函数及其表示典型例题及详细解答

函数及其表示典型例题及详细解答
函数及其表示典型例题及详细解答

1.函数与映射

(1)函数的定义域、值域

在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.

(2)函数的三要素:定义域、对应关系和值域.

(3)函数的表示法

表示函数的常用方法有解析法、图象法和列表法.

3.分段函数

若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.

分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.

4.常见函数定义域的求法

【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”)

(1)对于函数f :A →B ,其值域是集合B .( × )

(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )

(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )

1.下列函数中,不满足...f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x

答案 C

解析 将f (2x )表示出来,看与2f (x )是否相等. 对于A ,f (2x )=|2x |=2|x |=2f (x ); 对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于C ,f (2x )=2x +1≠2f (x ); 对于D ,f (2x )=-2x =2f (x ),

故只有C 不满足f (2x )=2f (x ),所以选C. 2.函数f (x )=1

(log 2x )2-1

的定义域为( )

A.???

?0,12 B .(2,+∞) C.????0,1

2∪(2,+∞) D.????0,1

2∪[2,+∞) 答案 C

解析 要使函数f (x )有意义,需使?

????

x >0,

(log 2x )2-1>0,

解得x >2或0

2

.故f (x )的定义域为????0,12∪(2,+∞). 3.(2015·课标全国Ⅱ)设函数f (x )=?

????

1+log 2(2-x ),x <1,

2x -1, x ≥1,则f (-2)+f (log 212)等于( )

A .3

B .6

C .9

D .12 答案 C

解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2

2log 121

-=2

2log 12

×2-1=12×1

2

=6,故f (-2)+f (log 212)=3+6=9,故选C.

4.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )

答案 B

解析 A 中函数定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B. 5.给出下列四个命题:

①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数的定义域和值域一定是无限集合. 其中真命题的序号有________. 答案 ①②

解析 对于①函数是映射,但映射不一定是函数;对于②f (x )是定义域为{2},值域为{0}的函

数;对于③函数y =2x (x ∈N )的图象不是一条直线;对于④函数的定义域和值域不一定是无限集合.

题型一 函数的概念

例1 有以下判断:

①f (x )=|x |

x 与g (x )=?

????

1 (x ≥0)-1 (x <0)表示同一函数;

②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;

④若f (x )=|x -1|-|x |,则f ???

?f ????12=0. 其中正确判断的序号是________. 答案 ②③

解析 对于①,由于函数f (x )=|x |

x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=???

1 (x ≥0)-1 (x <0)

的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ????12=????12-1-????12=0,所以f ????f ????12=f (0)=1. 综上可知,正确的判断是②③.

思维升华函数的值域可由定义域和对应关系唯一确定;当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).

(1)下列四组函数中,表示同一函数的是()

A.y=x-1与y=(x-1)2

B.y=x-1与y=x-1 x-1

C.y=4lg x与y=2lg x2

D.y=lg x-2与y=lg x

100

(2)下列所给图象是函数图象的个数为()

A .1

B .2

C .3

D .4

答案 (1)D (2)B

解析 (1)A 中两函数对应关系不同;B 、C 中的函数定义域不同,答案选D.

(2)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.

题型二 函数的定义域

命题点1 求给定函数解析式的定义域 例2 (1)函数f (x )=1-2x +1

x +3

的定义域为( ) A .(-3,0] B .(-3,1]

C .(-∞,-3)∪(-3,0]

D .(-∞,-3)∪(-3,1]

(2)函数f (x )=lg (x +1)

x -1的定义域是( )

A .(-1,+∞)

B .[-1,+∞)

C .(-1,1)∪(1,+∞)

D .[-1,1)∪(1,+∞)

答案 (1)A (2)C

解析 (1)由题意知?

????

1-2x

≥0,

x +3>0,解得-3

(2)要使函数f (x )=lg (x +1)

x -1有意义,需满足x +1>0且x -1≠0,得x >-1,且x ≠1,故选C.

命题点2 求抽象函数的定义域

例3 (1)若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f (x +1)

x -1的定义域是( )

A .[0,2 015]

B .[0,1)∪(1,2 015]

C .(1,2 016]

D .[-1,1)∪(1,2 015]

(2)若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为( ) A .[-1,1] B .[1,2] C .[10,100] D .[0,lg 2]

答案 (1)B (2)C

解析 (1)令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].

所以使函数g (x )有意义的条件是?????

0≤x ≤2 015,

x -1≠0,

解得0≤x <1或1

义域为[0,1)∪(1,2 015].故选B.

(2)因为f (x 2+1)的定义域为[-1,1],则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应关系,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100].故选C.

命题点3 已知定义域求参数范围

例4 若函数f (x )R ,则a 的取值范围为________. 答案 [-1,0]

解析 因为函数f (x )的定义域为R ,所以2

22+-x ax a

-1≥0对x ∈R 恒成立,即2

22+-x ax a

≥20,

x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 思维升华 简单函数定义域的类型及求法

(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)抽象函数:

①无论是已知定义域还是求定义域,均是指其中的自变量x 的取值集合; ②对应f 下的范围一致.

(3)已知定义域求参数范围,可将问题转化,列出含参数的不等式(组),进而求范围.

(1)已知函数f (x )的定义域是[0,2],则函数

g (x )=f (x +12)+f (x -1

2)的定义域是________.

(2)函数y =

ln (x +1)-x 2-3x +4

的定义域为___________________________.

答案 (1)[12,3

2

] (2)(-1,1)

解析 (1)因为函数f (x )的定义域是[0,2],

所以函数g (x )=f (x +12)+f (x -1

2)中的自变量x 需要满足???

0≤x +1

2≤2,0≤x -1

2≤2,解得:12≤x ≤32

所以函数g (x )的定义域是[12,3

2

].

(2)由?????

x +1>0,

-x 2

-3x +4>0,

得-1

题型三 求函数解析式

例5 (1)已知f (2

x

+1)=lg x ,则f (x )=________.

(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1

x )·x -1,则f (x )=________.

答案 (1)lg

2x -1

(x >1) (2)2x +7 (3)23x +13

解析 (1)(换元法)令t =2x +1(t >1),则x =2

t -1

∴f (t )=lg

2t -1,即f (x )=lg 2x -1

(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),

则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,

∴????? a =2,b +5a =17,解得?????

a =2,

b =7,

∴f (x )=2x +7. (3)(消去法)

在f (x )=2f (1x )x -1中,用1

x 代替x ,

得f (1x )=2f (x )1

x

-1,

将f (1x )=2f (x )x -1代入f (x )=2f (1x )x -1中,

可求得f (x )=23x +13.

思维升华 函数解析式的求法

(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;

(4)消去法:已知f (x )与f ????

1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).

(1)已知f (x +1)=x +2x ,则f (x )=

________.

(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.

(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________________. 答案 (1)x 2-1(x ≥1) (2)-1

2x (x +1)

(3)23lg(x +1)+1

3lg(1-x ) (-1

(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-1

2x (x +1).

(3)当x ∈(-1,1)时,

有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,

2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,

f (x )=23lg(x +1)+1

3

lg(1-x ),x ∈(-1,1).

2.分类讨论思想在函数中的应用

典例 (1)(2014·课标全国Ⅰ)设函数f (x )=?????

e x -

1

,x <1,

13x ,x ≥1,

则使得f (x )≤2成立的x 的取值范围是________.

(2)(2015·山东)设函数f (x )=?

????

3x -1,x <1,

2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )

A.????

23,1 B .[0,1] C.????23,+∞

D .[1, +∞)

解析 (1)当x <1时,e x -1≤2,解得x ≤1+ln 2, ∴x <1.

当x ≥1时,13

x ≤2,解得x ≤8,∴1≤x ≤8. 综上可知x ∈(-∞,8]. (2)由f (f (a ))=2f (a )得,f (a )≥1.

当a <1时,有3a -1≥1,∴a ≥23,∴2

3≤a <1.

当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥2

3,故选C.

答案 (1)(-∞,8] (2)C

温馨提醒 (1)求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解.

(2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.

(3)当自变量含参数或范围不确定时,要根据定义域分成的不同子集进行分类讨论.

[方法与技巧]

1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是

否相同.

2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.

3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法.

4.分段函数问题要分段求解.

[失误与防范]

1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.

2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.

A组专项基础训练

(时间:30分钟)

1.下列各组函数中,表示同一函数的是()

A.f(x)=x,g(x)=(x)2

B.f(x)=x2,g(x)=(x+1)2

C.f(x)=x2,g(x)=|x|

D.f(x)=0,g(x)=x-1+1-x

答案C

解析在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.

2.已知函数f(x)=

1

1-x2

的定义域为M,g(x)=ln(1+x)的定义域为N,则M∪(?R N)等于()

A .{x |x <1}

B .{x |x ≥1}

C .?

D .{x |-1≤x <1}

答案 A

解析 M =(-1,1),N =(-1,+∞),故M ∪(?R N )={x |x <1},故选A.

3.已知f (x )为偶函数,且当x ∈[0,2)时,f (x )=2sin x ,当x ∈[2,+∞)时,f (x )=log 2x ,则f ????-π3+f (4)等于( )

A .-3+2

B .1

C .3 D.3+2 答案 D

解析 因为f ????-π3=f ????π3=2sin π

3=3, f (4)=log 24=2,所以f ???

?-π

3+f (4)=3+2. 4.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x

答案 B

解析 (待定系数法)设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴????

?

a +

b +

c =1,

a -

b +

c =5,c =0,

解得????

?

a =3,

b =-2,

c =0,

∴g (x )=3x 2-2x ,选B.

5.已知函数f (x )满足f (2

x +|x |)=log 2x |x |,则f (x )的解析式是( )

A .f (x )=log 2x

B .f (x )=-log 2x

C .f (x )=2-

x D .f (x )=x -

2

答案 B

解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21

x =-log 2x .

6.已知函数f (x )=log 21

x +1,f (a )=3,则a =________.

答案 -7

8

解析 由题意可得log 21a +1=3,所以1a +1

=23,解得a =-7

8.

7.已知函数y =f (2x )的定义域为[-1,1],则y =f (log 2x )的定义域是________. 答案 [2,4]

解析 ∵函数f (2x )的定义域为[-1,1], ∴-1≤x ≤1,∴1

2

≤2x ≤2.

∴在函数y =f (log 2x )中,1

2≤log 2x ≤2,

∴2≤x ≤4.

8.(2015·浙江)已知函数f (x )=?????

x +2x -3,x ≥1,

lg (x 2+1),x <1,

则f (f (-3))=________,f (x )的最小值是________. 答案 0 22-3

解析 ∵f (-3)=lg [(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,

当x ≥1时,f (x )=x +2

x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;

当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.

9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx . 又∵f (x +1)=f (x )+x +1.

∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,

∴?????

2a +b =b +1,

a +

b =1,解得???

a =1

2

,b =12.

∴f (x )=12x 2+1

2

x .

10.根据如图所示的函数y =f (x )的图象,写出函数的解析式.

解 当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -7

2;

当-1≤x <1时,同理可设f (x )=cx +d (c ≠0), 将点(-1,-2),(1,1)代入,可得f (x )=32x -1

2;

当1≤x <2时,f (x )=1.

所以f (x )=???

-32x -7

2

,-3≤x <-1,32x -12

,-1≤x <1,

1,1≤x <2.

B 组 专项能力提升 (时间:20分钟)

11.若函数y =ax +1

ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.

答案 [0,3)

解析 因为函数y =ax +1

ax 2+2ax +3的定义域为R ,

所以ax 2+2ax +3=0无实数解,

即函数y =ax 2+2ax +3的图象与x 轴无交点.

当a =0时,函数y =1

3的图象与x 轴无交点;

当a ≠0时,则Δ=(2a )2-4·3a <0,解得0

x 2+1,则

(1)f (2)

f (12

)=________;

(2)f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (1

2 017)=________.

答案 (1)-1 (2)0

解析 (1)∵f (x )+f (1x )=x 2-1x 2+1+1-x

2

1+x 2

=0,

f (x )f (1x )=-1(x ≠±1),∴f (2)

f (12

)=-1. (2)∵f (3)+f (13)=0,f (4)+f (1

4)=0,…,

f (2 017)+f (1

2 017

)=0,

∴f (3)+f (4)+…+f (2 017)+f (13)+…+f (1

2 017

)=0.

13.已知函数f (x )=4

|x |+2-1的定义域是[a ,b ],(a ,b ∈Z ),值域是[0,1],则满足条件的整

数数对(a ,b )共有________个. 答案 5

解析 由0≤4|x |+2-1≤1,即1≤4

|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-

2,1),(-2,2),(0,2),(-1,2),共5个.

14.具有性质:f ????

1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:

①y =x -1x ;②y =x +1x ;③y =

?

????

x ,0

0,x =1,-1

x

,x >1.

其中满足“倒负”变换的函数是________.

答案 ①③

解析 对于①,f (x )=x -1

x ,f ????1x =1x -x =-f (x ),满足;

对于②,f ????1x =1

x +x =f (x ),不满足;

对于③,f ????1x =?????

1x ,0<1

x

<1,0,1x

=1,-x ,1x

>1,

即f ????1x =?????

1

x

,x >1,0,x =1,

-x ,0

故f ????

1x =-f (x ),满足.

综上可知,满足“倒负”变换的函数是①③.

15.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.

(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;

(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗? (3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?

解(1)点A表示无人乘车时收支差额为-20元,点B表示有10人乘车时收支差额为0元,线段AB上的点表示亏损,AB延长线上的点表示赢利.

(2)图2的建议是降低成本,票价不变,图3的建议是提高票价.

(3)斜率表示票价.

(4)图1、2中的票价是2元.图3中的票价是4元.

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

函数及其表示练习题及答案

函数及其表示练习题 一.选择题 1 函数)2 3 (,32)(-≠+= x x cx x f 满足,)]([x x f f =则常数c 等于( ) A 3 B 3- C 33-或 D 35-或 2. 已知)0(1)]([,21)(2 2 ≠-=-=x x x x g f x x g ,那么)21(f 等于( ) A 15 B 1 C 3 D 30 3. 函数2y =的值域是( ) A [2,2]- B [1,2] C [0,2] D [ 4 已知2 211()11x x f x x --=++,则()f x 的解析式为( ) A 21x x + B 2 12x x +- C 212x x + D 2 1x x +- 5.设()f x 是R 上的任意函数,则下列叙述正确的是 ( ) (A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数 6. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( ) 7.已知二次函数)0()(2 >++=a a x x x f ,若0)(

A .正数 B .负数 C .0 D .符号与a 有关 8. 已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 ( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[- 9. 已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数 关系式 ( ) A .x b c a c y --= B .x c b a c y --= C .x a c b c y --= D .x a c c b y --= 10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .23q p + 11. 某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为 (A )y =[ 10 x ] (B )y =[ 3 10x +] (C )y =[410x +] (D )y =[5 10 x +] 12.已知函数()()2113,f x x x =+≤≤则 A .()()12202f x x x -=+≤≤ B .()()12124f x x x -=-+≤≤ C .()()12202f x x x -=-≤≤ D .()()12104f x x x -=-≤≤ 13.函数 ln 1x y += 的定义域为 A .4,1-- B .()4,1- C .()1,1- D .(1,1]- 14.设函数()221, 1,2, 1, x x f x x x x ?-≤? =?+->??则 ()12f f ?? ? ??? 的值为 A . 1516 B .2716- C .8 9 D.18 15. 定义在R 上的函数()f x 满足 ()()()()()2,,12f x y f x f y xy x y R f +=++∈= 则()3f -等于( ) A. 2 B. 3 C. 6 D . 9 16.下列函数中与函数y = 有相同定义域的是 ( ) A .()ln f x x = B 。 ()1f x x = C 。 ()f x x = D 。 ()x f x e =

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

人教版高中数学知识与巩固·函数及其表示方法(基础)

人教版高中数学知识与巩固·函数及其表示方法(基础) 【学习目标】 (1)会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数. (3)求简单分段函数的解析式;了解分段函数及其简单应用. 【要点梳理】 要点一、函数的概念 1.函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: <<= {x|a≤x≤b}=[a,b]; x a x b a b {|}(,); (] {|}, ≤<=; x a x b a b {|}, x a x b a b <≤=;[) (][) ≤=∞≤=+∞. x x b b x a x a {|}-,; {|}, 要点二、函数的表示法 1.函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值. 2.分段函数: 分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况. 要点三、映射与函数 1.映射定义: 设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B. 象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象. 要点诠释: (1)A中的每一个元素都有象,且唯一;

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

高一数学必修1 函数及其表示练习题

高一数学必修1 函数及其表示练习题 1、判断下列对应:f A B →是否是从集合A到集合B的函数: (1){} ,0,:,:;A R B x R x f x x f A B ==∈>→→ (2)*,,:1,:.A N B N f x x f A B ==→-→ (3){} 2 0,,:,:.A x R x B R f x x f A B =∈>=→→ 2、已知函数()()()3,10, ,85,10,x x f x x N f f f x x -≥??=∈=? +? ==-??????

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

中考攻略:初中数学函数知识点大全+典型例题

初中数学函数知识点大全+典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称

点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当 a b x 2-=时,a b a c y 442-=最值。 如果自变量的取值范围是21x x x ≤≤,那么,首先要看a b 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,a b a c y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时, c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减 小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222 最小。 知识点四、二次函数的性质 1、二次函数的性质

(全面突破)高考数学最新一轮复习 必考题型巩固提升 2.1函数及其表示学案

2.1函数及其表示 考情分析 1.主要考查函数的定义域、值域、解析式的求法. 2.考查分段函数的简单应用. 3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.基础知识 1.函数的基本概念 1.符号:f A B →表示集合A到集合B的一个映射,它有以下特点: (1)对应法则有方向性, :f A B →与:f B A →不同; (2)集合A中任何一个元素,在 f下在集合B中都有唯一的元素与对应; (3)象不一定有原象,象集C与B间关系是C B ?. 2.函数是特殊的映射,它特殊在要求集合A和B都是非空数集. 函数三要素是指定义域、值域、对应法则. 同一函数必须满足:定义域相同、对应法则相同. 3.分段函数是指函数由n个不同部分组成,但是一个函数. 4.函数解析式求法: (1)已知函数类型,可设参,用待定系数法;(2)已知复合函数 [(()] f g x的表达式,求() f x可 用换元法;(3)配凑法与方程组法. 注意事项 1.求复合函数y=f(t),t=q(x)的定义域的方法: ①若y=f(t)的定义域为(a,b),则解不等式得a<q(x)<b即可求出y=f(q(x))的定义域; ②若y=f(g(x))的定义域为(a,b),则求出g(x)的值域即为f(t)的定义域. 2.。(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 3.。函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f. 典型例题 题型一求函数的定义域 【例1】?求下列函数的定义域: (1)f(x)=|x-2|-1 log2x-1 ;

函数及其表示练习题

1.2 函数及其表示 一、 选择题 1、函数()y f x =的图象与直线x m =的交点个数为( ) A .可能无数个 B .只有一个 C .至多一个 D .至少一个 2、设{}{} M=22,02x x N y y -≤≤=≤≤,函数()f x 的定义域为M ,值域为N ,则 ()f x 的图象可以是( ) 3、函数()x f x x =+ 的图象是如图中的( ) A . B . C . D . 4、已知()f x 是一次函数且()()()()()22315,2011,f f f f f x -=--==则( ) A .32x + B .32x - C .23x + D .23x - 5、设函数()()221,1 1,22,1x x f x f f x x x ???-≤=???+->??? 则的值为( ) A . 15 16 B .2716 - C . 89 D .18 6、一个面积为2 100cm 的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它

的高y 表示成x 的函数为( ) A .()500y x x => B .()1000y x x => C .()50 0y x x = > D .()100 0y x x = > 7、函数( )1 3 f x x = -的定义域为( ) A .[)(]22+∞-∞- ,, B .[)()2,33+∞ , C .[)()(]2,332+∞-∞- ,, D .(]2-∞-, 8、设()() ()()1,0,00,0x x f x x x π+>?? ==??

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

函数的单调性知识点汇总及典型例题(高一必备)

第二讲:函数的单调性 一、定义: 1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0) ()(0)]()()[(2 1212121>--?>--x x x f x f x f x f x x ; 难点突破:(1)所有函数都具有单调性吗? (2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个? 2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间. 注意:(1)减函数的等价式子:0) ()(0)]()()[(21212121<--? <--x x x f x f x f x f x x ; (2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明 例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有 .0) ()(2 121>--x x x f x f 则( ) A.)(x f 在这个区间上为增函数 B.)(x f 在这个区间上为减函数 C.)(x f 在这个区间上的增减性不变 D.)(x f 在这个区间上为常函数

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

1.2函数及其表示练习题及答案

1.2函数及其表示练习题 一.选择题 1 函数)2 3 (,32)(-≠+= x x cx x f 满足,)]([x x f f =则常数c 等于( ) A 3 B 3- C 33-或 D 35-或 2. 已知)0(1)]([,21)(2 2 ≠-=-=x x x x g f x x g ,那么)21(f 等于( ) A 15 B 1 C 3 D 30 3. 函数2y =的值域是( ) A [2,2]- B [1,2] C [0,2] D [] 4 已知2 211()11x x f x x --=++,则()f x 的解析式为( ) A 21x x + B 2 12x x +- C 212x x + D 2 1x x +- 5.设()f x 是R 上的任意函数,则下列叙述正确的是 ( ) (A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数 6. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( ) 7.已知二次函数)0()(2 >++=a a x x x f ,若0)(

A .正数 B .负数 C .0 D .符号与a 有关 8. 已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 ( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[- 9. 已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 ( ) A .x b c a c y --= B .x c b a c y --= C .x a c b c y --= D .x a c c b y --= 10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .23q p + 11. (2010陕西文数)某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为 (A )y =[ 10x ] (B )y =[ 3 10x +] (C )y =[4 10 x +] (D )y =[5 10 x +] 12.(2009海口模拟)已知函数()()2113,f x x x =+≤≤则 A .()()12202f x x x -=+≤≤ B .()()12124f x x x -=-+≤≤ C .()()12202f x x x -=-≤≤ D .()()12104f x x x -=-≤≤ 13.(2009江西理)函数 ln 1x y += 的定义域为 A .()4,1-- B .4,1- C .()1,1- D .(1,1]- 14.(2008山东)设函数()2 21, 1, 2, 1,x x f x x x x ?-≤?=?+->??则 ()12f f ?? ? ??? 的值为 A . 1516 B .2716- C .8 9 D.18 15.(2008陕西) 定义在R 上的函数()f x 满足 ()()()()()2,,12f x y f x f y xy x y R f +=++∈= 则()3f -等于( ) A. 2 B. 3 C. 6 D .9 16.( 2009福建)下列函数中与函数y = 有相同定义域的是 ( ) A .()ln f x x = B 。 ()1f x x = C 。 ()f x x = D 。 ()x f x e =

相关文档
最新文档