形监测工作显得尤为重要,

1.2 GPS应用于变形监测现状

经过近十年的迅速发展,GPS观测边长相对精度已经能够达到10-9m,比传统大地测量精度提高了3个量级。所以,GPS技术在变形监测方面有着广泛的运用。首先,利用GPS技术解决了常规观测中需要多种观测的问题,观测结果能充分反映滑坡的全方位活动性,是监测滑坡变形、掌握滑坡发育规律的切实可行的技术;其次,该技术可对大型建筑物位移实时监测,具有受外界影响小、自动化程度高、速度快、精度较高等优点,可以全天候测量被测物体各测点的三维位移变

化情况,找出被测物体三维位移的特性规律,为大型建筑物的安全、养护维修提供重要的参数和指导;第三,GPS精密定位技术不仅可以满足水库大坝外观变形监测工作的精度要求,而且有助于实现监测工作的自动化。另外,GPS技术还应用于地面、海上勘探平台及高层建筑物等的沉陷观测中。

1.3 研究内容

本文基于GPS测量工作原理,通过建立GPS测量控制网,对某大坝实施变形监测,通过得到的数据成果,对大坝变形情况进行评估和预测。

本文依据GPS测量技术设计,采用GPS连续性静态相对定位,依照GPS网的精度标准与分类,采用边点混合连接式,通过前期对测区踏勘与地形图的资料收集(交通状况、水系分布情况、控制点分布情况等)。对外业观测计划进行拟定;(GPS网的规模大小、点位精度要求、GPS卫星星座几何图形强度、参加作业的接收机数

量、交通,通信等的后勤保障)。布网方案,GPS网点的图形及基本连接方法,GPS网结构特征的测算,点位布设图的绘制等。编写技术设计说明书,选点与埋标(GPS点位的基本要求、点位标志的选用及埋设方法、点位的编号等)。投影带的选取,经过外业观测(编制GPS卫星的可见性预报图、选择卫星的几何图形强度、选择最佳的观察时段、观察区域的设计与划分、编制作业调度表等)。得到相关的数据后,利用计算机进行数据处理。通过对成果数据的

分析,了解大坝变形的情况。最后对本文所采用的方法进行总结,对未来GPS技术发展的趋势进行展望。

二基于GPS技术大坝变形监测的方法

2.1控制网布设

GPS网的精度设计主要取决于网的用途,其精度标准一般用GPS边长的固定误差a和比例误差b表示。由于GPS同步观测不要求点间通视,故GPS网形设计具有较大的灵活性。GPS网的基准包括位置基准,方位基准和尺度基准。GPS网的网形布设通常有点连式,边连式,边点混合连接式。GPS观测中,3台或3台以上接收机同步观测获得的基线向量构成同步环。故所谓点连接、边连接等方式都是指同步环之间的连接。本文用3台接收机进行观测的网形设计如图a所示

将三角点(A、B、C、D)作为基准点与变形监测点一同进行GPS网的网形设计。对于3台接收机组成的监测网,基准网点4个,需观测3个时段。基准点与变形监测点连成16个三角形,观测16个时

段。该网形的多余观测比较多,属于可靠性较强、精度较高的网形。对于设计出的GPS网形,要依据接收机的观测精度和网形结构,进行精度预计,同时给出该网的可靠性指标,求出最弱点点位中误差。考虑到观测时段数,最后优化出精度能满足要求、工作量最省的方案。

2.2 监测点布设

本次将变形监测点埋在大坝上,由于GPS测量不一定要求测站间相互通视,且网的图形结构较灵活,因此点位目标要显著,视场周围15度以上不应有障碍物,以减小GPS信号被遮挡或被障碍物吸收。本次为了避免磁场对GPS信号的干扰,选取的点位远离大功率无线电发射源不小于200m处,远离高压输电线,其距离不小于50m。确定了控制点的位置以后,即着手进行造标埋石工作,最为重要的是标志点的选取必须非常坚固,从而有效反应大坝的变形情况,另选取了大坝外的基准点,作为对大坝上标志点的对照。

此大坝共有5个标志点GC06、OP05、OP04、OP03、GC11,其中

GC06、GC11两个基准点位于坝体之外,可认为是固定的,在没有较大的运动情况下,基本上可视为是坝体运动的参考点。OP05、

OP04、OP03位于坝体上的特征点,通过监测这三个点的运动,可分析坝体的大致运动趋势。

2.3 大坝变形监测方案

2.3.1测区勘察

主要是了解测区的地理位置、形状大小,今后发展远景,测量成果使用的精度要求,完成任务的期限以及生产上对控制点的位置、密度的要求等。控制点的分布情况;三角点、水准点、GPS点、多普勒点、导线点的等级、坐标、高程系统、点位的数量及分布,点位标志的保存状况等。

2.3.2资料收集

(1)如设计时需用的地形图(比例尺为1/1000~1/50000),各类图件;大地水准面起伏图,交通图等。

(2)测区已有各类控制点的成果;三角点、水准点、GPS点、导线点及各控制点坐标系统、技术总结等相关资料。

(3)测区有关的地质、气象、交通、通信等方面的资料。

(4)城市及乡村行政区划表等。

2.3.3确定布网方案

由于仅仅是对大坝所在区域相对于大坝外控制点的变形,因此布设成

图1独立网(其中,GC06、GC11为已知点)。

2.3.4 GPS测量方法

本次测量方法是GPS相对定位测量,是采用三度带投影的全面布设。图上设计时是在1:25000的地形图上进行的,具体过程是:首先展绘已知点、网;按照已定的布网方案从图上判断点与点之间是否彼此通视,由各点组成的图形能否满足规范所规定的精度和其他要求,监测点所在位置也应能满足使用要求。图上选点后,须到实地确定,是否切实可行,为了保证控制网精度和避免返工,还应该对控制网中推算元素的精度进行估算。每个观测时刻的观测卫星大于4颗,仪器采样间隔统一设置为10妙,天线采用脚架安置在点位垂线方向上,对中误差小于3mm,基座均整平,居中。接收机采集数据后转换为国际标准rinex格式,运行

ashtech solutions后处理软件,建立新项目,定义坐标系

统,输入中央子午线137°,比例因子是1,椭球是1984北京坐标系,导入renix格式数据,点击计算机键盘F5键,软件默认处理所以基线,共有10条基线,处理后的基线标准差值均小于限差,然后进行最小约束平差,平差后的基线向量的径向残差均小于限差,Network rel. Accuracy 显示通过,处理结果均小于限差。

2.3.5编写技术设计说明书

编写技术设计的目的在于拟定大坝监测控制测量的实施计划,从整体规划上、技术上、组织上作出说明。

2.3.6造标埋石

确定了控制点的位置以后,须着手进行造标埋石工作,埋设的标石作为点的标志,建造的觇标作为观测时照准的目标,一切观测成果和点的坐标都归算到标石中心上。因此,标志点的选取一定要坚固,保证能有效地反应大坝的变形情况。

2.3.7投影带的选取

此次控制网点均分布在101°~104°之间,靠近101°,选取3°带作为投影带。为了避免投影误差,还可在WGS—84坐标系下进行测量、计算、比较和评定。

2.3.8测量规范

一般传统的监测网中需要分别设置平面控制网和高程控制网,有时按照测图网的精度和密度要求,需要同时获取标志点的三维坐标,所以观测时要满足国家的规范要求。一般情况下,距离丈量相对误

差不超过1/10000,测角误差不超过10分。为了保证整个建筑场地各部分高程的统一和精度要求以及高程测设的便利,采用GPS实施监测。

3 大坝变形监测数据处理

3.1 数据处理方法

处理数据的思路:总共有两期对大坝的监测数据,在大坝整体位移不大、主要研究大坝控制网内标志点变化的情况下,可将坝体外的两个点视为基准点,对整个网进行整体基线解算和网平差,输出各个点的坐标及精度评定结果;然后以第一期观测的基准点GC06、GC11为固定点,利用第二期数据进基线解算和网平差,并对各个点的精度进行检核是否在控制的范围内,如果超出限差,需要对数据进行进一步的处理,然后同比第一期处理的OP05、OP04、OP03点的坐标进行对比,比较两期观测中,大坝总体的结构位移,从而对其稳定性进行分析。

安装ashtech solutions后处理软件包,双击图标打开软件,首先建立一个工程,显示出如下界面

导入数据,数据分布如图2,进行基线解算和平差处理,结果为(图3)

图2 第一期数据分布图

图3. 第一期数据整体平差图

解算完毕,从网精度图上分析基线的精度,对精度较差的基线进行处理。以基线OP05—GC06为例,查看OP05—GC06基线的载波相位双差残差

(carrier phase double differenced residuals),从中找出误差较大的时间段,进行有效的筛除,从而进一步提高GPS监测数据的高精度。其他残差图曲线基本平滑连续而且数值比较小,说

明观测数据质量比较好,符合高精度滑坡变形监测的要求。对第二期数据进行相同的方式进行处理:

将第一期观测的两基准点作为第二期观测的控制点,1954坐标系中平差结果如下(图4):

图4. 第二期数据处理点的结果

3.2 数据分析

经过ashtech solutions软件处理,可得两期观测的平差网点图和分别在WGS—84坐标系和1954北京坐标系下的包含基线向量、各点坐标及精度的报告,将两组数据用1954北京坐标系下的坐标表格对比:(注:差值是第一期与第二期之差)

将两组数据在WGS—84坐标系下进行比较:(注:其差值是第一期和第二期之差)

通过上述两个图可分析得:两期观测中,第一期为自由控制网,第二期是第一期在北京1954坐标系中网平差结果的基础上以GC06、GC11为基准点进行约束控制网平差,可得两次观测中最大点的坐标差值不大于3mm,3mm是在对大坝进行采取一定救护措施的限差之内。说明两次观测中,大坝标志点没有发生明显的变化,之所以在WGS—84坐标系中GC06、GC11两点的两期观测差值不为0,是因为标志点在WGS—84坐标系中向北京1954坐标系的投影过程中产生了误差,使得差值出现了不同程度的大小,此例也说明,在各坐标之间转换的时候,投影误差不可以忽略,由此而知,精度分析的时候,为减小误差,最好统一在WGS—84坐标系下进行解算、分析。

3.3 预测与预报

通过以上的测量结果与数据分析,该大坝未发生明显变化。但大坝发生变形是客观存在的,因此应该提高监测人员的专业性素质。不能忽略工程质量各个环节的把握力度与关注度,否则会造成难以弥补,无法预期的后果。

4 结论与展望

4.1总结

GPS技术以其全天候、高精度、高速度、实时三维定位、误差不随定位时间而积累、高动化等特点优于传统的测量技术,对于变形监测是一种非常有效的方法。特别是在大型工程中应用一机多天线监测系统,不但能大幅度降低成本,而且其精度不会降低,既提高了工作效率,又节省了大量的人力和物力。水电站大坝安全责任重于泰山。通

过对以往事故的回顾和分析,说明在大坝设计、施工和运行过程中,任何失误和疏忽都将影响到大坝的风险度,都有可能铸成大祸,造成巨大损失,必须加强大坝设计、施工、运行全过程的安全管理。本文重点针对运行中大坝的安全问题,,运用GPS技术进行变形监测,使其作为确保大坝安全行之有效的重要措施,必须要坚定不移地继续贯彻下去。

4.2展望

在本文研究基础上,还有很多需要研究的问题:

(1)对于使用GPS技术动态性监测的大坝,还需要更更多的监测内容,考虑的因素还要包括:水流、季节变化、重荷情况下的位移变化。

(2)必要时候,GPS技术中还需要进行实时观测,建立实时监测系统,通过对标志点的多次监测,来预测大坝的位移趋势,更加准确的预测。

通过广大运行管理和科技人员的不懈努力,来解决目前GPS技术监测大坝变形的过程中出现的各种关键性难题,逐步完善,逐步提升总体的发展水平,在未来我相信我国必将迅速成为坝工建设和运行管理最先进的国家之一。

参考文献

[1]武测、同济合编.控制测量学,北京;测绘出版社,2006.

[2]张正禄等编著.工程测量学,武汉;武汉出版社,2007.

[3]刘大杰等编著.全球定位系统(GPS)的原理与数据处理,同济大学出版社,1996.

[4]李明峰等编著.GPS定位技术及其应用,国防工业出版社,2009

[5] 党亚民,秘金钟,成英燕. 全球导航卫星系统原理与应用[M]. 测绘出版社,2007.

[6] 黄声亨,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2003.

[7] 胡友健,梁新美,许成功.GPS 变形监测技术的现状与发展趋势,2006,(9);31—36.

[8] 岳建军,华锡生.GPS 在大坝变形监测中的应用[J].大坝观测与

土工测,1996,17(3).

[9] 李征航,黄劲松.GPS 测量与数据处理[M].武汉:武汉大学出版社,2005.

[10] 徐绍铨, 李征航, 柳太康, 等.隔河岩大坝外观变形GPS 自动化

监测系统的建立[ J] . 武汉测绘科技大学学报,1998, 23

附录

表3:E 级GPS 测量的精度要求

级别 a(mm) B(1×10

ˉ6)

相邻点间平均距离(km ) 最弱边相对中误差 最弱点点位中误差(cm ) 闭合环或附和路线边数 E ≦10 ≦5 3 1/45000 ≦±5.0 ≦10

图5. GPS 数据处理基本流程图

图6. 大坝GPS 自动化变形监测系统的基础模型

数据采集 数据传输 预处理 基线解算 GPS 网平差

水库大坝表面变形自动化监测新技术

水库大坝表面变形自动化监测新技术 徐忠阳 (索佳公司北京代表处,北京 100004) 一、引言 有关资料标明,我国河川年径流量总量约2780Gm3,水能资源十分丰富,其中理论蕴藏量为676GW,可开发为378GW,为世界第一位。为了充分利用这些水利和水能资源,新中国刚成立时,政府就十分注意兴修水利,造福人类,到目前已建水库堤坝约8.7万座,其中绝大部分(约8万座)建于20世纪50~70年代。但是,由于历史原因,有相当部分水库堤坝未按基本程序办事,是靠群众运动建造的,因此存在工程质量差、安全隐患多的问题。经过几十年的运行,已经到了病险高发期。 水利工程即可以造福人类,如管理不善也会给社会带来惨重灾难和巨大的经济损失。历史上因水库溃坝给下游造成的毁灭性灾难并不鲜见。因此加强水库大坝的安全管理必不可少,其中大坝变形监测就是大坝安全管理的重要内容之一。 二、目前水库大坝变形监测的主要技术手段 目前,在大坝安全监测技术规范中,主要有《土石坝安全监测技术规范》和《混泥土坝安全监测技术规范》。 1、土石坝安全监测技术简介 在《土石坝安全监测技术规范》中,把大坝的变形监测内容分为:表面变形、内部变形、裂缝及接缝、混泥土面板变形及岸坡位移。 大坝表面变形监测主要分为竖向位移监测和水平位移监测。 (1)竖向位移监测的方法主要是精密水准法,或连通管(静力水准)法; (2)水平位移又分为横向(垂直坝轴线)位移和纵向(平行于坝轴线)位移。 a. 横向位移的监测方法主要是视准线法(活动标法、小角法、大气激光准直法等);有必要且有条件时,可用三角网前方交会法观测增设工作基点(或位移测点)的横向水平位移。 b. 纵向水平位移观测,一般用因钢尺测量,或用普通钢尺加改正系数,有条件时可用光电测距仪测量。 (3)混泥土面板变形及岸坡位移监测的技术方法与大坝表面变形监测基本相同。 2、混泥土坝安全监测技术简介 《混泥土坝安全监测技术规范》规定:变形监测项目主要有坝体变形、裂缝、接缝以及坝基变形、滑坡体及高边坡的位移等。 (1)坝体、坝基、滑坡体及高边坡的水平位移监测 a. 重力坝或支墩坝坝体和坝基水平位移一般采用引张线法、真空激光准直法和垂线法监测。对于短坝,条件有利时也可用视准线法或大气激光准直法。

水库大坝安全监测自动化与除险加固技术研究 林永松

水库大坝安全监测自动化与除险加固技术研究林永松 摘要:水库大坝的作用就是蓄水、防洪,调节河水流量,大坝的质量关系到河 流两岸和下有生活居民的生命财产安全,所以大坝的安全问题不容忽视。大坝维 护人员要加强对大坝的安全监测工作,提高水坝加固技术方法,在大坝日常管理 工作中,要优先考虑大坝安全问题。大坝安全监测自动化系统,可以精准的控制 水库蓄水量,在水库的安全范围内,最大限能的蓄水。本文将对大坝安全监测自 动化与除险加固技术进行分析。 关键词:水库大坝;安全监测自动化;除险加固技术 大坝的安全问题,除了施工质量不过关外,主要的还有大坝安全监测技术落后、大坝监控人员失误、大坝监测结果误差较大等问题,导致大坝存在安全隐患,一旦发生突发情况,可能就会导致大坝溃堤。所以,当下大坝在前期设计时,就 要提前做好监测工作设计。搭建一套安全系数较高的安全监测自动化系统,有了 先进软件系统还要配合一套先进的除险加固技术,二者同时使用,并结合大坝自 身实时状态,设计一套符合大坝监控系统。安全监测自动化系统优势在于能够全 天实时监控大坝的各项安全问题,还能够对大坝进行除险加固技术完善。监测系 统的安装可以对大坝整体项目进行归纳,通过不断完备大坝安全监测自动化系统,早日追赶上国外水利工程脚步。 一、安全监测自动化系统构成和组织 大坝建设投入巨大,所以为了保证大坝的安全性和使用能够长久,大坝在建 设建设初期要进行项目分析,相关数据的收集分析研究,通过多方面数据汇总设 计一套安全系数最高的大坝建设方案。 1.变形监测 水库大坝变形监测分为两方面:表面变形监测和防渗墙扰度监测。大坝在建 设阶段这俩点就是最为主要的监测方式。在日常工作分析中,大坝表面变形标注 要更改成综合位移标注,综合位移标注还要同还要具备水平和竖向两个方向位移。在监测大坝水平位移变形时候经常使用俩种方式,第一种就是真空激光准直法, 第二种是边角前方交会法。两种监测方式在实际工作中比较分析得出,这俩种监 测方法都可以有效自动化监测,得到监测数据可以满足大坝监测要求。在项目观 测的过程中,需要在大坝左、右岸坝肩进行基础稳定位置的选择,具体的测量方 案可以如图 1 所示。通过对大坝变形观测状态的分析,发现其中共有 5 个断面,5 条视准线,其中共有 25 个综合位移标点,在坝长超过 500m的状态下,需要通过 对相关规范要求的分析,增加中间项目的工作基准点,也就是在中间横断面综合 位移点中进行工作基点的确定。而且,在观测采用边角前方交汇法中,通过两台 测量机器人进行观测,并在观测的过程中进行数据校核以及严密数据的平差分析,在研究中,需要计算误差以及置信度,全面提高观测项目的精确度,并在研究的 过程中保证水平位移观测项目满足观测的基本要求。 图1 安全监测系统测量方案 第二,应力应变监测。在混凝土防渗墙应力应变状况分析的过程中,需要通 过对变形监测系统的分析,进行防渗墙的布设,通常情况下会布设两个防渗应力 应变监测面,每个断面的上游及下游需要布设4支应变计,并将其分别放置在防

混凝土大坝安监测技术规范

中华人民共和国能源部、水利部 混凝土大坝安全监测技术规范 SDJ 336-89 (试行) 主编部门:《混凝土大坝安全监测技术规范》编制组 批准部门:中华人民共和国能源部、水利部 试行日期:1989年10月1日 水利电力出版社 1989北京 能源部、水利部文件 关于颁发《混凝土大坝安全监测技术规范》SDJ336-89(试行)的通知 能源技[1989]577号 《混凝土大坝安全监测技术规范》(编号: SDJ336-89)由水利电力部在一九八五年底组织有关单位开始编制,于一九八八年底前完成,一九八九年一月在能源部主持下由能源、水利两部共同审定,现已交水利电力出版社出版,于一九八九年十月一日颁发试行。 这是我国首次编制的包括有设计、施工、运行各阶段监测工作较系统的技术规范。试行中有何意见。,请函告能源部科技司或水利部科教司。 一九八九年三月二十日 简要说明 本规范是根据原水利电力部科学技术司(83)技水电字第273号文进行编制的。 在原水利电力部科学技术司、电力生产司及水利水电建设总局(水利水电规划设计院)的组织领导下,由水利水电科学研究院、华东勘测设计院、原西南电业管理局、中国水力发电工程学会、东北勘测设计院、南京自动化研究所、长江流域规划办公室勘测总队、天津勘测设计院、西北勘测设计院、上海勘测设计院、长江科学研究院、水电部第七工程局、葛洲坝工程局、葛洲坝水电厂、新安江水电厂、刘家峡水电厂等16个单位派员组成编制组。水利水电科学研究院、华东勘测设计院、原西南电业管理局为编制组组长单位。 本规范在编制过程中,得到了有关勘测设计、施工、运行、管理、科研、高等院校等单位的大力支持;进分了广泛的调查研究;总结了我国30多年来混凝土大坝安全监测时实践经验;参考了《混凝土重力坝设计规范》(SDJ 21-78)、《混凝土拱坝设计规范》( SD145-85)、《水电站大坝安全管理暂行办法》,以及其他有关规范的内容。在编制过程中,曾先后召开了六次全国性的专题讨论会,相应地进行了七次修改。 参加本规范编制的主要人员有:叶丽秋、李光宗、唐寿同、庄万康、夏诚、胡其裕、储海宁、赵志仁、柳载舟、舒尚文等同志;参加编制的还

大坝安全监测仪器简介

大坝安全监测仪器简介 一、大坝安全监测仪器选型的基本原则 二、监测仪器的检验 三、监测仪器及监测系统的验收 四、监测仪器分类 五、两种主要监测仪器的基本原理 六、主要监测仪器简介 七、国内外数据自动化采集设备

一、大坝安全监测仪器选型的基本原则 1、总原则 大坝安全监测系统的监测项目、测点布置及系统的功能、性能应满足《土石坝安全监测技术规范》(SL60-94)、《土石坝安全监测资料整编规程》(SL169-96)和《混凝土坝安全监测技术规范》(DL/T5178-2003)要求,如建立自动化监测系统,还应满足《大坝安全自动化监测系统设备基本技术条件》(SL268-2001)的要求。 2、监测任务、测量范围的界定及仪器技术性能分析 首先,应明确监测仪器的任务,是变形监测,渗流监测,压力应力监测还是环境量监测?一次还是二次? 其次,应根据工程实际情况,预测并确定仪器的量程、范围;根据仪器量程范围、工程对监测精度的要求以及相关规范规定,确定仪器精度等级。 第三,选择仪器型式。仪器型式的选择最重要的是仪器的可靠性,在可靠性的前提下,再考虑仪器的精确度或准确度。 第四,技术经济评价。对不同型式的仪器、不同厂家的同类型仪器,比较其采购、运输、室内检测/校准、现场检验、安装方式、可维护性及维护程序、施工期观测及数据处理、(如建立自动化监测系统)占用系统资源等,进行技术、经济评价,选择合适的性价比。 3、监测设施的布设 首先,划分监测项目。 其次,根据监测项目及监测目的,确定监测设施安装/埋设位置(包括平面坐标、高程及相应层位),仪器、设施、设备工程编号(唯一性),并以表、平面图、断面图等形式逐一标注。 4、监测设施的安装/埋设 根据坝的性质(混凝土坝/土石坝?在建坝/已建坝?混凝土坝『重力坝、拱坝、砌石坝』?土石坝『均质坝、心墙坝<宽心墙坝、窄心墙坝?>、斜墙坝、堆石面板坝、复合坝型』?)设计合适的安装方式及施工工艺。 5、监测仪器选型原则 ①监测仪器应采用可靠性好,并经过长期现场考验的仪器设备;大坝安全监测和管理自动化系统,推荐采用分布式自动化数据采集系统。 ②监测仪器应尽可能实现人工比测。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求 1.技术标准和规范: 承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。应执行的现行国家行业技术标准和规范主要有(但不限于): (1)《混凝土大坝安全监测技术规范》(SDJ336—89) (2)《土石坝安全监测技术规范》(SL60—94) (3)《国家一、二等水准测量规范》(GB12897—91) (4)《国家三角测量规范》(GB/T17942-2000) (5)《水利水电工程测量规范》(SL197—97) (6)《水利水电工程施工测量规范》(SL52—93) 2.变形监测仪器设备购置、加工: 变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。仪器、设备检验合格后应妥善保管。 3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装: 倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。按照设计坐标、高程进行钻孔孔位定位、放样。钻机就位,应认真进行校正。经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。 钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。终孔验收后,及时进行倒垂孔保护管、

简述大坝安全监测技术探讨

简述大坝安全监测技术探讨 发表时间:2020-03-13T15:20:04.720Z 来源:《福光技术》2019年32期作者:李俊卓 [导读] 在大坝原型中通过利用观测仪器来进行现场测量,以此方式来获取大坝结构变化。本文作者探讨了大坝安全监测技术。 龙滩水电开发有限公司龙滩水力发电厂 547000 摘要:大坝安全监测系统作为一种新型技术,在大坝原型中通过利用观测仪器来进行现场测量,以此方式来获取大坝结构变化。本文作者探讨了大坝安全监测技术。 关键词:大坝;安全监测技术;观测仪器 引言 大型水电站坝址地质条件复杂,多处于高震区和高地应力区,一旦失事,将会给下游人民的生命和财产带来重大损失,因此,对大坝进行安全监测非常必要。为了保障大坝建设以及全生命周期运行过程中的长久安全,100 多年以来,人们一直在探索建设更好大坝的相关理念和技术,大坝的施工与运行管理模式经历了简易工具时代,大型机械化时代,直到今天的自动化、数字化、智能化时代。所谓智能大坝(Idam),是基于物联网、自动测控和云计算技术,实现对结构全生命周期的信息实时、在线、个性化管理与分析,并实施对大坝性能进行控制的综合系统 ; 其基本特征是施工、监测数据智能采集进入数据库,监测数据与仿真分析一体化、施工管理和运行控制实时智能化,减少在大坝结构建设运行过程中的人为干预。 1、工程概况 某水库建立于 1985 年,水库的占地总面积为 160.3 平方公里,并且水库的容量为 4780 万立方米。同时这个水库自从建成到至今,给附近的很多省份和市做出了很大的贡献。但是水库在运行的过程中,也出现了很多方面的问题,例如:在 2005 年,就发生了比较严重的管涌和集中渗漏,这样就很大程度的影响了水库运行的安全,倘若其发生安全事故,不仅会直接影响本市的供水情况,还会造成严重的经济损失。针对这样的现状,水利工作人员对水库进行了排险加固,并且完善了水库安全监测设施,与此同时还采用了比较先进的监测方式对大坝进行监测,这样就可以有效的满足水库大坝的安全监测要求,从而就能确保工程项目的顺利实施和开展。 2、大坝的监测内容 检查观测 检查监测是利用人员本身通过观察、手摸或者利用一些简单的工具对建筑物进行简单的观测。使用仪器观测虽然可以得到更为准确的信息,但一个建筑物的仪器安设点数是有限的,太多的仪器设备不利于经济方面的考虑,另外水工建筑物裂缝、渗水等缺陷部位也不一定反生在仪器设备的观测点上,所以人员的检查观测具有相当重要的地位。有利于及时的弥补仪器的不足,及时的发现异常情况的发生。检查观察主要检测建筑物有无裂缝,在坝脚、迎水坡部位有无塌陷、流土和沼泽化的现象,在伸缩缝部位是否有渗漏,混凝土表面有没有松软、侵蚀的危害,有泄水作用的部位检查有无磨损、剥落金属部位的焊缝、铆钉等是否生锈变形。 仪器的量测 仪器量测既是在相应的建筑部位预设仪器设备,通过规律性的采集数据,来判定建筑物的工作状态。 (1)变形观测变形观测是原型观测中较为重要的一部分,要对土工、混凝土、土坝等建筑物观测水平位移和垂直位移、地基的固结沉降情况、伸缩缝的变形等。(2)渗透观测对于土坝类的渗透观测,浸润线的位置变化情况可以通过孔隙水压力仪来确定,根据结构形式、工程等级以及施工方法和地质情况等定出观测断面,观测断面要能够反应出主要的渗流情况和问题可能发生的地点,根据断面的大小确定测量点数。其他还包括渗流量的观测、绕坝渗流观测、坝基渗压观测、土坝孔隙水压力观测以及渗水透明度观测。对混凝土建筑物的渗透观测还要包括坝基场压力观测和混凝土内部渗透渗透压观测。(3)应力与温度观测以混凝土坝的观测为例,通过在混凝土内部埋设应力应变计和无应力计,来观测混凝土内部因为温度、湿度、化学变化以及应力引起的总应变。无应力计主要用来量测温度、湿度以及化学变化引起的应变,总应变减去这一部分就可以得到有荷载引起的应变,换算成应力,既可得出想要的结果。温度对混凝土坝体也有重要的影响,温度观测要在坝体内布设温度计,在靠近坝体表面、在坝体钢管、宽缝、伸缩缝等附近要加大测点的布设密度,和坝体周围的水文地质条件结合起来,对坝体内部温度的出合理的观测处理。(4)水流的观测 主要对水流形态观测,从而得出水流带给建筑物的作用力,避免不利的水流影响。水流平面形态包括水流的流向、回流、旋窝、折冲水流、翻滚。观测时从泄水建筑物开始向上下游两端一直到水流正常的地方。对于高速水流,要着重观测水流引起的振动、压力以及负压进气量等,观测数据可以提供宝贵的经验资料,为维修维护建立有效的依据。 3、大坝安全监测技术 水库大坝的安全监测,首先应该设计科学的大坝安全监测网络系统,选择合适的测点定时定点对大坝坝体和周边地区进行监测,在洪涝季节,还应该加强人工的观察和巡查。对大坝安全监测进行科学的管理,及时对所测得的数据进行分析,及时发现大坝存在的安全隐患。 大坝安全监测系统的设计 水库大坝的安全问题往往比较隐蔽,如果没有科学的监测系统和相关的仪器设备,有些细微隐变难以及时发现,因此,建立一个科学合理的大坝安全监测自动化网络系统,显得尤为重要。大坝安全监测系统首先应该拥有相关的监测仪器和设备,利用仪器对大坝进行变形监测、渗流监测、应力监测和气象水文监测,同时,还应充分利用现代网络技术,利用大坝安全监测软件和计算机网络技术,将所监测到的相关数据及时自动化反馈到计算机平台上,为专家分析相关数据和资料提供方便。 雨水情数据采集前端 RTU 采集降水、库水位等数据,并按整点或超限上报等方式上报给中心,中心的平台软件将数据汇入到水库群监测数据库(2)图片拍照前端RTU 可通过摄像头对现场定时拍照,并将图片上报中心,中心平台可将图片、雨水情监测量关联查看,以准确了解现场实情(3)数据展示与分析平台可提供 GIS 地图综合数据展示、测站综合数据管理、测站详细监测量管理等多种数据分析与展示方式,便于用户快速了解相关信息,也可对某测站进行深入分析(4)通迅方式中心与前端设备的通信以 GPRS/CDMA 通迅方式为主,短信备份为辅(北斗卫星可定制)(5)数据报表库水位、降水量数据据可以生成曲线及报表,支持打印输出(6)监测站管理中心

大坝安全监测的内涵及扩展参考文本

大坝安全监测的内涵及扩 展参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大坝安全监测的内涵及扩展参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 众所周知,大坝是一种特殊建筑物,其特殊性主要表 现在如下3个方面:①投资及效益的巨大和失事后造成灾 难的严重性;②结构、边界条件及运行环境的复杂性;③ 设计、施工、运行维护的经验性、不确定性和涉及内容的 广泛性。以上特殊性说明了要准确了解大坝工作性态,只 能通过大坝安全监测来实现,同时也说明了大坝安全监测 的重要性。事实上,大坝安全监测已受到人们的广泛重 视,我国已先后颁布了差阻式仪器标准及监测仪器系列型 谱、《水电站大坝安全检查实施细则》、《混凝大坝安全 监测技术规范》、《水库大坝安全管理条例》、《土石坝 安全监测技术规范》等,同时,国际大坝会议也多次讨论 过大坝安全问题[1]。

大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 1 影响大坝安全的因素 影响大坝安全的因素很多,据国际大坝会议“关于水坝和水库恶化”小组委员会记录的1100座大坝失事实例,从1950年至1975年大坝失事的概率和成因分析中得出大坝失事的频率和成因分别为:30%是由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;27%是由于地质条件复杂,基础失稳和意外结构事故;20%是由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;11%是由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施

大坝变形监测施工与观测方法及要求

(一)大坝变形监测施工与观测方法及要求 1.技术标准和规范: 承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。应执行的现行国家行业技术标准和规范主要有(但不限于): (1)《混凝土大坝安全监测技术规范》(SDJ336—89) (2)《土石坝安全监测技术规范》(SL60—94) (3)《国家一、二等水准测量规范》(GB12897—91) (4)《国家三角测量规范》(GB/T17942-2000) (5)《水利水电工程测量规范》(SL197—97) (6)《水利水电工程施工测量规范》(SL52—93) 2.变形监测仪器设备购置、加工: 变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。仪器、设备检验合格后应妥善保管。 3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装: 倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。按照设计坐标、高程进行钻孔孔位定位、放样。钻机就位,应认真进行校正。经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。钢管标、钢、

大坝安全监测

论述大坝安全监测分析与数值模拟在水工结 构中的应用及新进展 一、大坝安全监测分析 1.大坝监测的内容 大坝安全监测的范围应根据坝址、枢纽布置、坝高、库容、投资以及失事后果等确定,根据具体情况由坝体、坝基、坝肩,推广到库区及梯级水库大坝;监测的时间应从设计时开始至运行管理;监测的内容包括坝体结构、地质状况、辅助机电设备及消洪泄能建筑物等。 1.1大坝安全监测的分类 1.1.1 仪器监测 仪器监测是选择有代表性的部位或断面,按需要使用或安装、埋设仪器设备,对某些物理量进行系统的观测,取得反映建筑物性状变化的实测数据。仪器监测的项目主要有“变形监测”、“渗流监测”、“应力、应变及温度监测”和“环境量监测”。随着监测范围的扩展,诸如水力学监测、地震监测、动力监测等一些新兴监测项目不断涌现。 1.1.2 巡视检查 监测技术人员通过目视或借助一些专用设备(如在某些部位安装摄像头,辅设人工巡视专用栈道等)对建筑物现场包括坝体、坡脚、坝肩、廊道、排水设施、机电设备、船闸、航道、高陡边坡等部位进行查看、比较、分析,进而发现建筑物在施工、挡水、运行中可能危及工程安全的异常现象。它弥补了监测仪器仅埋设在指定部位的不足。而且能直观

地发现某些监测仪器不易监测到的非正常现象.提供有关建筑物安全等一些重要信息,是监测系统的组成部分。巡视检查和仪器监测是不可分割的。巡视检查也要尽可能利用当今的先进仪器和技术对大坝特别是隐患进行检查,以早发现早处理。如土石坝的洞穴、暗缝、软弱夹层等很难通过简单的人工检查发现,因此,必须借用高密度电阻率法、中间梯度法、瞬态面波法等进行检查.从而完成对其定位及严重程度的判定。因此,在大坝监测中多数采用两种监测手段结合起来的方法。 1.2大坝安全监测的目的和意义 1.2.1掌握大坝的工作状态。 指导工程的运行管理通过大坝的安全监测及时获取大坝安全的第 一手资料.掌握大坝工作状态,实现对大坝的在线、实时安全监控。在发生异常现象时,分析产生的原因和危险程度,预测大坝的安全趋势。及时采取措施,把事故消灭在萌芽状态中,保证工程安全。 1.2.2 验证坝工设计理论和选用参数的合理性 到目前为止。因实际情况复杂多变,水工建筑的设计尚不能完全与实际情况相吻合,作用在建筑物上的荷载除水压力和自重力,都难以精确计算。因此在水工设计中不得不采用一些经验系数和简化公式进行计算。通过大坝安全监测认识监测物量变化规律,检验坝工基本理论的正确性、设计方法和计算参数的合理性。验证施工措施、材料性能、工程质量的效果。

大坝安全监测技术研究 廖嘎

大坝安全监测技术研究廖嘎 发表时间:2019-06-21T11:06:56.980Z 来源:《电力设备》2019年第1期作者:廖嘎 [导读] 摘要:保证大坝安全运行的重要手段就是对大坝进行安全监测,并确保大坝安全监测系统能长期稳定、实时、精确及可靠地进行数据的采集。 (广西桂东电力股份有限公司合面狮水力发电厂广西省贺州市 542800) 摘要:保证大坝安全运行的重要手段就是对大坝进行安全监测,并确保大坝安全监测系统能长期稳定、实时、精确及可靠地进行数据的采集。国家在大坝安全监测自动化设备的研制和生产方面投入了大量的人力、物力和财力,从而使我国的大坝安全监测技术得以飞速发展。在发展的同时也暴露了一些问题,传统的大坝安全监测技术仍有待于发展,比如要对传感器的可靠性以及稳定性等方面进行优化,要做到因地制宜地选取适合于大坝的安全监测系统。本文就此展开了论述,以供参阅。 关键词:大坝安全;监测技术 1大坝安全监测的重要意义 大坝建造在复杂的水文地质和工程地质环境中,运行中的大坝不仅承受着巨大的水压力和温度等环境荷载,有时还会受到地震荷载的冲击,工作条件极为复杂。同时,由于材料性能、施工过程中造成的人为影响等因素,随着使用年限的增长,大坝也会出现不同程度的老化、病变和裂缝等问题。这些缺陷或隐患若不能及时被诊断发现并解决,将随时可能影响到大坝的安全运行,严重时还会造成灾难性事故。目前,国内已建成大坝8.6万多座,其中大部分是20世纪50~60年代修建的中小型土石坝,这些大坝或没有布设安全监测设备,或设备仪器落后,其病害十分严重。此外,随着时间流逝,一些早年布置了监测设备的大坝也出现了老化和安全问题。大坝安全监测问题已不容忽视,令人欣慰的是:近年来已得到国家的高度重视。造成大坝失事的原因很多,主要有:(1)坝体泄水能力不足或遭遇超标准的洪水;(2)坝体质量和基础存在问题;(3)其他运行管理方面引发的问题。土石坝失事的主要原因是渗透破坏和坝坡失稳,表现为坝体渗漏、坝基渗漏、塌坑、管涌、流土及滑坡等现象。据统计,在失事大坝中,仅有35%是由于其自身泄洪能力不足,也就是勘测设计中存在洪水计算和防洪能力方面的问题;大部分大坝失事仍是由于其他工程原因或运行管理问题造成的,而这些问题却是可以通过加强安全监测及早发现问题并及时处理解决的。因此,建设和完善大坝安全监测设施重要且必需。 2大坝安全监测系统结构 2.1集中式监测数据采集系统 集中式监测数据采集系统只有一台测控单元,安放于远离测点现场的监控室内,测点现场安装切换单元(集线箱、开关箱),由电缆将传感器信号通过切换单元接入到测控单元中。测量时由测控单元直接控制切换单元,对所有测点的传感器进行逐个测量。这种系统在传感器-切换单元-测控单元之间传送的是电模拟量,且连接电缆一般较长,易于受到干扰,所以对连接电缆的要求较高(芯数、阻抗特性、屏蔽、绝缘电阻等)。集中式系统虽然结构简单,但其可靠性较低,且测量时间长,不易扩展等。当测控单元发生故障时,整个系统运行即告中断。 2.2分布式数据采集系统 分布式数据采集系统由计算机、测控单元及传感器组成。这种系统将集中式测控单元小型化,并和切换单元集成到一起,安放于测点现场,每个测控单元连接若干个传感器,测控单元将监测量变换成数字量,由"数据总线"直接传送到监控微机中。分布式数据采集系统与集中式数据采集系统相比,有下列优点:(1)可靠性得到了提高,因为每台测控单元均独立进行测量,如果发生故障,只影响这台测控单元上所接入的传感器,不会使系统全部停测。(2)抗干扰能力强,分布式数据采集系统的数据总线上传输的是数据信号,因此采用一般的通讯电缆即可,接口方便,抗干扰能力强,目前普通采用的通讯制式有RS-232/RS-485/RS-422。(3)测量时间短,每台测控单元可同时进行测量,系统测量时间只取决于单台测控单元的时间,因此测量速度快,特别适合于那些物理量和效应量变化较快的水工建筑物,能够满足实时安全监控的需要。同时,测量速度快,保证了各测点各类监测量在一个几乎相同的短时间内测完,使监测参数基本同步,便于比较分析。(4)便于扩展,只需在原有系统上延伸数据总线,增加测控单元,就可以在不影响原有系统正常运行的情况下扩展系统,将更多的传感器接入。目前在国内已建成的大坝安全监测数据采集系统中绝大部分是分布式监测数据采集系统。 2.3现场总线式数据采集系统 现场总线技术于80年代初提出,经过近二十年的发展,技术上越来越成熟。现场总线是用于现场仪表与测控系统和监控中心之间的一种全分散、全数字化、智能、双向、多变量、多点、多站的分布式通讯系统,按ISO的OSI标准提供网络服务,其可靠性高,稳定性好,抗干扰能力强,通讯速率快,造价低,维护成本低。现场总线的基本内容是在测控现场建立一条高可靠性的数据通讯线路,实现传感器之间及传感器与监控计算机之间的数据交换。这条数据通讯线路在传输方面不追求商业计算机网络那种高速度,而把注意力集中在系统的可靠性方面。在可靠性方面,不是简单采用传统的多机冗余方式,而是试图提高网络自身的可靠性。在这种网络中,引入自带测量、状态检测、控制器和数据通讯能力的智能传感器,组成现场总线监测网络,原来前置机的测控功能和数据通讯功能,被下装到传感器中,而原来的系统管理、后台数据处理、系统组态等功能被上装到管理级计算机中。在这种系统中,系统监测功能和监测点可根据需要在网络上的任何一点灵活设置,实现动态组态功能。 3针对大坝安全监测采取的有效措施 3.1加强组织管理工作 部分管理层对大坝的安全监测问题不够重视,他们将工作重心放在了投资建设方面,不能意识到大坝安全监测的重要性。因此,为了防患于未然,需要大力提高管理层对大坝安全性的认识,使其意识到组织管理工作的重要性。管理人员要制定好相关的规章制度,做好考核与监督工作,通过管理使大坝安全监测工作顺利进行,这样才能尽可能避免因人为因素而导致大坝安全监测方面发生的意外情况。 3.2提高水利工程大坝安全监测技术人员的专业素质 目前,我国水利工程大坝的安全监测技术人员都存在专业素质不高的问题,为了加强对我国水利工程大坝的安全监测控制,水利部门要提高安全监测技术人员的专业素质。首先,要定期地对安全监测技术人员进行培训,加强对安全监测技术人员的操作培训,特别是在引进相关的安全监测计算机系统和信息系统等技术的情况下,要保证这些先进系统的运行,就必须提高安全监测技术人员的专业素质,保证技术人员能熟地练操作这些系统,从而更好地对水利工程大坝开展安全监测,保证水利工程大坝的安全运行。

《混凝土大坝安全监测技术规范》修订意见

《混凝土大坝安全监测技术规范》修订意见的讨论 谭恺炎杨怀祖 (葛洲坝股份有限公司试验中心,宜昌443002) 摘要:根据国内安全监测实施的发展现状,结合多年施工经验,在整理大量检测数据的基础上,对《混凝土大坝安全监测技术规范》SDJ336-89(试行)应力应变及温度监测提出几点修订意见进行讨论,并对振弦式仪器率定检验的方法和技术要求进行了阐述。 关键词:规范应力应变率定检验质量控制差动电阻式振弦式 1 概述 《混凝土大坝安全监测技术规范》SDJ336-89(试行)(以下简称“规范”)自颁发实施10年以来,对我国混凝土大坝安全监测工作起到了很好的指导作用。统一规范了国内混凝土大坝安全监测包括设计、施工、运行各方面的工作,提高了监测数据的准确度和可比性,为我国水利水电工程建设做出了应有的贡献。但由于历史条件限制,“规范”还很不完善。随着我国经济建设步伐的不断加快,许多大、中型水利水电工程相继开工建设,安全监测技术水平有了很大提高,从传感器、仪表到整个测试系统都有很大改变,尤其是近几年来振弦式传感器在工程上的大量应用,都给规范提出了新的要求,对“规范”进行修订已迫在眉睫。作者结合三峡工程安全监测实施情况对“规范”中应力应变及温度监测提出几点修订意见进行讨论。 2仪器埋设 2.1仪器埋设施工 (1) 单向应变计埋设仅规定了表层仪器埋设,对于深层仪器埋设,为了保证仪器角度及位置误差满足要求,宜在前一层混凝土上预埋锚筋,将仪器绑扎固定在锚筋(锚筋用沥青麻布包裹)上埋设。 (2) 应变计组埋设时应特别强调剔除大于仪器标距1/4~1/5粒径的骨料。这是因为应变计埋设在混凝土内,对混凝土内部应变产生影响,一般来说混凝土中最大骨料粒径小于仪器长度的1/4~1/5,仪器所测应变可代表混凝土内点应变。 (3) 无应力计埋设时宜大口朝下,但在埋设时,应在振捣后将上盖打开并用干棉纱将筒内混凝土泌水吸干。无应力计筒大口朝上时,虽然湿度可保持与周围混凝土一致,但上覆混凝土荷载将对筒内应力产生一定影响。 (4) 测缝计埋设时,为使仪器获得最大量限,又保证仪器埋设时不致超量程损伤,宜针对不同种类测缝计,视不同坝型、部位和监测目的,在设计技术要求上对仪器埋设时的状态进行明确规定。 2.2电缆施工及保护 目前差动电阻式仪器系统均为五芯观测系统,采用恒流源进行测量的数字读数仪已取代了水工比例电桥,观测精度受电缆影响大为降低,所以“规范”中对水工观测电缆的芯线电阻及其差值要求应作适当修改。具体指标可参考机械工业部通讯电缆的技术要求。 近几年来塑套电缆在水工观测上应用已较普遍,“规范”中要求使用专用橡皮电缆应予以修改。电缆联接工艺对观测仪器的成活率和观测数据精度有很大影响,对于橡皮电缆宜采用硫化接头,亦可采用机械套管或热缩接头,塑套电缆应采用机械套管或热缩接头,一般采用机械套管(内填密封胶,两端O型止水)较热缩接头质量好,且易控制。 “规范”对电缆牵引作了较具体的规定,但尚需补充几点要求: (1) 电缆水平牵引应沿钢筋引线,并加以保护,若有条件可加槽钢保护。因为混凝土在下料平仓振捣过程中,会给电缆产生较大的水平推力使电缆被拉断。 (2) 电缆牵引路线除与上、下游坝面距离应大于1.5米外,与坝体纵横缝及永久结构面距离应大于10厘米,以保护电缆不

水库大坝安全监测系统

水库大坝安全监测系统 1. 监测内容、方法及仪器 a. 大坝区降雨强度和雨量监测 采用翻斗式雨量计测量降雨量和降雨强度。 b. 大坝浸润线及坝基渗压监测 通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置以及坝基渗 流压力分布情况。 c. 大坝上下游水位监测 通过安装浮子式、振弦式水位计观测大坝的上下游的水位。 d. 大坝坝体位移监测 采用全站仪自动极坐标测量系统监测大坝变形,内外业一体化的工程测量系统可实现无人值守及自动监测。 e. 大坝渗流量监测 在大坝下游设置量水堰,安装量水堰计以监测大坝渗流量。 2. 传感器 可根据实际需求,在监测范围内安装各种传感器。一般常用的有:渗压计、混凝土应变计、应力计、多点位移计、测缝计、水位计、钢筋计、倾角计、测力计、气压计、温度计、压力盒等。 3. 自动监测系统 a. 系统简介 随着计算机技术和电测技术的发展,使得以电测传感器技术为基础的监测项目能实现全天候自动监测。同样,监测系统也具备人工观测条件,通过观测人员携带读数仪或笔记本电脑到各监测站读取数据,并可由人工输入计算机,进入相关数据库。 连续的自动监测可以记录下监测对象完整的数据变化过程,并且实时得到数据,借助于计算机网络系统,还可以将数据传送到网络覆盖范围内的任何需要这些数据的部门。 b. 系统组成 本系统由三部分组成: 1)现场量测部分 2)远程终端采集单元MCU 3)管理中心数据处理部分 c. 系统网络结构 水库大坝安全监测数据采集系统采用分层分布开放式结构,运行方式为分散控制方式,可命令各个现地监测单元按设定时间自动进行巡测、存储数据,并向安全监测中心报送数据。系统MCU之间以及MCU与监控计算机之间的网络通信采用光缆。 安全监测数据采集系统可通过光缆将位于本工程各个监测站内的监测数据 采集上来,然后通过光缆传送到位于管理所的监测中心内的监控主机内。

大坝安全监测的意义和方法

大坝安全监测的意义与方法 【论文提要】:从分析影响大坝安全的各种因素入手,拓宽了大坝安全监测的概念,即大坝安全监测应在时空上将影响大坝安全的因素考虑在内。提出:(1)大坝安全监测要有明显的针对性;(2)重视对溃坝的分析;(3)大坝安全监测应和设计及大坝安全定检结合起来,以方便资料分析和相互校核;(4)加强对大坝安全监测(包括监测系统),特别是自动化系统的效益评估,要求大坝安全监测系统成为水库运行调度的依据,真正为提高水库效益服务;(5)通过网络技术,实现大坝安全监测的网络化,以方便经验交流,提高监测技术。 【关键字】大坝安全检测意义方法 大坝是一种特殊建筑物,其特殊性主要表现在如下3个方面:①投资及效益的巨大和失事后造成灾难的严重性;②结构、边界条件及运行环境的复杂性;③设计、施工、运行维护的经验性、不确定性和涉及内容的广泛性。以上特殊性说明了要准确了解大坝工作性态,只能

通过大坝安全监测来实现,同时也说明了大坝安全监测的重要性。事实上,大坝安全监测已受到人们的广泛重视,我国已先后颁布了《水电站大坝安全检查实施细则》、《混凝大坝安全监测技术规范》、《水库大坝安全管理条例》、《土石坝安全监测技术规范》等。同时,国际大坝会议也多次讨论过大坝安全问题。 大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 一、影响大坝安全的因素 影响大坝安全的因素很多,由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;由于地质条件复杂,基础失稳和意外结构事故;由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施工质量等原因。 大坝失事的原因很多、涉及范围也很广,但大致可以分成3类。第一类是由设计、施工和自然因素引起,

混凝土大坝安全监测技术规范(试行)SDJ336—89

简要说明 第一章总则 第二章巡视检查 第三章变形监测 第四章渗流监测 第五章应力、应变及温度监测 第六章监测资料的整理、整编和分析 附录一总则 附录二巡视要求 附录三变形监测 附录四渗流监测 附录五应力、应变及温度监测 附录六监测资料的整理、整编和分析 打印 刷新 混凝土大坝安全监测技术规范(试行) SDJ336—89 主编单位:《混凝土大坝安全监测技术规范》编制组 批准部门: 试行日期:1989年10月1日 关于颁发《混凝土大坝安全监测技术规范》 SDJ336—89(试行)的通知 能源技[1989]577号 《混凝土大坝安全监测技术规范》(编号:SDJ336—89)由水利电力部在一九八五年底组织有关单位开始编制,于一九八八年底前完成,一九八九年一月在能源部主持下由能源、水利两部共同审定,现已交水利电力出版社出版,于一九八九年十月一日颁发试行。 这是我国首次编制的包括有设计、施工、运行各阶段监测工作较系统的技术规范。试行中有何意见,请函告能源部科技司或水利部科教司。 1989年3月20日 简要说明 本规范是根据原水利电力部科学技术司(83)技水电字第273号文进行编制的。 在原水利电力部科学技术司、电力生产司及水利水电建设总局(水利水电规划设计院)的组织领导下,

由水利水电科学研究院、华东勘测设计院、原西南电业管理局、中国水力发电工程学会、东北勘测设计院、南京自动化研究所、长江流域规划办公室勘测总队、天津勘测设计院、西北勘测设计院、上海勘测设计院、长江科学研究院、水电部第七工程局、葛洲坝工程局、葛洲坝水电厂、新安江水电厂、刘家峡水电厂等16个单位派员组成编制组。水利水电科学研究院、华东勘测设计院、原西南电业管理局为编制组组长单位。 本规范在编制过程中,得到了有关勘测设计、施工、运行、管理、科研、高等院校等单位的大力支持;进行了广泛的调查研究;总结了我国30多年来混凝土大坝安全监测的实践经验;参考了《混凝土重力坝设计规范》(SDJ21—78)、《混凝土拱坝设计规范》(SD145—85)、《水电站大坝安全管理暂行办法》,以及其他有关规范的内容。在编制过程中,曾先后召开了六次全国性的专题讨论会,相应地进行了七次修改。 参加本规范编制的主要人员有:叶丽秋、李光宗、唐寿同、庄万康、夏诚、胡其裕、储海宁、赵志仁、柳载舟、舒尚文等同志;参加编制的还有林长山、金虎城、刘爱光、郎桂香、吕彤彦、张俊永等同志。 本规范共分六章,七个附录。 这是一本包括设计、施工、运行各阶段较系统的《混凝土大坝安全监测技术规范》,目前尚无先例可循,由于经验不足,缺点在所难免,请批评指正。 《混凝土大坝安全监测技术规范》编制组 1989年3月 第一章总则 第1.0.1条适用范围 一、本规范适用于一、二、三、四级混凝土大坝的安全监测工作;五级混凝土坝可参照执行。 二、大坝安全监测范围,包括坝体、坝基、坝肩,以及对大坝安全有重大影响的近坝区岸坡和其他与大坝安全有直接关系的建筑物和设备。 第1.0.2条本规范与其他规范的关系 大坝的级别划分应按《水利水电枢纽工程等级划分及设计标准(山区、丘陵部分)》(SDJ12—78)执行;涉及大坝安全管理工作时应符合《水电站大坝安全管理暂行办法》的要求;重力坝和拱坝观测设计应符合《混凝土重力坝设计规范》(SDJ21—78)和《混凝土拱坝设计规范》(SD145—85)的有关要求;混凝土大坝安全监测技术工作应按照本规范执行。 第1.0.3条各阶段的监测工作 一、初步设计阶段: 应提出:安全监测系统的总体设计方案;主要监测仪器及设备的数量;监测系统的工程概算。 二、技施设计阶段: 应提出:监测仪器设备清单;各主要监测项目的测次;各监测项目的施工详图及安装技术要求;监测系统的工程预算。 三、施工阶段: 应作好:仪器设备的检验、埋设、安装、调试、维护及竣工报告的编写;施工期的监测工作及监测报告的编写。 四、第一次蓄水阶段: 应制定:第一次蓄水的监测工作计划和主要的安全监控技术指标;做好监测工作,并对大坝工作状态作出评估。 五、运行阶段: 应进行:日常的及特殊情况下的监测工作;定期对全部监测设施进行检查、校正,对埋设的仪器作出鉴定,以确定该仪器是否应报废、封存或继续观测;监测系统的维护、更新、补充、完善;监测成果的整编和分析;监测报告的编写;监测技术档案的建立。 第1.0.4条大坝工作状态的评估 负责大坝安全监测的单位,应定期对监测结果进行分析研究,从而按下列类型对大坝的工作状态作出评估:

水库大坝安全评价技术现状与发展

水库大坝安全评价技术现状与发展 袁坤傅蜀燕欧正峰王之博 摘要:随着水资源开发与利用的发展,以及极端气候的变化,大坝安全性问题日益突显,大坝安全性评价技术就显得尤为重要。主要从国内外水库大坝安全监测和风险分析的研究现状,分析水库大坝安全评价存在的问题,及对未来水库大坝安全评价发展指定方向。 关键词:大坝;安全评价;安全监测;风险分析 中图分类号: TV64 文献标识码: A 文章编号: 1001-9235( 2013) 06-0063-05 中国水库大多建于20 世纪50—70 年代,由于当时的经济社会条件制约,普遍存在工程质量问题,加上长期维修管理不够,其中约50%左右水库为病险水库。病险水库不仅不能正常发挥效益,而且存在较高的溃坝风险,严重威胁人们安全与社会的可持续发展。因此,要定期对水库大坝进行安全评价,了解大坝安全状况,以便有针对性地采取措施,对确保大坝安全和公共安全具有十分重要的意义。水库大坝安全评价就是利用系统工程原理和方法,对拟建或已有水库大坝工程及系统可能存在的危险性及其可能产生的后果进行综合评价和预测,并根据可能导致的事故风险的大小,提出相应的安全对策措施,以达到工程及系统安全的过程。主要从大坝安全监测和风险分析两个测度来分析大坝的安全评价。 1 水库大坝安全评价技术发展现状 1.1 国外水库大坝安全评价技术的发展 早在19 世纪末期,人们就开始关注大坝安全,由于当时科学技术不发达,人们只对大坝进行感性的分析。到20 世纪初—中期,随着水利行业的发展,大坝的工程技术得到较快的发展,大坝数量迅速增加,失事事故也逐渐增多,大坝的安全性引起国际大坝委员会的高度重视。1948 年第3 届国际大坝会议安排了防止管涌的最新措施会议,以提高对大坝的安全性认识; 1951 年第4 届大会提出了从大坝和库岸角度看大坝安全性的议题; 1970 年第10 届大会安排了大坝和建筑物监测的议题; 1979 年第13 届大会提出了大坝老化和失事的议题; 1982年第14 届大会安排了运行中大坝安全的议题; 2002 年第70 届年会提出了大坝安全与风险评价的议题;2003 年第71 届年会安排了水库大坝抗震安全评价影响研究的议题; 2005 年国际大坝委员会第73 届年会安排了大坝工程的不确定性评估的议题; 2006 年国际大坝委员会第22 届大坝会议提出了土坝和堆石坝的大坝安全、洪水和干旱的评估及管理等议题; 2012 年国际大坝委员会第80 届年会成立了大坝安全、大坝监测等专委会。同时世界各国也以此为契机,着重研究水库大坝的安全评价,并从风险分析和大坝安全监测两个方面来对大坝进行安全性评价。 a) 监测技术的发展现状。国外大坝安全监控资料分析工作起步较早,在20 世纪50 年代以前,人们主要通过感观认识来观测大坝表面,并对变形观测值作定性分析。1955年,意大利的Faneli 和葡萄牙的Rocha 等首次应用统计回归方法定量分析了大坝的变形观测资料。Rocha 等人采用大坝横断面各层平均温度和温度梯度作为温度因子,并以函数式来表示水位因子,使模型表达式进一步完善。1963 年中村庆一等采用回归分析法分析大坝实

相关文档
最新文档