大物实验课程论文:经验公式的建立与应用

大物实验课程论文:经验公式的建立与应用
大物实验课程论文:经验公式的建立与应用

经验公式的建立与应用

陈家昀

(中国石油大学(华东)地球科学与技术学院,山东青岛 2666555)

摘要:本文通过对经验公式建立的一般方法的介绍,并结合作图法、“以直代曲”的传统经验公式建立方法和计算机曲线拟合技术的现代经验公式建立方法作为例证进行分析。最后论述了经验公式在物理理论和实际生产生活中的具体应用,表明了经验公式在实际工作中的巨大作用。

关键词:经验公式;作图法;以直代曲;曲线拟合

0 引言

物理过程中所涉及的物理量相互之间往往按照确定的规律变化。例如,加在电阻元件上的电压U和通过的电流I;半导体PN结上的正向电压U和正向扩散电流I;流体的温度T 与粘滞系数η等。当其中一个量变化时,另一个量也发生变化。要研究这些物理量的变化规律,首先应该测绘出物理量之间的关系曲线;要进一步揭示变化规律,还需找出经验公式,也就是要找出所得关系曲线的解析表达式。经验公式是通过观测数据绘制出的曲线的走向并凭该曲线走向“对应”相应的数学模型。1

经验公式建立的基础即经验数据应具有代表性、可靠性、一致性和相互独立性。2

1 经验公式的建立

1.1 经验公式建立的基本步骤

通过实验方法探索物理规律,寻找两个相关物理量之间的函数关系式即建立经验公式,其基本方法如下3:

①测量两个相关物理量之间变化关系的实验数据。

②用直角坐标做出物理量之间的关系曲线,并根据曲线形状选择合适的函数形式①,建立

数学模型。或直接利用计算机工具如Excel软件进行曲线拟合。

③利用数据处理的有关知识,求解函数关系式中的常数,确定经验公式。一般采用最小二

乘法通过计算机进行曲线拟合,也可以通过曲线改直,用作图法、最小二乘法、逐差法等数据处理方法进行计算。

④用实验数据验证经验公式。

除了上述一般方法,近些年一些学者还研究了求经验公式的最优化模型方法4等其他求解经验公式的方法,此处就不再赘述。

①常见曲线的形状与对应的函数形式可参阅《高等数学(2-2)》附录,中国石油大学出版社。

1.2 经验公式建立的相关算例

以下结合《大学物理实验(2-1)》和《大学物理实验(2-2)》中的部分实验作为算例,具体分析说明建立经验公式的方法和步骤。

1.2.1 作图法

作图法是处理实验数据、建立经验公式的常用方法之一,主要通过曲线改直的方法,经过坐标变换,使曲线形式变为直线形式,再描点读数、求出直线斜率与截距、代入直线方程,最终得出所求的经验公式。

作图法的一个重要优点就是能够直观地反映各物理量之间的变化规律,适宜帮助找出合适的经验公式。以下结合“电学元件的伏安特性研究”实验中2CW104稳压二极管正向电压U和电流I之间关系的经验公式的建立,对上述方法做出简要阐述。

①实验中测得二极管的正向电压U、电流I数据如表1所示。

表1 二极管正向电压和电流数据记录表

②在直角坐标纸上作出U~I关系图,如图1所示。

图1 2CW104正向伏安曲线

由图可知,结合常见曲线的形状与对应的函数形式,除去约0~0.5V的死区外,正向伏安特性曲线近似为对数曲线,故设曲线方程为:

U=B+AlogI (1)

这是一个斜率为A、截距为B的直线方程,根据表1中的数据,利用曲线改直的方法,把I 取对数,如表2所示,并在直角坐标纸上作出图,如图2所示。

表2 二极管正向电压和电流数据处理表

图2 2CW104正向对数伏安曲线

③求函数式中的未知常数:

由图2可知,其变化规律近似为一直线。这说明对数关系成立,可按直线处理求出相应的参数A、B。采用作图(描点)法,当I=1时,logI=0,可得B= ,图中直线斜率的倒数即为参数A,在直线上取M(,)、N( , )两点可得

A= =

综上即可确定出2CW104正向伏安特性的经验公式为

U= + logI (2)

④用实验数据验证经验公式

根据表1中的原始实验数据,取I= mA,代入所求得的经验公式中,可算出U= V,对应的实验原始数据为U= V,符合得;再取I= mA,代入经验公式中,算出U= V,对应的实验数据为U= V,符合得。通过验证表明所建立的经验公式是符合这种二极管的伏安特性的。

1.2.2 计算机曲线拟合法

作图法作为一种传统的典型数据处理方法,对一般经验公式的建立具有较强的普适性;而随着计算机技术的发展,利用计算机曲线拟合确定经验公式就成了一个重要的发展趋势。与传统的作图法相比,利用计算机进行曲线拟合克服了前者手工工作量较大的缺陷,极大地提高了工作效率。

计算机Excel软件②中的曲线拟合(添加趋势线)功能的原理就是利用最小二乘法,求出待拟合公式中的相应参数,最终确定出拟合的曲线及经验公式。因此,其根据实验原始数据确定的经验公式具有很强的科学性。以下以“半导体PN结物理特性研究”实验5中PN结的正向扩散电流I c与电压U be的关系的确定为例,对上述计算机曲线拟合法进行简要说明:(该实验中,装置取I c=U2/R f,U be=U1,R f=1MΩ,可以直接对U2,U1进行处理)

⑴通过实验所测得电路中电压U1,U2数据记录如表3所示:

⑵根据以上数据,利用计算机Excel软件作出U1与U2的散点图如图3所示:

⑶由图3中的数据点可以看出,U1与U2的关系近似于指数关系和乘幂关系。利用Excel 软件中“添加趋势线”功能,分别在原图中对数据点进行指数拟合和乘幂拟合如图3中所示,可明显看出U1-U2关系更接近于指数关系,点击“显示公式”功能,即可得出U1-U2关系的

②随着计算机的发展,除了数据拟合技术,还开发出了基于人工智能的更为精确的FDD经验公式发现系统,大量学者对其进行研究,并提出了一些修正和改进。相关内容请参阅相应的文献资料。

经验公式:

U2 = 1.62E-07e39.708 U1 (3)

⑷利用实验原始数据对所求得的经验公式进行检验:

取U1=0.40V,代入经验公式中,可算出U2=1.281V,对应的实验原始数据为U2=1.286V,符合得较好;再取U1=0.45V,代入经验公式中,算出U2=9.327V,对应的实验数据为U2=9.248V,符合得也较好(其中部分误差是由于参数的显示精度经指数放大造成的)。通过验证表明所建立的经验公式是符合U1-U2关系的。

1.3 建立经验公式的回归分析法

以上所讲的建立经验公式的数据处理方法是比较简化和基础的方法,适用于大学物理实验等相关课程。若要从事科学研究或其他需要精密数据的工作时,则需要更为专业、精确的数据处理方法,如回归分析法和相关分析法。最后利用统计学和概率论等数理统计的方法进行置信度估计和经验公式的检验。

回归分析是指自变量为非随机变量、因变量为随机变量条件下建立经验公式的方法。数理统计学中, 把回归分析分为线性回归(一元或多元)和曲线回归(一元或多元)。而相关分析法指的是自变量、因变量均为随机变量的条件下如何建立经验公式的方法,可分为概率分析法和随机过程分析法。

相应的具体分析方法请参阅相关统计学教材6,此处不再详细叙述。

2 经验公式的应用

物理学是一门以实验为核心之一的学科。面对实验所得的大量数据,要确定两个变量之间的关系,在没有相应的公式推导或很难利用已知关系进行推导的情况下,建立变量之间经验公式就显得尤为重要。无论是物理学基础理论的研究,还是专业的工程项目的工作,经验公式都起了至关重要的作用。以下以两个例子进行简要说明。

2.1 黑体辐射与普朗克常量

1859年,德国物理学家基尔霍夫(Kirchhoff)应用

热力学理论推导出基尔霍夫定律,并由此引发了黑体辐

射的问题。

图4所示的实验曲线反映了黑体的单色幅出度与

λ、T的关系。为了从理论上推导出与实验曲线相符合

的函数式M Bλ=f(λ,T),以德国物理学家维恩(Wien)

和英国物理学家瑞利(Rayleigh)、金斯(Jeans)为典型

的许多物理学家都为其做了大量工作。式(4)为维恩公

式;式(5)为瑞利-金斯公式。

图4 黑体的单色幅出度按波长分布的实验曲线

(4)

(5)

但上述两个通过经典物理学原理推导出的公式都存在一定的问题:前者曲线在短波波段与实验曲线符合得很好,但在

长波波段有明显偏高;后者曲

线则恰好相反,被称为物理学

史上的“紫外灾难”。(如图5

所示)

1900年10月,德国物理

学家普朗克(M.Plank )用内

插法把适用于短波段的维恩

公式和适用于长波段的瑞利-

金斯公式综合在一起7,得到一

个与实验符合得很好的经验

公式,即普朗克公式

(7)

最终,普朗克为解释和理论推导这一经验公式,提出了著名的普朗克量子假设,开创了量子物理学的先河,为近代物理学的发展奠定了基础。

2.2 经验公式在石油行业的应用

经验公式在石油行业也有极为广泛和实际的应用。无论是在勘探开发阶段计算油气的可采储量,还是在才有过程中油藏采收率的标定、原油的原始油气比与体积系数,还是油气储运过程中的油气集输管理,经验公式都起了至关重要的作用。由于各大油田的实际情况都存在较大差异,在复杂变化的条件下,建立适应型经验公式往往比经典数学公式更实用,它从实际中来再应用到实际中去,能满足大多数工程要求,更符合低投入、高效率和总体经济合算的原则8。

以下以凝析油可采储量计算经验公式9为例作简要介绍。

对于凝析气藏来说,只要在地层中不发生相态变化,凝析油就能够随天然气的采出而采出。凝析油采收率的主要影响因素为:凝析油含量、凝析气油比、干气采收率、储集层物性、气藏温度、原始地层压力、埋藏深度、凝析油密度等。通过大港油田实际数据建立凝析油采收率与各因素的关系如式(8)~(11)所示:

凝析油采收率( E RO ) 与凝析油含量(δ):E RO = - 1. 3211δ0. 5325 + 66. 383 (8)

桥凝析气藏凝析油采收率与气井米采气指数:E RO = 13. 772 lnJ sg - 32. 155 (9)

凝析油采收率( E RO ) 与原始气油比( R si ):E RO = 12. 504ln R si - 63. 801 (10) 凝析油采收率( E RO) 与干气采收率( E RG ):E RO = 0. 6965 E RG - 6. 3245 (11)

以上经验公式都有其相应的适用地区和适用范围。

通过对大港油田板桥凝析气藏凝析油图5 黑体辐射公式与实验曲线

采收率与各影响因素的研究,得到了相关的相关经验公式,可用于同类型凝析气藏凝析油采收率的预测,为今后凝析油气藏凝析油可采储量的预测及储量管理提供了工具。

除此之外,经验公式在物理学中的应用还有很多,同时也可以利用建立的经验公式与通过已知关系进行推导的理论公式相结合,求出或验证相应的物理常数。例如确定PN结的正向扩散电流I c与电压U be关系的经验公式并与理论式进行比较,可以求出波尔兹曼常数等。

3 结语

综上所述,经验公式的建立不仅在物理学中、也在实际生产和生活的方方面面起着至关重要的作用。学习建立经验公式的基本方法以及利用现代计算机技术进行曲线拟合和分析,有助于今后在实际工作中的应用。

本文从经验公式的建立和经验公式的应用两个方面对经验公式的相关内容进行了简要说明和分析,希望能引发同学和学者对经验公式的建立方法和实际应用进行更为深入的研究,为生产和生活提供宝贵经验。

致谢

鸣谢中国石油大学(华东)物理实验教学中心为相关物理实验提供器材以及各实验老师的耐心讲解;鸣谢中国石油大学(华东)校图书馆系统提供方便的文献查阅与参考功能。

参考文献

1陈辉. 普物实验教学方法的探索[J]. 甘肃联合大学学报,2005,19(4):69-70.

2张怀慧. 经验公式的建立及其检验[J]. 大连水产学院学报,2000,15(3):193-200.

3大学物理实验教程(2-1)[z]. 青岛:中国石油大学(华东)物理实验教学中心,2011-07. 4石东伟. 求经验公式的最优化模型方法[J]. 河南科学,2006,,24(4):489-481.

5大学物理实验教程(2-2)[z]. 青岛:中国石油大学(华东)物理实验教学中心,2011-07. 6孙允午. 统计学(第二版)[M]. 上海:上海财经大学出版社,2009.

7贾瑞皋. 大学物理教程(第三版)[M]. 北京:科学出版社,2009.

8刘忠席等. 适应型经验公式的作用与建立方法[J]. 辽宁工程技术大学学报,2006,25(6):833-835.

9杨广荣等. 凝析油可采储量计算经验公式[J]. 石油勘探与开发,2004,31(2):109-111.

大学物理实验论文

武汉工程大学邮电与信息工程学院大学物理实验课程论文 论大学物理试验数据处理 姓名:陈凯旋 学号: 6502150203 系别:机械与电气工程系 专业:自动化 年级班级:15自动化02 指导教师:张乐 2016年11月1日

论大学物理实验数据处理 摘要:本文基于电磁场理论,得出了单色平面光波在左手材料中传播时其电场强度、磁场强度和波矢量遵循左手螺旋关系。解释了逆多普勒效应,负折射现象。重新推导出了单色平面光波从真空中投射到左手介质中的菲涅尔公式,并且讨论了电磁波从真空中到左手介质中的一种特殊的光学现象,由此得出了存在两个布儒斯特角。(楷体小四) 关键词:电磁场理论;左手材料;负折射率;布儒斯特角(楷体小四) 引言 1967年,前苏联物理学家Veselago发表了一篇文章首次提出了一种假想材料即左手材料。其实自然界中尚未发现介电常数ε和磁导率μ都为负值的材料。此材料需要通过人工获得。因此,在此领域的研究进展一直处于停滞阶段。直到1996年,英国皇家学院的Pendry提出了通过巧妙的设计结构来实现负的介电常数的材料。接着在1999年他又提出了可以用开口谐振环阵列来构造磁导率为负的人工介质[]1。(参考文献以上标的形式标出)从此,该课题越来越热。具有突破性进展的是2000年美国加州大学Smith将两者结合起来,首次制备出了一维的左手材料。2001年,Shelby制备出了二维的左手材料,并从实验上验证了负折射率材料的负折射现象。被“Science”杂志评为2003年度十大科技突破之一[]2。2003年美国Parazzoli等人及Hauck等人分别进行了一系列实验,清晰地展示了负折射现象。2006年,我国东南大学毫米波实验室的崔铁军教授领导的研究小组提出了一种能使磁导率为负的双螺旋共振结构[]3。一系列的研究成果引起了众多学者的关注,使得左手材料的研究成为国际电磁学界的一个引人注目的前沿领域。(宋体,小四,英文,Times New Roman) (正文部分3000字左右) 1.电磁波在介质界面上的反射和折射(一级标题,宋体四号,加黑)(内容宋体小四) 1.1电磁波在右手介质界面上的反射和折射(二级标题宋体小四,加黑) (内容宋体小四) (正文中图要有标题,示例如下)

大学物理创新实验论文

光杠杆测量杨氏模量实验的改进 李XX (重庆交通大学土木建筑学院,重庆市南岸区,400074) 摘要:测量杨氏模量中常用光杠杆来测量加载重物后的微小形变量△L,而光杠杆在使用前要先调节镜尺之间的相对位置,在用传统光杠杆调节时比较麻烦。本实验通过对传统光杠杆装置作了一点改进,取消了传统光杠杆中的望远镜,而改用光斑来指示标尺上的读数。用这种改进后的光杠杆能快速调节光杠杆,且不会在调节与读取数据过程中使眼睛疲劳,大大提高了实验的效率。 关键词:杨氏模量,激光,光杠杆,仪器改进 中文分类号:文献标识码: 引言:杨氏模量是描述固体材料抵抗形变能力的重要物理量,是工程技术上极为重要的常用参数,是工程技术人员选择材料的重要依据之一。测量杨氏模量的方法较多,本文主要介绍用改进后的光杠杆测量杨氏模量。 1 传统光杠杆的缺点 传统光杠杆在使用时要先调节光杠杆、望远镜和标尺之间的相对位置,使在望远镜中能看清平面镜内反射的标尺的像,这就是这个实验的难点。在做这个实验的时候,我们发现这个调节过程是相当麻烦的,而且当我们调节好后如果稍不小心,轻轻碰一下实验装置,便前功尽弃,又得重调,这让我们相当苦恼。我们用传统光杠杆调节了很久才使望远镜中能看到标尺的像,而且调节过程中眼睛非常疲劳,对视力非常不好。 2 实验装置的改进及实验原理

针对传统光杠杆的不足,且为了提高做实验的效率,我对光杠杆进行一些改进,使得改进后的光杠杆使用起来更为方便。我们可以不用望远镜,而在原来望远镜处放置一个能发射光点的光源。使该光源发出的光经光杠杆的平面镜反射后又射在标尺上。则先后之间两个光点的高度差就是经光杠杆放大了的微小形变。 2.1 改进措施及改进后光杠杆的原理 因为氦-氖激光平行性好,能量集中,在各种常用的激光器中,氦-氖激光器输出激光的单色性最好以便能方便精确的在标尺上读数。此外,它还具有结构简单、使用方便、成本低等优点。因此我们用氦-氖激光器作为发射光点的光源。 在标尺中央零刻度处开一个小孔,将氦-氖激光发射器与标尺固连,且使其发出的光从小孔处穿过且光路与标尺面垂直。如图所示: 设由激光器发出的光开 始时反射到标尺上所指的刻度 为S0,当钢丝长度变化时,光杠 杆一端下降。并带动镜面转动。 设转角为θ,则激光光线转过 2θ。设标尺上激光光点对应的 读数为S ,令△δ = S - S0 . 当△L<< b 时,tanθ=△L / b ≈θ,tan2θ=△δ/ D≈2θ , 则有:△L=b*△δ/(2D) (1),所以△L被放大了2D / b 倍. 2.2 用拉伸法测金属丝的杨氏模量的原理 杨氏模量是反映固体材料形变与应力关系的物理量。本实验中形变为拉伸形变,即金属丝仅发生轴向拉伸形变。设金属丝长度为L,横截面积为S,沿长度方向受一外力F后金属丝伸长△L,称为线应变。实验结果表明:在弹性形变范围内,正应力与线应变成正比,即:F / S=Y*△L/L (2) , Y称为杨氏模量,微小形变△L用上面的光杠杆测量。由(1)、(2)得,杨氏模量Y=8*F*L*D/(π*d^2*b*△δ) ,其中d为钢丝直径。

复旦大学普通物理实验期末真题1112

真题1112 第一循环 随机误差 1. 满足正态分布要求的数据在正态概率纸上作图得到()是个选择题答案有S型曲线直线什么的 2. 用100个数据作图,但分组时第4、6组有25个数据,第5组有16个数据,大概意思是有很多数据都骑墙了,处理方法错误的是()(多选) A、测量200个数据 B、改进分组方法 C、舍去骑墙数据用备用数据填补 D、用单摆试验仪代替误差较大的秒表重新测量 转动惯量 1. 外径和质量都相同的塑料圆体和金属圆筒的转动惯量哪个大 2. 载物盘转动10个周期时间为8.00s,放上物体后转动10个周期时间为1 3.00s,给出K值大小,求出物体的转动惯量 碰撞打靶 1.给出x x` y m 算出碰撞损失的能量ΔE 2.选择题调节小球上细线的时候上下转轴有什么要求 A上面两个转轴平行 B下面两个转轴平行 C上面两个转轴平行且下面两个转轴平行 D只要碰撞后小球落在靶中轴线附近就可以第二循环 液氮 1. 如果搅拌的时候量热器中的水洒出一些,求得的L偏大还是偏小还是不变 2. 操作正误的判断,选出错误的 A.天平上的盖子打开 B第二次白雾冒完了立刻记下此时的时间tc C、搅拌时把温度计倾斜搁置在量热器中而且不能碰到铜块 D倒入液氮之后立即测量室温表面张力 1. 选择:(顺序可能有点问题)A、水的表面张力比酒精的表面张力小 B、酒精的表面张力随着浓度的增大而减小 C、在液膜形成之前电表的示数一直增大 D、拉出液膜到破裂的过程中,电表的示数一直减小 2. 水的表面张力随温度上升而_____(变大、不变or变小) 全息照相 干板在各浓度溶液中的冲洗时间;干板药膜面正对还是背对硬币(这是其中两个选项) 第三循环 示波器 1.输入的信号为正弦波形,但是屏幕上只看到一条直线,可能的原因 A、按下了接地按钮 B、AC\DC档中选了DC档位 C、Volts/DEC衰减过大 D、扫描速度过快 2.给出一个李萨如图形和X轴信号频率,求Y轴信号频率 直流电桥 1. 要测量一个1000欧姆的电阻,如何选择RA/RB的值和RA的值使得不确定度减小(选择题) 2.选择题判读正误:a.调节Rs,指到零说明电桥平衡。b.调节检流计灵敏度,指到零说明电桥平衡。c。Rs一定,调节Ra和Rb可以达到电桥平衡。d。Ra一定,调节Rs和Rb可以达到电桥平衡。 二极管 1.定值电阻与滑动变阻器的阻值的比,问什么情况下最接近线性

大学物理课程论文

大学物理课程论文 系别:能源工程系 班级:13应化 姓名:苟昱

引言 我们每个人时时刻刻都在不自觉地运用物理知识。并且,物理学与我们的生活联系最为紧密,物理现象大量的存在于我们周围,如雨后天晴的彩虹,湖水沸腾等。都可以从物理知识中得到答案。因此,我们要充分了解物理是源于生活也是解决生活问题的基本工具。运用所学知识,解决生活中的问题,这能够增加我们的感性认识,增强生活实际的联系。 物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。在现代,物理学已经成为自然科学中最基础的学科之一。 物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。它与我们的生活息息相关,密不可分! 关键词:生活物理,物理应用,杨氏模量

在大学物理课程上,我们做了众多物理实验,然而今天就由我来介绍一下弹性模量,和它在生活中的应用。 弹性模量Elastic Modulus,又称弹性系数,杨氏模量。如今,随着科技的不断发展,弹性模量变成了工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。在日常生活中,弹性模量的应用与测量在许多领域有重要的作用,就好像混凝土的弹性模量如果不够,使建筑变形而不能正常使用,就很容易发生事故造成经济损失,甚至人员伤亡。 我们在实验中测得的杨氏模量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 杨氏弹性模量是选定机械零件材料的依据之一,是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。

物理学史结课论文

物理学史结课论文 ———物理在现代科技中的应用 班级: 学号: 姓名:

摘要:从物理在人们生活周边,到学科应用、能源开发,乃至军事战争等几个方面论述了物理在现代科技中的广泛应用,并且物理今后在现代科技中的应用将会越来越广泛,作用也将越来越大。 关键词:生活学科能源 正文: 当今物理学已经发展成为研究宇宙间物质的基本组元及其基本相互作用和基本运动规律的学科。物理学的学科性质决定了它是整个自然科学的基础。物理学的基本概念、基本理论、基本实验手段和研究、测试方法,已经成为并将继续成为自然科学的各个学科(诸如宇宙学、天文学、地学、化学、生物学、医学等)的重要概念、理论的基础和实验、研究方法,从而推动各个学科深入而迅速地发展。物理学向自然科学各个学科的广泛渗透和移植,促使一系列交叉学科、边缘学科不断涌现。而正是这些交叉学科、边缘学科,有可能成为未来学科中最有希望、取得成果最多的领域。 宇宙学就是在物理学一系列研究成果的基础上而获得了迅速发展。作为宇宙学理论基础的热大爆炸理论,就是依赖于广义相对论以及粒子物理学的飞速发展和射电望远镜等天文观察手段的提高而诞生的。热大爆炸宇宙论被称为20世纪后半叶自然科学的四大成就之一。然而,该理论还存在着很多不完备性和局限性,尤其关于宇宙的起源问题仍然没有得到最终的回答。对此朱洪元教授曾指出:“高能物理的研究成果将对甚早期宇宙的演化的理解起推进作用”。可以相

信,随着物理学尤其是高能物理研究的不断深入发展,宇宙的起源和演化过程将逐步被认识、理解,宇宙学将被推进到一个崭新的阶段。 物理学对地球科学的影响是深远的。地球物理学就是地学受物理学的影响而产生的一门交叉学科,正是由于对电磁波传播机制的研究而发现了大气电离层,对宇宙线的研究而发现了地球内辐射带并从而导致太阳风的发现;而对洋底岩石磁性的研究,则是确定板块构造学说——这一地球科学的革命性进展——的关键因素。地球科学所需要的实验测量技术也在很大程度上依赖于现代物理学。近年来,电子自旋共振、质子激发荧光分析技术和氡测量技术等核分析技术的研究对地质学正在产生越来越重要的影响。高压物理研究则对解决深部地质问题具有重要意义。随着地质学研究范围的扩大和核探测技术的不断提高,地质学的发展与核物理学的关系将日益密切。地质科学的前沿与尖端技术融为一体,它们所开辟的科研领域和所达到的知识深度已超过了以往任何时代。现代地质学将沿纵向和横向交叉的方向发展,核物理与地质学的衔接日益紧密,它们的交叉点将可能成为学科或新方向的生长点。 物理学与化学之间的关系也愈来愈密切。物理学发展中出现的理论工具和实验方法,使化学科学得以如虎添翼般的飞速发展。传统的物理化学就是着重应用物理理论和实验方法去处理化学问题而形成的一门化学分支学科,并已成为化学科学的理论核心之一。化学物理是由物理学与化学之间的密切结合而产生的一门正在蓬勃发展中的交叉学科,它以化学和物理学的新成就及近代实验方法来研究原子、

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

大学物理实验小论文

大学物理实验小论文 The Standardization Office was revised on the afternoon of December 13, 2020

大学物理实验小论文 班级姓名学号 摘要:主要介绍我在本次大学物理实验中获得的知识与体会。 关键词:认识体会数据处理总结 一、对大学物理实验的认识 大学物理实验是非常重要的基础课,其目的是培养我们掌握实验的基本理论、方法和技巧;培养我们严谨的思维能力和创新精神,特别是与现代科学技术发展相适应的综合能力;培养严肃认真的工作作风和科学态度。对于我们将来独立从事实际工作是十分有必要的。 二、大学物理实验中的体会 1、养成实验前预习的好习惯。 实验时,为了在规定的时间内快速高效率地完成实验,达到良好的实验效果,需要认真地预习,才能在课上更好的学习,收获的更多、掌握的更多。根据实验教材的相关内容,弄清楚所要进行的实验的总体过程,弄懂实验的目的,基本原理,了解实验所采用的方法的关键与成功之处;思考实验可能用到的相关实验仪器,对照教材所列的实验仪器,了解仪器的工作原理,性能,正确的操作步骤,特别是要注意那些可能对仪器造成损坏的事项。然后写预习报告,包括目的,原理,仪器,操作步骤等。

2、上课时认真听老师做讲解,切记老师所讲的重点内容。 记下老师实验指导的内容有助于自己实验时避免犯错及实验报告的书写。 3、大学物理实验培养了我做事的耐心与细心。 课堂操作时需要严格的遵守实验的各项原则,要将仪器放置在合理的位置,以方便使用和确保安全。读数,需要有足够的耐心和细心,尤其是对一些精度比较高的仪器,读数一定要按照正确的读数方法并且一定要细心。对于数据的记录,则要求我们要有原始的数据记录,它是记载物理实验全部操作过程的基础性资料。 4、培养自己的动手能力。 现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台。每个实验我都亲自去做,不放弃每次锻炼的机会。 三、大学物理实验数据处理 1、作图法 选取适当的自变量,通过作图可以找到反映物理量之间的变化关系,并便于找出其中的规律,确定对应量的函数关系。作图法是最常用的实验数据处理方法之一。 描绘图象的要求是:①根据测量的要求选定坐标轴,一般以横轴为自变量,纵轴为因变量。坐标轴要标明所代表的物理量的名称及单位。②坐标轴标度的选择应合适,

大学物理实验论文

大学物理实验论文 Prepared on 22 November 2020

实验数据处理方法及其在实验中的应用引言:过去的一年中,我完成了大学物理实验这门课程的学习。物理实验是物理学习的基础,虽然在很多物理实验中我们只是复现课堂上所学理论知识的原理与结果,但这一过程与物理家进行研究分子和物质变化的科学研究中的物理实验是一致的。在物理实验中,影响物理实验现象的因素很多,产生的物理实验现象也错综复杂。老师们通过精心设计实验方案、严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们通过努力能够顺利地解决物理实验呈现的问题,考验了我们的实际动手能力和分析解决问题的综合能力,加深了我们对有关物理知识的理解。这一年,我共做了14个物理实验,用到了各种实验数据处理方法。 正文: 一、误差: 1、分类 系统误差 随机误差 粗大误差 2、表现形式 绝对误差 相对误差 引用误差

3、误差的处理 随机误差的处理 系统误差的处理 粗大误差的处理 仪器误差 二、有效数字 概念 三、测量结果的不确定度评定 1、测量不确定度 概念 分类 2、测量结果的表示 3、直接测量的结果及评定 最佳估计值 不确定度评定 A类评定 B类评定 4、间接测量的结果及评定 间接测量量的最佳值 间接测量量不确定度 四、数据处理的常用方法 1、列表法

2、作图法 优点 规则 应用 3、逐差法 4、最小二乘法 5、excel软件处理实验数据 五、实验数据处理方法在试验中的应用 1、落球法测量油品的粘滞系数 结束语: 一年内,只做的14个实验,但是我所学的实验数据的处理方法应用已经基本得到了应用。通过大学物理实验,不只是把课堂上学到的基本知识得到的应用,更重要的是我的动手能力得到的充足的锻炼,学会了自己动手,自己独立的思考,学会了做完实验后总结自己的不足,并在下一次实验过程中得到完善。现在所学到的实验数据处理方法不光是能用在大学物理实验数据的处理中。我相信,在以后的工作过程中,现在所学到的知识也一样能得到应用。 摘要: 大学物理实验数据处理方法主要误差的处理、测量结果不确定度的评定,数据处理的常用方法主要有:列表法、作图法、逐差

大学普通物理实验报告模板

大学普通物理实验报告模板 预习报告: 1.试验目的。(这个大学物理试验书上抄,哪个试验就抄哪个)。 2。实验仪器。照着书上抄。 3.重要物理量和公式:把书上的公式抄了:一般情况下是抄结论性的公式。再对这个公式上的物理量进行分析,说明这些物理量都是什么东东。这是没有充分预习的做法,如果你充分地看懂了要做的试验,你就把整个试验里涉及的物理量写上,再分析。 4.试验内容和步骤。抄书上。差不多抄半面多就可以了。 5.试验数据。做完试验后的记录。这些数据最好用三线图画。注意标上表号和表名。EG:表1.紫铜环内外径和高的试验数据。 6.试验现象.随便写点。 试验报告:

1.试验目的。方法同上。 2.试验原理。把书上的归纳一下,抄!差不多半面纸。在原理的后面把试验仪器写上。 3。试验数据及其处理。书上有模板。照着做。一般情况是求平均值,标准偏差那些。书上有。注意:小数点的位数一定要正确。 4.试验结果:把上面处理好的数据处理的结果写出来。 5.讨论。如果那个试验的后面有思考题就把思考提回答了。如果没有就自己想,写点总结性的话。或者书上抄一两句比较具有代表性的句子。 实验报告大部分是抄的。建议你找你们学长学姐借他们当年的实验报告。还有,如果试验数据不好,就自己捏造。尤其是看到坏值,什么都别想,直接当没有那个数据过,仿着其他的数据写一个。 不知道。建议还是借学长学姐的比较好,网络上的不一定可以得高分。每个老师对报告的要求不一样,要照老师的习惯写报告。我现在还记得我第一次做迈克尔逊干涉仪实验时我虽然用心听讲,但是再我做时候却极为不顺利,因为我调节仪器时怎么也调不出干涉条纹,

复旦大学普通物理实验期末真题1006.

真题1006 一、随机误差正态分布 1、下列说法错误的是( A、测单摆周期应以最高点为起点 B、测单摆周期应以最低点为起点 C、 D、累计频率曲线允许两端误差较大 2、如何避免数据骑墙,错误的是:((多选 A、重新分组; B、 C、归于前一组,最后一组归于其自身; D、归于后一组,最后一组归于其自身; 二、碰撞打靶 1、求碰撞球高度h0的公式:( A、h0=(x2+y2/4y B、 C、h0=(x2+y/4y D、h0=(x2+4y/4y

2、操作没有错误,但是修正了4、5次都一直达不到十环(小于10环且靠近轴线,不可能的原因是( A、碰撞点高于被碰球中心 B、碰撞点低于被碰球中心 C、被碰球与支撑柱有摩擦 D、线没有拉直 三、液氮比汽化热 1、Q等于( A、水从t2升高到t3吸收的热 B、铜柱从t2降到液氮温度放出的热 C、铜柱从室温降到液氮温度放出的热 D、铜柱从t3上升到t1吸收的热 2、测得mN偏小的原因((多选 A、有水溅出 B、瓶口结冰 C、记录tb的时间晚了 D、铜柱在转移时吸热了 四、全息照相 1、实验装置的摆放顺序(

A、电子快门—反光镜—扩束镜—小孔 B、电子快门—反光镜—小孔—扩束镜 C、反光镜—电子快门—小孔—扩束镜 D、反光镜—电子快门—扩束镜—小孔 2、下列说法正确的是((多选 A、有胶剂的一面对光,看到实像 B、有胶剂的一面对光,看到虚像 C、有胶剂的一面背光,看到实像 D、有胶剂的一面背光,看到虚像 五、示波器 1、给你一幅图,问fx/fy=((就是考和切点的关系 2、衰减20db,测得x轴5.00,档位2ms/div;y轴4.00,档位0.1v/div,求频率(和电压( 六、二极管 1、正向导通时是(,反向导通时((填内接或外接 2、已知电压表内阻Rv,电流表内阻RA,测量值R,则内接时真实值是(,外接时真实值是(。 七、RLC电路 1、给你一幅图(两条谐振曲线,一条较高较窄的标有Ra,另一条Rb,问Ra、Rb 的大小关系,问Qa、Qb 的大小关系;

物化结课论文

化学化工学院 物理化学实验结课论文 题目:液体表面张力测定的方法学院:化学化工学院 班级: 10化学 学生姓名: 学号: 完成时间:2013 年 6 月 25 日

目录 一. 摘要----------------------------------------------------------------------1 二.正文-----------------------------------------------------------------------1 三.总结-----------------------------------------------------------------------3

一、摘要: 表面张力是影响多相体系的相间传质和反应的关键因素之一,是重要的液体物理性质。本文着重介绍了几种液体表面张力的测定方法(毛细管上升法、最大气泡压力法、差分最大气泡压力法),包括这种方法的测定原理、缺点及改进方法或应用,特别指出了宽温度和压力范围的表面张法的选择及表面张力测定展趋势。 关键词:表面张力,最大气泡压力法,差分最大气泡压力法,毛细管上升法。 二、正文: 液体表面区的分子由于受力不平衡产生的向内收缩的单位长度的力,即表面张力。它分为静态表面张力和动态表面张力。通常液体的表面张力,自其液体表面形成之后,随着时间的推移而有所变化。在新的液体表面形成的瞬间,经过约1s以上时的表面张力,称作静态表面张力;在1s以下的表面张力称作动态表面张力。表面张力是多相系统的重要界面性质,对于泡沫分离、蒸馏、萃取、乳化、吸附、润湿等过程存在重要影响。在实际生产过程中,动态表面张力更有意义,因为它反映出传质过程以及吸附、粘附、铺展等过程的有关信息,这对于化工过程的设计与研究是非常有意义的。现有的表面张力测定95%都是常压或沸点条件下进行的.现在越来越需要考察不同温度和压力条件下表面张力的测定。本文着重指出各种条件下表面张力的测定方法,特别是高温高压下表面张力的测定方法。液体表面张力的测定方法分静力学法和动力学法。静力学法有毛细管上升法、最大气泡压力法;动力学法有震荡射流法、毛细管波法。其中毛细管上升法和最大气泡压力法不能用来测液一液界面张力。最大气泡压力法,震荡射流法,毛细管波法可以用来测定动态表面张力。由于动力学法本身较复杂,测试精度不高,而先前的数据采集与处理手段都不够先进,致使此类测定方法成功应用的实例很少。因此,迄今为止,实际生产中多采用静力学测定方法。 1.毛细管上升法: 1.1测定原理: 将一支毛细管插入液体中,液体将沿毛细管上升,升到一定高度后,毛细管内外液体将达到平衡状态,液体就不再上升了。此时,液面对液体所施加的向上的拉力与液体总向下的力相等。则γ=1 /2( ρ1-ρg)g h r cosθ。(1) 式中Y为表面张力,r为毛细管的半径,h为毛细管中液面上升的高度,R为测量液体的密度,ρ为气体的密度(空气和蒸气),g为当地的重力加速度,。为液体与管壁的接触角。 1.2优点: 本法是用来直接测定液体表面张力的最为准确的绝对方法之一,也是应用最多的方法之一。由于它不仅理论完整,而且实验条件可以严格控制,是一种重要的测定方法。随着技术的发展,毛细管上升技术也可以用来测定动态表面张力。此方法还曾被用于高温高压条件下表面张力的测定,但温度一般不超过100 0C,压强不超过13.8MPa。 1.3缺点: (1)不易选得内径均匀的毛细管和准确测定内径值。 (2)液体与管壁的接触角不易测量。 1

物理结课论文

(一)广义惯性使牛顿力学进化 爱因斯坦独具慧眼,从司空见惯的现象中及自由落体运动与质量因素无关的经验事实,总结出了等效原理,且明确与准确地说:物体的同性就是广义惯性,这个处境就是空间。牛顿第二定律实质是其第一定其进化。同时,也说明了需要建立一个取代牛二律的进化性质的核心命题系统的新力学理论。广义惯性又引出了两种空间及其区别的新问题。这个新问题困扰了爱因斯坦的一生,走了一大圈"弯"路后,在他晚年时,才看到了解决这个问题的曙光--物体具有空间的广延性,由此"广延性"再往前走一步,就是文中说的ρ空间及其区别的标志是其梯度值的有否。这说明还需要一个新的涉及空间的基本概念及与其相对应的原来等效原理所没有涉及到的新的经验事实:物体质量部分的压强梯度现象(注:在固态的具体物体内部,此"压强梯度"表现为"胁强"),也就是爱因斯坦的物体的空间广延性的具体体现。同时也引出了物体的非刚性及其具有内部空间结构的抽象性质。于是,"万事俱备",只欠建立一个新的核心命题系统了。可以说,惯三律就是这个系统。广义惯性是由于把"重性"也归于同牛顿惯性一样的物体属性,所以,其革命意义也主要体现在"重力"方面。"引力"是对重力本质的错误认识。广义惯性与场概念把原来引力中的两个平权的物体分离开来:一个是仅表现广义惯性的一般(非整体)物体;另一个是具有产生重力场的特殊性的中心物体。一般物体与中心物体之间已经没有"力"的关系了。但通过重力场(原来引力场与自转惯性离心力合成

的重力场涵义需要改变)有"能"的关系。到此为止,广义惯性已经完成了其逻辑任务,即取消了引力及导出了中心物体的特殊性(当然也具有广义惯性的一般性)。这个特殊性的中心物体就是整体天体。于是,广义惯性与整体天体就构成了理论的内部逻辑性(也就是"自圆其说")。广义惯性取消了惯性质量与引力质量的区别。当然,更没有质量的第三个属性--产生引力场。说重力场是特殊的ρ空间,也有其对应的经验事实,即具有重力场的质量部分的天体,一般都具有密度及压强(也有温度及磁场因素)与中心距离近似反比分布(中聚度)的现象。同时,其现象也表明了这个天体(中心物体)的特殊性。中聚度现象已经是整体性的一种体现。 (二)牛顿力学 为什么人们回避牛顿第二定律中的"力"(外力)的反作力就是物体的惯性力的道理呢?就是因为把重力也当作外力(引力)时,物体本身没有反作用力--惯性力(重力加速度与物体质量的大小无关),这正是牛顿力学理论内部的不能"自圆其说"的地方,这也正是爱因斯坦所注意的地方。为了回避这矛盾性(无意识的),不得不让其"外力"担当"广义"的力的重任。"力是物体加速运动的原因"这一没有条件限制的观念,是牛顿力学最主要的思维定势。不管是相对的加速运动还是"绝对"的加速运动,人们都在头脑中马上反映出来要乘上物体的质量,使力成为其运动的原因。于是,其直接错误后果就是把非牛顿惯性系内或重力场内的物体"自由"或有阻力的"不自由"的加速运动,也

大学物理实验报告

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 大学物理实验报告 摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电阻温度特性 1、引言 热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制 1 / 12

成流量计、功率计等。 Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件 常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。 2、实验装置及原理 【实验装置】 FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。 【实验原理】 根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为 (1—1) 式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值可以根据电阻定律写为 (1—2) 式中为两电极间距离,为热敏电阻的横截面,。 对某一特定电阻而言,与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有

半导体PN结实验论文-大物实验

半导体PN 结的物理特性及弱电流测量 摘要:PN 结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。 PN 结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。根据PN 结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。PN 结温度传感器优点是灵敏度高、响应速度快、体积小、重量轻、便于集成化、智能化,能使检测转换一体化。PN 结传感器的主要应用领域是工业自动化、遥测、工业机器人、家用电器、环境污染监测、医疗保健、医药工程和生物工程。 关键词:PN 结;电信号;检测与控制。 Abstract:PN junction is the core components of bipolar transistor and field effect transistor and the basis of Modern electronic technology.PN junction with unidirectional conductivity is the characteristics of many devices in the electronic technology.For example, the material base of a semiconductor diode and a bipolar transistor.According to the materials, doping distribution, PN junction geometry and bias conditions, using the basic properties can produce the crystal diode with a variety of functions.PN junction temperature sensor has the advantages of high sensitivity, fast response speed, small volume, light weight, easy integration, intelligent detection, can make the conversion of integration.The main application field of PN junction sensor is industrial automation, remote sensing, industrial robots, household appliances, environmental monitoring, medical care, medical and biological engineering. Key words:PN junction; signal; detection and control. 1 前言 随着信息时代的影响越来越深入,各种控制电路已经融入了人们的生活。各种各样的半导体在控制电路中扮演着重要的角色。PN 结有反向击穿性,单向导电性,电容特性等重要的性质。 2 半导体PN 结原理 2.1 PN 结伏安特性及玻尔兹曼常数测量 由半导体物理学可知,PN 结的正向电流-电压关系满足: []1)/exp(0-=kT eU I I (1) 式中I 是通过PN 结的正向电流, 0I 是 反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,e kT /≈0.026v ,而PN 结正向压降约为十分之几 伏,则)/exp( kT eU >>1,(1)式括号内-1项完全可以忽略,于是有: )/exp(0kT eU I I =(2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出kT e /。在测得温度T 后,就可以得到k e /常数,把电子电量作为已知 值代入,即可求得玻尔兹曼常数k 。 在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分:1)扩散电流,它严格遵循(2)式;

《普通物理实验》实验教学大纲

《普通物理实验》实验教学大纲 一、教学目的 1、通过一定数量的普物实验,使学生在物理实验的基本知识、基本方法和基本技能方面受到较系统的训练,掌握基本物理量的测量原理和方法,能根据误差要求合理选择与正确使用基本仪器,能进行有效数字的运算和数据的处理;对实验结果能做正确的分析和判断,使学生具有中学物理实验教学的能力。 2、通过对实验现象的观察和判断,对实验结果的分析和总结,使学生加深对物理基本概念和规律的认识。 3、它侧重培养学生科学实验能力、实验技能的基本训练和良好的科学实验规范,同时培养大学生学习能力、实践能力和创新能力。 4、培养学生辨证唯物主义世界观,严肃认真,实事求是的科学态度,严谨的工作作风和良好的实验习惯。 二、教学基本要求 1、掌握物理实验的基本知识、基本方法和基本技能; 2、掌握基本物理量的测量原理和方法,能根据误差要求合理选择与正确使用基本仪器,能进行有效数字的运算和数据的处理; 3、准确观察和判断实验现象,分析和总结实验结果的初步能力。 4、初步形成良好的工作作风,基本的科学实验能力和创新意识。 三、教材及参考书 1、《普通物理实验》(一、力学、热学部分),杨述武主编马葭生、张景泉、贾玉民编,高等教育出版社, 2000年,第三版 2、《普通物理实验》(二、电磁学部分),杨述武主编杨介信,陈国英编,高等教育出版社, 2000年,第三版; 3、《普通物理实验》(三、光学部分),杨述武主编王定兴编,高等教育出版社, 2000年,第三版 4、《普通物理实验》(四、综合及设计部分),杨述武主编,马葭生、张景泉、贾玉民编,高等教育出版社,,2000年,第一版 四、其它说明 1、本课程采用理论教学和学生分组实验相结合,分组集中讲解与个别指导相结合的教学方法。即教师先讲解绪论部分;在分组实验时,教师先分大组对学生讲解实验的原理和实验方法,然后在分组实验过程中对学生进行个别辅导。学生轮流循环做所有实验。 2、考核内容 预习报告、操作技能、实验现象解释提问、实验态度、实验室制度的遵守情况、实验报告六个方面。 3、考核方法 笔试、口试、实际操作。 4、成绩评定

物理实验论文15篇

物理实验论文15篇 物理实验论文 摘要:物理是一门以实验为基础的学科,实验在物理教学中具有十分重要的作用。心理学研究表明,人的思维活动是在感性材料的基础上产生的,感性材料是思维活动的源泉和依据。各种类型的物理实验,具体形象地展示了物理知识的形成和发展过程,为学生的学习提供了丰富的感性材料,强化了学生的感知并纠正在感知中形成的错觉,从而达到丰富学生头脑中感性材料的储存及发展智力,培养能力的目的。 关键词 物理实验论文物理实验物理论文物理 物理实验论文:中学生物理实验论文 一、物理实验的重要性 第一,有利于培养学生的探究能力. 在新课程教学目标明确指出了初中物理教学不但要给学生灌输物理知识、物理概念,同时要注重培养学生探究能力的提升.在学生进行实验的过程中,针对所需要解决的问题能够积极探究和思考,从而锻炼和提高学生的科学探究能力,逐渐使学生能够养成科学探究的精神. 第二,有利于帮助学生提高科学素养. 在科学实践的过程中会不断地深化学生对科学知识的概念,培养学生尊重事实,促进学生分析、观察物理现象的能力. 第三,有利于提高学生的学习能力.

在进行实验课程设计的过程中,突出了物理教学的方针、思想、实践性.从多方面、多角度锻炼了学生的思维能力和独立思考的能力.在学生观察、分析、推理的演示实验的过程中,提高了学生的思维能力、思考能力、观察能力、探究能力,以及追求真理的意识. 二、初中物理教学的建议 第一,要明确物理教学实验的重要性,让学生感知到物理教学实验的价值. 树立正确的物理教学实验观念,充分认识物理教学实验能够有效地促进学生成长,帮助学生提高物理成绩和以及提升物理教学的教学效率. 第二,完善物理教学器材,建立相对应器材管理制度. 在物理教学过程中,器材的维护、保养、维修能够保障器材的寿命,同时保障学生的安全性.相关领导人员应该妥善制定出物理器材的保管制度,要选择责任意识强、坚持原则的教师保管实验室,以保障学生能够更好地进行实验. 第三,摆脱传统教师演示、学生观看的状况,注重培养学生的实验动手能力,提高学生的实验次数. 在进行实验教学的过程中,要针对某个实验进行具体的演示、阐述、明确实验目的、实验过程、实验现象、实验注意事项,从而让学生进行具体的实验.例如,在做“用量筒测5mL水的体积”实验时,很多学生都出现过这样的错误,用量筒测水的体积时拿在手里读数,而且读数时视线没有与凹形水面相平,甚至量筒都没放平就读数.这样错误的实验过程,不能有效地帮助学生理解物理概念和知识,而且让整个实验变得没有意义.但是,教师在观察学生实验的过程中,并没有指出学生的错误.在实验结束之后,教师重复了实验,让学生进行观察.首先,用左手拿住量筒,使量筒略倾斜,右手拿试剂瓶(里面放水),使试剂瓶口紧挨着量筒口,使液体缓缓流

相关文档
最新文档