2切削作用与切削力

2切削作用与切削力
2切削作用与切削力

第二章切削作用与切削力

1.切削应力和应变

2.刀具的切削作用

3.切削力的力学模型

4.影响切削力的因素

5.切削力与切削功率的通用计算公式

1、切削应力和应变

刀具刃口与切削工件接触的同时,根据作用力的大小,工件在刀刃刀尖作用的部位先产生变形。当这个力逐渐增大时,工件被刃口分成两部分,刃口继续向材中切进去。从工件切下分离出去的部分,被刀具前面压缩,受剪切应力和弯曲应力作用产生变形,成为切屑。切削过程中,作用于被切工件上的力其大小、作用方向,根据工件的性质、刀具的条件、切削参数的不同变化。图示各应力的主要作用区域。1为刀具刃口压入产生的集中应力;2为刀具前刀面与切屑接触产生的摩擦力;3为刀具前刀面上切屑因为弯曲产生的压缩应力;4为刀具前刀面因为切屑弯曲产生的拉应力;5为作用于切削方向的压应力或拉应力;6为为作用于垂直切削方向的剪切应力;7为大切削角切削时的压缩剪切应力;8为端向切削时使木纤维发生弯曲的弯曲应力;9为端向切削时作用在木纤维上的最大拉应力。

2、刀具的切削作用

?从力学观点看,切削作用的实质实际是一种有控制的受力破坏。其目的是为从工件上切除一部分材料,从而获得一定尺寸精度和表面质量的的制品。

?切削时刀具的刃口、前刀面和后刀面都起作用。

?切削会有阻力,这个阻力称为切削阻力。切削力和切削阻力数值相等,方向相反。

2.1 刀具切削部分的形态

任何刀具的切削部分都可简化为一楔形体,但切削刃并非一理想直线,而是一不规则过渡曲面,曲率半径大约0.005-0.1mm。

2.2 刀具各部分的切削作用

?刀尖:依靠应力集中破坏木材间的联系,切入工件。

?前刀面:推挤切削层使之变形或破坏,分离成屑片,沿前刀面流出。

?后刀面:压挤切削层以下工件材料,该部材料伴随有弹性或塑性和塑性变形。

屑片分离的条件:切削厚度大于刃口圆弧半径,即a >ρ。

2.3 屑片分离的条件:

当a<ρ时不能分离切屑;时a >ρ时可分离切屑

3、切削力的力学模型

切削阻力来源于两个方面:

?a、切材料抵抗变形或破坏的阻力:取决于材料力学性质、含水率、切削层尺寸和刀具的锐钝程度。

?b、摩擦阻力:取决于刀具和工件材料的种类、材料状态(含水率、表面粗糙度等)、相对运动速度和压紧力等。

切削阻力是切削功率、机床电机功率的计算依据,也是影响刀具磨损的重要因素。

建立切削力的力学模型是为了研究和测量方便。

木材切削力研究的回顾

?① 1870俄国人И.А Tиме出版了《金属和木材的切削阻力》,之后,前苏联又有不少这方面的著作和论文。

?② 1950芬兰人Kivimaa出版了《Cutting Force in Wood-working》

?③ 60-70年代美国人N.C.Franz, W.M.Mckenzie,H.A.Stewart也发表过不少木材切削阻力方面的研究文章。

?④ 1987林科院木材所管宁发表了《中国11种针叶材切削阻力研究》等论文。

?⑤ 80-90年代,东北林业大学朴永守与日本学者福井尚、北林王均玺、南林曹平祥等也发表过木材切削阻力研究的文章。

切削力的力学模型

切削力的力学模型(平面刨削)

正压力N

1 F

x1

?前刀面合力R1

摩擦力f

1 F

y1

F

x

?刀尖 F x尖总合力F

正压力N

2 F

x2

Fy

?后刀面合力R2

摩擦力f

2 F

y2

外圆车削的切削力力学模型

4、影响切削阻力的因素

4.1 切削条件和切削阻力

?(1)切削宽度b:主切削力Fx与b成正比。

?(2)切削厚度a:主切削力Fx与a正相关,但并非简单的线性关系。(图2-7)

a.当a=0时,Fx≠0。这表明虽无屑片分离,但后刀面仍有摩擦阻力。

b.当a大于0.1 时,Fx 与a成近似线形关系。

c.当0

d.当a=-ρ,Fx趋近于零。这说明后刀面对木材几乎无压挤作用,连摩擦力也可忽略不计。 (3)切削方向的影响:

Fx(⊥)>Fx(∥)>Fx(#)

?(4)切削速度的影响:在正常速度下,影响不大。高速时(大于70m/s),惯性力增加,切削力可能增加。

4.2 刀具参数和切削阻力

?(1)刀具变钝的影响:刀具变钝,意味着刃部前、后角变小,切削层的变形阻力和后刀面的摩擦阻力增加,切削力增加。

?根据大量的切削实验,可找出刀具的变钝程度与切削力近似的关系。为计算方便,引入一个刀具变钝系数C。计算时根据刀具的连续工作时间,在有关资料中查找C。

?(2)刀具角度的影响

?前角γ↑, Fx↓,但γ大到一定程度时,由于刀刃强度减小,刀尖磨损加快,Fx反而很

快增加。(γ的范围一般为20-30°)。

?当γ一定时,α↑,Fx↓,但后角太大时,由于刀刃强度变小,磨损加快,Fx又会↑。(α

的范围一般为8-15°)。

前角与切削力的关系

刀具前角对切削力的影响:

后角与切削力的关系

刀具后角对切削力的影响

4.3被切削工件性质和切削阻力

?(1)树种与密度的影响:密度增加,切削阻力会呈线性增加。

?(2)含水率的影响:在纤维饱和点以下,含水率高,木材强度下降,Fx↓。一般难定论(强度与韧性是一对矛盾体)。

?(3)温度的影响:温度高,木材软化,Fx↓。 0℃以下的冰冻材,温度越低,Fx越高。

温度与切削力的关系

木材温度对切削力的影响

5、切削力与切削功率的一般计算方法

在切削过程中,只有主切削力Fx做功,法向力不做功。工程上的一般做法是,先求出主Fx,再根据具体切削条件,乘一相关系数,计算法向力和轴向力。

?切削功率是主切削力和切削速度的乘积。

?进给功率是进给阻力之和进给速度的乘积。

计算步骤:

在工程计算时,往往是根据大量实验资料,即在某种切削方式、常用切削条件下,对常用几个典型树种所做的切削实验资料,编制这些树种的单位切削力或单位切削功的图表。具体计算时,根据切削条件(例如每齿进给量、切削深度等),查出切削某典型树种的单位切削力或单位切削功的值,然后再根据具体切削条件和表列条件的不同,对查出的值加以修正。然后根据修正后的单位切削力和单位切削功计算切削力和切削功率。

在计算进给功率时,先要求出进给阻力。进给阻力乘以进给速度,便得进给功率。而进给阻力是所有切削阻力在进给方向的代数和。

通用计算公式:

?单位切削力——单位切削面上的主切削力:

P=Fx/a.b (N/mm2 )

?单位切削功——切下单位切屑体积所做的功。

k=Fx.L/a.b.L [N-m/cm3] 或 [J/cm3]

=Fx/a.b [N/mm2]

式中:L -- 切削路程[m]

由上式可见,这两个k物理意义不同,但数量相等。

根据单位切削力和单位切削功的定义,可写出切削力和切削功率的通用计算公式:

?切削力: Fx=k.a.b[N]

?切削功率:Pc=k.O=k.bhU/60 [N ? m/s]或 [J/s]或[ w] (瓦)

或Pc=Fx.V [N ? m/s],或 [w]

或 Pc= k.bhU/60*1000[kw]

式中:

a,b —分别为平均屑片厚度切削宽度[mm ]

U —进给速度[m/min ]。

V —切削速度[m/s ]

O —单位时间所切下的屑片体积[cm3/S]

具体算例见铣削一章。

补充:

5.1 切削力计算

2两个假设前提:

1、假设木材是匀质的各向同性材料;

2、刀具切削刃口是一个具有半径为γn的钝圆弧面,锐刀γn=5-10um。2刀具对木材的作用力来源分析:

1、前刀面对切削层木材和切屑的作用;

2、后刀面对切削层表面木材的作用。

一、直线运动刀具上的作用力

根据图1-26所示:

木材沿3-3线上点1分开(刃口沿切削方向最前点),取x与v向一致。

Ⅰ区:前刀面作用;分法向力Fγn,摩擦力Fγf

Ⅱ区:后刀面作用;后刀面对分开线以下木材挤压力Fαy;

后刀面对分开线以下木材沿切削速度方向作用力Fαx;

切削力分析:

前刀面γ:Fγf+Fγn=FγR=Fγx+Fγy

取x轴方向与V方向一致,Fγy方向与F ay方向向下为“十”值;

后刀面α:FαR=Fαx +Fαy

:FγR+ FαR =F R=F x+F y

切削力:F x= Fγx + Fαx

法向力:F y= Fγy + Fαy (F y= Fαy±Fγy)

其中:①βo:F

γn ,F

γR

前刀面与木材之间的摩擦角,取20~25°

②δ:切削角。前刀面与切前平面的夹角,δ=90°-γ

③当刀刃圆半径P与后角α一定时,Fαy不因切屑后度α的变化而变化。

④F

γy

= Fγx2tg(90°-β0-δ)= Fγx2tg (γ-β0)

Fαy = Fαx /Uα

Uα——既考虑后刀面与木材的摩擦又考虑切削平面木材层弹塑性变形的系数。

⑤在基本切削时,法向力方向有时向上(“-”)时称拉力,反之压力。

二、回转运动刀具上的作用力

图1-27 圆锯齿切削取F x与V方向一致

1、切向力:F t= F x=Fγx+Fαx

法向力:F n= F y=Fαy±Fγy

法向力为“-”称向心力,F y方向与Fγy一致

法向力为“+”称离心力,F y方向与Fαy一致

2、也可按U方向分,F nu=F x2Cosθ-F y2sinθ

F Lu=F x2sinθ+F y2Cosθ

三、单位切削力和单位切削功

F x F x F x

①P= (N/mm2)= 2106(N/m2)= 2106(Pa)F x=p2a2b

A A A

F x——切向力;

A——切屑面积,A=a2b(mm2);

W Fx2L F x

②K= = = =P

O a2b2l a2b

四、切削力的经验公式

切削木材过程:①木材本身材性;②刀具特性;③切削用量。

1、建立经验公式的方法

(1)确立Fx′与a的关系

切向力Fx=p2a2b P:单位切削力,Fx:切向力

Fx′=Fx/b=p2a Fx′:单位切屑宽度上作用的切向力(2)Fx′与刀具磨损变纯的关系,与Cρ有关(Ua);

(3)Fx′与V、δ、材种,木材纤维方向关系;

(4)Fx′与以上因素有关的经验方式;

P28页图1-29(图略)

图中:f′——AB直线的纵截距;

P′——a>0.1mm时直线AB的斜率;

0.2f′——BD直线的纵截距;

Pru——a<0.1mm时直线BD的斜率;

φ1,φ2如图所示

P′=tgφ1

0.8f′+0.1P′

△BDD′中:Pru=tgφ2= =8f′+P′

0.1

2 具体计算

1)切屑厚度与单位切削力关系

(1)α≥0.1mm时,由AB直线方程Fx′=P′2α+f′=0.2f′+(0.8f′+P′α)

=Fαx′+ Fγx′Fαx′,Fγx′——后刀面或前刀面上的单位切屑宽度上的切向力

(2)当α<0.1mm时,Fu′=Pru′2αu+0.2f′

又∵Pru=tgφ2=8f′+P′

∴Fu′=0.2f′+(8f′+P′)2αu

=Fαx′+ Fγxu′

Fαx′、Fγxu′——后刀面或前刀面上的单位切屑宽度上切向力

(3)单位切削力P随切屑厚度α的变化而变化的关系成为:

F x′f′0.2f′0.8f′

α≥0.1mm时,P= = +p′= +( + p′)= Pαx +Pγx

αααα

Fu′0.2f′0.2f′

α<0.1mm时,P u= = +P ru = +(8f′+P′) =Pαx+Pγxu

αuαuαu

2)刀具变纯与单位切削力关系

一般与后刀面单位切削力有影响

锐刀:Cp=1时,Fαx′=0.2f′=(1-0.8)f′

纯刀:C P>1时,Fαx′=(Cp-0.8)f′

C P——变纯系数,C P=1~1.7;C P=1+0.2△ρ/ρ0

△ρ——刀刃圆半径的增量,锋利时C P=1;

故:Fx′=0.2f′+(0.8f′+P′α)=(C P-0.8)f′+(0.8 f′+P′α)

=C P2f′+P′α

α≥0.1mm时,P=Pα+Pγ=C P2f′/α+P′

(C P-0.8)2f′

α<0.1mm时,Pu=Pα+Pγ= +(8f′+P′)

αU

3)确定δ、v、切削方向相对纤维方向和材种因素与单位切削力关系a、主要切削方向:P p′=A p′δ+B p2V-C p

f p’

主要切削方向单位切削力:P p=+ P p’

a

2式中f’p查表1-2,A p、B p、Cρ见表1-2,1-3(P28页)

2注意:当锯切V<70m/s,铣削V<40 m/s时,以90-V代替V计算b、过渡切削方向:P t′=A t2δ+B t2V-C t

f t′

P t= + P t′

a

又A t B t C t f t′

#-11 #-⊥11-⊥

φ

A#-11= A#+(A11-A#)(1-)

90

φ

A#-⊥= A#+(A⊥-A#)

90

φ

A11-⊥=A11+(A⊥-A11)

90

同理B t、C t、f t均适用上式

4)综述

当a≥0.1mm时:

C p2f p′

主切削方向Pp= +(A p2δ+B p2V-C p)

a

Cp2f t′

过渡切削方向P t= +(At2δ+Bt2V-Ct)

a

当a<0.1mm时:

(Cp-0.8) f p′

主切削方向Pup= +8f p′+( Ap2δ+Bp2V-Cp)

a u

(Cp-0.8) f t′

过渡切削方向P ut= +8f t′+( At2δ+Bt2V-Ct)

a u

5)例题分析见《木材切削刀具学》P47页例1、例2

作业一:

1、已知:r=25°,β=50°,刨削松木,v=15m/s,u=30m/min,求工作后角αw。

2、已知纵向刨削,a=0.15mm,b=80mm的松木,δ=65°,v=30m/s,ρ0=5um,ρ=20 um,β0=20°松木、求Fx,Fy,Pc.

3、条件同上,横端(#-⊥)ψ刃=30°,求Fx,Fy ,Pc

4、试分析F x,F y与切屑厚度a的关系

5、简述纵向、横向切削时的切削过程。

6、试分析影响切削阻力的因素?

7、试分析平面刨削切削力的力学模型和计算公式。

高速铣削加工切削力和切削温度关系解析

高速铣削钛合金的切削力和切削温度 切削力和切削温度试验在五坐标高速加工中心上进行,采用YOLO-YDXC-III切削三向力测试系统对铣削力进行测量,采用夹丝半人工热电偶方法对铣削温度进行测量。试验用刀具为Walter WMG40硬质合金机夹刀片,工件材料为钛合金TA15,热处理状态为退火。采用单因素试验,考察不同铣削速度下切削力和切削温度的变化规律。其他切削条件为:轴向切深ap=6mm,径向切深ae=1mm,每齿进给量fz=0.1mm/z。为典型的铣削力信号图以及后刀面磨损VB=0.15mm 时的切削力与铣削速度关系曲线。铣削力的方向定义为:进给方向为X,铣刀径向切深方向为Y,刀具轴向为Z。可以看到在此范围内,Fx和Fz变化不大,而Fy随切削速度的提高略有下降。试验和理论表明:一方面随着切削速度的上升,两个因素会导致切削力的增加。首先是由断续切削造成的切削力冲击和动态切削力的数值会增加;其次,材料的应变硬化程度严重,导致剪切区变形抗力增加。另外一方面,切削速度上升导致的切削温度上升也会使被加工材料软化,使切削力减小。所以,切削速度对切削力的影响,要看这两方面综合作用的结果。当刀具后刀面磨损达到一定程度时,随着切削速度的增加,由温度升高所导致的材料软化影响占主导地位,其作用超过动态切削力增加和应变硬化增加两方面的影响,所以总的铣削力呈下降趋势。 典型的铣削温度热电势信号及50~550m/min 切削速度范围内的切削温度与铣削速度的关系。切削温度随铣削速度增加有一直上升的趋势,但是在不同的速度范围内,切削温度上升的程度是不同的。在较低的速度范围内,温度随切削速度而上升的趋势较快,而在较高的速度范围内,温度随切削速度而上升的趋势变缓。这一现象产生的原因在于,随着切削速度的增加,传入切屑的热量比例增加,更多的热量被切屑带走;而传入工件和刀具的热量的比例减小,相应的刀具和工件的温度升高也不明显。 高速铣削钛合金的刀具磨损 钛合金高速铣削刀具磨损机理和刀具耐用度是生产过程中较受关注的问题。为磨钝标准VB =0.3mm的情况下,刀具耐用度随切削速度的变化关系。随着铣削速度增加,刀具铣削时间下降较快。在200~250m/min 的速度范围内时,刀具寿命下降很快;铣削速度继续增加,刀具寿命的下降趋势有所减缓。在200m/min的速度下,刀具寿命超过120min。 硬质合金刀具高速铣削钛合金时的刀具磨损微观形态(图中黑色部分为未被完全腐蚀的钛合金粘结物)。在高速铣削钛合金时,钛合金在刀具表面的粘结现象非常严重,由于工件与刀具接触表面的温度较高,且温度梯度大,在钛合金粘结和温度梯度的综合作用下,刀具将产生扩散磨损。一方面,粘结在刀具上的钛合金中的Ti元素向刀具中扩散,形成粘结的TiC层,TiC粘结层脱落时,会带走一部分刀具材料。另一方面,刀具中的C向高温区扩散,Co向低温区扩散,在刀具和工件的接触面上形成富C贫Co区,造成WC颗粒间的粘结强度下降,表层脆化,从而引起WC颗粒脱落。另外,铣削时的热冲击会使刀具切削刃附近产生梳状裂纹,裂纹垂直于切削刃方向,沿切削刃平均分布,裂纹间距约100μm,长度可达到0.5mm,并且贯穿前刀面和后刀面。当裂纹扩展到一程度,会引起刀具切削刃的强度下降,从而使刀具材料被粘结其上的钛合金撕裂和脱落,使切削刃变形和钝化。所以,铣削钛合金时的刀具磨损是扩散磨损、粘结磨损和热冲击相互作用、相互促进的结果。

车削时切削温度的测量

车削时切削温度的测量 一、实验目的及要求 1、掌握用自然热电偶法测量切削区平均温度的方法。 2、研究车削时,切削热和切削温度的变化规律及切削用理(包括切削速度、走刀量f、切削深度ap)对切削θ的影响。 3、用正交试验设计,确定在切削用量的三个因素中,影响切削温度的主次因素。 二、实验内容 用高速钢车刀和45#钢工件组成的热电偶,以正交试验计法实验切削温度的变化规律。 三、实验设备及用具 1、设备:CA6140型变通车床。 2、仪器:VJ37型直流电位差计(或毫伏表)。 3、刀具:高速钢外圆车刀。 4、工件:45#钢。 四、自然热电偶法测量温度的基本原理和方法 用热电偶测量温度的基本原理是:当两种化学成份不同的金属材料,组成闭合同路时,如果在这两种金属的两个接点上存在温度差(通常温度高的一端称为热端,温度低的一端称为冷端)。在电路上就产生热电势,实验证明,在一定的温度范围内,该热电热与温度具有某种线性关系。 热电偶的特性是: (1)任何两种不同金属都可配制成热电偶。 (2)任何两种均质导体组成的热电偶,其电动热的大小仅与热电极的材料和两接点的温度T、To有关,而与热电偶的几何形状及尺寸无关。 (3)当热电偶冷端温度保持一定,即To=C时,热电势仅是热端温度T的单值数,E= (t),这样,热电偶测量端的温度与热电势建立了——对应关系。 用自然热电偶法测量切削温度时,是利用刀具与工件化学成份的不同而组成热电偶的两级,如图(一)所示。(刀具和工件均与机床绝缘,以消除寄生热电偶的两极的影响),切削时,工件与刀具接触区的温度升后,就形成了热电偶的热端,而工件通过同材料的细棒或切屑再与导体连接形成一冷端,刀具由导线引出形成另一冷端,如在冷端处接入电位差计,即可测得热电势的大小,通过热电热——温度的换算从而反映出刀具与工件接触处的平均温度。 为了将测得的切削温度毫伏值换算成温度值,必须事先对实验用的自然热电

11切削液的加工性能评价

技术讲座 切削液应用技术 第11讲:切削液的加工性能评价 刘镇昌济南库伦特科技有限公司济南250101 摘要:介绍了评价切削液加工性能的实机切削试验方法、模拟切削试验方法及切削液加工性能的综合评价方法。 关键词:切削液,性能评价,加工性能,综合评价 切削加工的种类很多,加工对象和加工工具的材质、性状等往往又各不相同,与之相适应的切削液自然也当各具特色,导致切削液产品种类繁多。如何科学地、恰当地评价和选择切削液就是个不可回避的现实问题。另一方面,从切削液的研究、生产角度来看,需要对切削液不断地进行改进、创新。在这两方面都需要解决好切削液的性能评价问题。 切削液的性能可分为加工性能、理化性能、环卫性能三个大的方面【1,2】。切削液的加工性能系指切削液在切削过程中所能表现出来的效能,它直接与切削加工效果有关。这些效果包括加工质量、加工效率、刀具损耗、切屑处理等几个主要方面,其中加工质量包括加工精度和已加工表面完整性(表面粗糙度、表面变质层、残留应力),并综合体现在工序成本中。 评价切削液加工性能的试验室方法目前尚不成熟,仍不得不依靠实际的切削试验。通过切削试验获取切削过程的各种输出信息,并进行处理。最后,根据这些被处理过的信息,按一定的数学模型去进行性能评价。 1评价切削液加工性能的实机切削试验方法 所谓实机切削试验,就是直接在生产线或加工机床上进行切削试验,检测切削结果数据,按照一定的评价模型对受试切削液的加工性能做出评价。实机切削试验可以归纳为三种方式:工序节拍方式、参数调整方式、综合优化方式。 1.1 工序节拍方式 (1)试验方法 所谓工序节拍方式,是指使用受试切削液,按照原有工艺的参数、步骤和节拍在生产线或加工机床上对零件进行切削加工,检测某些加工结果数据,对受试切削液做出性能评价。采用工序节拍方式时,除切削液外,其余工艺条件保持不变。因此,试验方法简单,换上受试切削液,一切按照原有工艺规程进行切削加工即可。 (2)评价指标 由于工件、机床、刀具、切削用量等切削输入参数与原有加工方式相同,切削输出结果中加工效率基本上没有变化,可选用的评价指标是刀具寿命和加工质量。加工质量指标中,又以已加工表面粗糙度较为敏感,其次是加工精度。

实验二采用红外热像仪的切削温度测量

实验二采用红外热像仪的切削温度测量 一、实验概述 切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具磨损等。对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验手段和主要研究方法。通过对实测的切削温度进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。 本实验是使用红外热像仪进行切削温度的非接触测量,研究切削用量对于切削温度的影响。通过本实验可使同学们熟悉制造技术工程中的基础实验技术和方法,了解用先进的仪器设备研究传统切削加工的方法。 二、实验目的 1、学习及掌握红外热像仪测量切削温度的方法,了解红外成像测温原理 2、研究υc、f对切削温度的影响. 三、实验仪器设备 1、CA6140车床 2、Flir A315 红外热像仪 3、刀具:YT15,角度:γ o = α o = κr= λs= 。 4、试件:45钢棒料 说明:刀具参数、车床和工件由各班学委负责准备或负责,红外热像仪的操作由胡玉琴同学负责。 四、实验原理 红外热像仪的基本工作原理是利用了斯蒂芬—波尔兹曼定律,即 E =εσT4(1) 式中 E ———物体辐射单元单位面积的辐射能量(W/ m2) ε———物体辐射单元表面辐射率(取决于物体表面性质) σ———斯蒂芬—波尔兹曼常数(σ = 5.76 ×10 - 8W/ m2·K4) T ———物体辐射单元的表面温度(K) 切削时,红外热像仪通过光机扫描机构探测工件(或刀具) 表面辐射单元的

辐射能量,并将每个辐射单元的辐射能量转换为电子视频信号,通过对信号进行处理,以可见图像的形式进行显示,显示的热像图代表被测表面的二维辐射能量场,若辐射单元的表面辐射率已知,则可通过斯蒂芬—波尔兹曼定律求出辐射单元表面的温度分布场及动态变化。虽然红外热像仪所测温度为相对温度,滞后于实际切削温度,但根据传热反求算法可准确求得切削过程中工件(或刀具) 的温度变化规律及动态分布。红外热像仪测温法具有直观、简便、可远距离非接触监测等优点,在恶劣环境下测量物体表面温度时具有较大优越性。 图1 红外热像仪组成结构原理图 注意:红外热像仪属于高值、精密、易损设备,未经允许,不能搬动或触摸。 五、实验方法与步骤 1.熟悉要使用的红外热像仪及其在线测量软件(Monitor;Tools;SDK),机床操作手柄及安全注意事项,安装试件,安放好红外热像仪及电脑设备,请辅导教师检查。 2.试验走刀量 f 对切削温度的影响 固定a p,V改变f,切削,记录保存瞬时的温度分布图和温度随时间的变化曲线。3.试验切削速度对切削温度的影响 固定a p,f 改变V 切削,记录保存瞬时的温度分布图和温度随时间的变化曲线。 六、实验报告要求 1、自行设计切削温度测量的单因素实验表格(预习完成),认真总结红外热像仪测温原理和方法。 2、对获得的温度分布图和变化曲线数据进行整理分析,并与教材上的经验公式计算结果进行比较分析。图线要贴在实验报告上。

金属加工液及切削液知识整合

一.金属加工液的性能及其应用的添加剂1.金属加工液简介 金属加工液(Metalworking fluids)主要是金属加工用的液体,根据加工工艺类型的不同,可分为金属成型、金属切削、金属防护和金属处理四大类。按形态分为:油型、可溶性油、半合成液、合成液。主要起润滑和冷却作用,兼有防锈清洗等作用。一般的金属加工液包括切削液、切削油、乳化液、冲压油、淬火剂、高温油、极压切削液、磨削液、防锈油、清洗剂、发黑剂、拉深油等。 2.金属加工液的常见问题与解决方案(水溶性切削液) 金属加工液的常见问题与解决方案(水溶性切削液) ◆工件表面光洁度◆ ●可能原因 1、稀释液浓度太低 2、切削液定向喷射不好或流量过低 3、金属加工屑污染 4、水质影响,溶液不稳定 5、使用刀具与材料或加工工艺错配 ●解决办法 1、调整稀释液浓度 2、检查金属加工液供应系统有否堵塞并加以清洁,直接喷在刀刃上 3、过滤稀释液 4、硬水会道致某些切削液不稳定影响到表面切削液金属加工液. 5、与刀具供应商协商,选择正确型号金属加工液论坛,切削液,乳化液,半合成,全合成, ◆工件腐蚀◆ ●可能原因 1、浓度太低度 2、水质硬度太高 3、溶液被污染 4、防腐剂已降解或消耗 5、溶液酸性值过低度 6、高温以及潮湿环境 7、工件处理和储存 ●解决办法 1、增加并校正使用浓度 2、检测水硬度,使用150ppm硬度的水 3、确定及除去污染物,或更换新的溶液 4、添加新溶液

5、适当添加PH调整剂 6、降低温度和湿度,在成品上施涂防锈剂 7、工件存放干燥通风的环境中,长时间存放时需要施涂防锈剂 ◆刀具/砂轮寿命下降◆ ●可能原因 1、大量金属屑 2、溶液污染 3、浓度太低切削液金属加工液 4、水质影响 5、使用刀具/砂轮与材料工艺错配 6、切削液润滑性能不好 ●解决办法 1、净化切削液(更换/过滤) 2、确定及去除污染物 3、调整浓度 4、正确地调配切削液 5、与刀具供应商协商,选配正确型号金属加工液论坛 6、换用润滑性能好的产品 ◆发热量大,刀具使用寿命短◆ ●可能原因 1、冷却性能差最专业的金属加工液论坛|切削液|切削油|冲压油|防锈油|清洗剂|添加剂|防锈剂|乳化液|半合成|全合成|润滑油|润滑脂 2、切削液定向喷射不好或流量过低 ●解决办法 1、选择冷却性能好的产品金属加工液论坛,切削液,乳化液,半合成,全合成,切削油,防锈油,防锈剂,润滑油, 水溶性,配方 2、增加流量或直接喷在刀刃上 ◆稀释液上面有浮油◆ ●可能原因 1、设备润滑油污染 2、混合条件差 3、经纯油加工的零件 ●解决办法 1、用撇油器撇除漏油 2、重新配制稀释液,确保边搅拌边将油加入水中 3、用撇油器除去,加工前将零件清洗干净屑污染 ◆气味难闻和颜色变化◆ ●可能原因 1、水质太差 2、外来油品的严重污染 3、产品更新率低 4、设备(油箱、管道、喷射系统)上污秽 ●解决办法切削液

切削力计算经验式

切削力计算经验式

————————————————————————————————作者:————————————————————————————————日期:

您 要 打 印 的 文 件 是: 切 削 力 计 算 的 经 验 公 式 打印本文 切削力计算的经验公式 作者:佚名转贴自:本站原创 1.计算切削力的指数公式常用的指数公式如下: 式中Fc、Fp、Ff ─分别为主切削力、背向力、进给力; CFc、CFp、C Ff ─决定于被加工材料和切削条件的系数; xFc、yFc、nFc、xFp、yFp、nFp、xFf、yFf、nFf ─公式中切削用量的指数; KFc、KFp、KFf ─三个分力计算中,当实际加工条件与求得经验公式的条件不同时,各种因素对切削力影响的修正系数之积。 各系数、指数及修正系数之值可查阅《金属切削手册》。 2.用单位切削力算主切削力已取得了不同刀具、工件材料及不同加工条件下的单位切削力和单位切削功率的实验统计数据。从手册中可查到这些数据。表3-2几种常用材料的单位切削力、单位切削功率,由式(3-13)计算出Fc。 表3—2 硬质合金外圆车刀切削常用金属材料的单位切削力、单位切削功率 工件材料 单位切削功率 /[KW/(mm3/s)]单位切削 力 /(N/mm2) 实验条件 名称牌号 制造热处 理状态硬度 /HBS 刀具几何参数切削用量范围 钢45 热轧或正 火187196210-61962 =15° 前 刀 br1=0 Vc=1.5~1.75m/s ap=1~5mm

调质(淬火高温回火)229230510-62305 =75° =0° 面 带 卷 屑 槽 br1=0.1~0.15mm f=0.1~0.5mm/r 淬硬(淬火低温回火)44(HRC)264910-62649 r01=-20° 40Cr 热轧或正 火 212196210-61962 br1=0 调质(淬火 高温回火) 285230510-62305 r01=-20°br1=0.1~0.15mm 灰铸 铁 HT200退火170111810-61118br1=0平前刀面,无卷屑槽 Vc=1.17~1.42m/s ap=2~10mm f=0.1~0.5mm/r 3.影响切削力的因素 ⑴工件材料的影响工件材料的强度、硬度越高,剪切强度τs越大,虽然切削厚 度压缩比有所下降,但切削力总趋势还是增大的。强度、硬度相近的材料,塑性大,则与刀面的摩擦系数μ也较大,故切削力增大。灰铸铁及其它脆性材料,切削时一般形成崩碎切屑,切屑与前刀面的接触长度短,摩擦小,故切削力较小。材料的高温强度高,切削力增大。 ⑵切削用量的影响 ①背吃刀量和进给量的影响背吃刀量ap或进给量f加大,均使切削力增大,但两者的影响程度不同。加大ap 时,切削厚度压缩比不变,切削力成正比例增大;加大f加大时,有所下降,故切削力不成正比例增大。在车削力的经验公式中,加工各种材料的ap指数xFc≈1,而f的指数yFc=0.75~0.9,即当ap加大一倍时,Fc也增大一倍;而f加大一倍时,Fc只增大68%~86%。因此,切削加工中,如从切削力和切削功率角度考虑,加大进给量比加大背吃刀量有利。 ②切削速度的影响在图3-15的实验条件下加工塑性金属,切削速度vc>27m/min 时,积屑瘤消失,切削力一般随切削速度的增大而减小。这主要是因为随着vc的增大,切削温度升高,μ下降,从而使ξ减小。在vc<27m/min时,切削力是受积屑瘤影响而变化的。约在vc=5m/min时已出现积屑瘤,随切削速度的提高,积屑瘤逐渐增大,刀具的实际前角加大,故切削力逐渐减小;约在vc=17m/min处,积屑瘤最大,切削力最小;当切削速度超过vc=17m/min,一直到vc=27m/min时,由于积屑瘤减小,使切削力逐步增大。

切削液及其选用分析

切削液及其选用分析 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

切削液及其选用分析 一、前言 二、合理选用冷却润滑液,可以有效地减小切削过程中的摩擦,改善散热条件,而降低切 削力,切削温度和刀具磨损,提高刀具耐用度,切削效率和已加工表面质量及降低产品的加工成本。随着科学技术和机械加工工业的不断发展,特别足大量的难切削材料的应用和对产品零件加工质量要求越来越高,这就给切削加工带来了难题。为了使这些难题获得解决,除合理选择别的切削条件外,合理选择切削液也尤为重要。 三、二.切削的分类 四、1.水溶液: 五、其主要成分是水。由于水的导热系数是油的导热系数三倍,所以它的冷却性能好。在 其中加入一定量的防锈和汕性添加剂,还能起到一定的防锈和润滑作用。 六、2.乳化液: 七、(1)普通乳化液:它是由防锈剂,乳化剂和矿物油配制而成。清洗和冷却性能好,兼 有防锈和润滑性能。 八、(2)防锈乳化液:在普通乳化液中,加入大量的防锈剂,其作用同上,用于防锈要求 严格的工序和气候潮湿的地区。 九、(3)极压乳化液:在乳化液中,添加含硫,磷,氯的极压添加剂,能在切削时的高 温,高压下形成吸附膜,起润滑作用。 十、3.切削油: 十一、(1)矿物油:有5#、7#、10#、20#、30#机械油和柴油,煤油等,适用于一般润滑。

十二、(2)动,植油及复合油:有豆油、菜子油、棉子油、蓖麻油、猪油等。复合油是将动、植、矿三种油混合而成。它具有良好地边界润滑。 十三、(3)极压切削油:它是以矿物油为基础,加入油性,极压添加剂和防锈剂而成。具有动,植物油良好地润滑性能和极压润滑性能。 十四、三.切削液的作用 十五、 1.冷却作用: 十六、它可以降低切削温度,提高刀具耐用度和减小工件热变形,保证加工质量。一般的情况下,可降低切削温度50~150℃。 十七、 2.润滑作用: 十八、可以减小切屑与前刀面,工件与刀具后刀面的摩擦,以降低切削力,切削热和限制积屑瘤和鳞刺的产生。一般的切削油在200℃左右就失去润滑能力。如加入极压添加剂,就可以在高温(600~1000℃)、高压(1470~1960MPa)条件下起润滑作用。这种润滑叫做极压润滑。 十九、 3.清洗作用: 二十、可以将粘附在工件,刀具和机床上的切屑粉末,在一定压力的切削液作用下冲洗干净。 二十一、 4.防锈作用: 二十二、防止机床、工件、刀具受周围介质(水分、空气、手汗)的腐蚀。 二十三、四.冷却润滑液中的添加剂 二十四、 1.油性添加剂: 二十五、动植物油、脂肪酸及其皂、脂肪醇及多元醇、酯类、酮类、胺类等化合物。二十六、 2.极压添加剂:

机械加工切削参数表

常用材料机械加工切削参数推荐表 共 26 页 2015年9月

目录 1 切削用量选定原则 ........................................ 2 车削加工切削参数推荐表 .................................. 2.1 车削要素.............................................. 2.2 车削参数............................................. 3 铣削加工切削参数推荐表 .................................. 3.1 铣削要素.............................................. 3.2 铣削参数.............................................. 4 磨削加工切削参数推荐表 .................................. 4.1 磨削要素 (23) 4.2 平面磨削.............................................. 4.3 外圆磨削.............................................. 4.4 内圆磨削..............................................

1 切削用量选定原则 选择机械加工切削用量就是指具体确定切削工序的切削深度、进给量、切削速度及刀具耐用度。选择切削用量时,要综合考虑生产率、加工质量和加工成本。 从切削加工生产率考虑:切削深度、进给量、切削速度中任何一个参数增加一倍,都可提高生产率一倍。 从刀具耐用度考虑:应首先采用最大的切削深度,再选用大的进给量,然后根据确定的刀具耐用度选择切削速度。 从加工质量考虑:精加工时,采用较小的切削深度和进给量,采用较高的切削速度。 2 车削加工切削参数推荐表 2.1 车削要素 切削速度v :工件旋转的线速度,单位为m/min 。 进给量f :工件每旋转一周,工件与刀具相对位移量,单位为mm/r 。 切削深度a p :垂直于进给运动方向测量的切削层横截面尺寸,单位为mm 。 Ra :以轮廓算术平均偏差评定的表面粗糙度参数,单位为μm 。 d w :工件直径,单位为mm 。 切削速度与转速关系: 3.3181000nd dn v = = π m/min d v d v n 3.3181000= =π r/min v :切削速度,工件旋转的线速度,单位为m/min 。 n :工件的转速,单位为r/min 。 d :工件观察点直径,单位为mm 。 2.2 车削参数 45钢热轧状态(硬度:187HB )外圆车削

常用切削液产品使用性能的区别

常用切削液产品使用性能的区别 最常用的三大类切削液:水溶液、乳化液和切削油。 1、水溶液类:水溶液是以水为主要成分的切削液。水的导热性能和冷却效果好,但单纯的水容易使金属生锈,润滑性能差。因此,常在水溶液中加入一定量的添加剂,如防锈添加剂、表面活性物质和油性添加剂等,使其既具有良好的防锈性能,又具有一定的润滑性能。在配制水溶液时,要特别注意水质情况,如果是硬水,必须进行软化处理。 2、乳化液类:乳化液是将乳化油用95%~98%的水稀释而成,呈乳白色或半透明状的液体,具有良好的冷却作用。但润滑、防锈性能较差。通常再加入一定量的油性、极压添加剂和防锈添加剂,配制成极压乳化液或防锈乳化液。 3、切削油类:切削油的主要成分是矿物油,少数采用动物油或复合油。纯矿物油不能在摩擦界面形成坚固的润滑和防锈作用。 切削液的选用 1) 、粗加工时切削液的选用粗加工时,加工余量大,所用切削用量大,产生大量的切削热。采用高速钢铣刀切削时,使用切削液的主要目的是降低切削温度,减少铣刀磨损。硬质合金刀具耐热性好,一般不用切削液,必要是可采用低浓度乳化液或水溶液。但必须连续、充分地浇注,以免处于高温状态的硬质合金刀片产生巨大的内应力而出现裂纹。 2) 、精加工时切削液的选用精加工时,要求表面粗糙度值较小,一般选用润滑性能较好的切削液,如高浓度的乳化液或含极压添加剂的切削油。 3) 、根据工件材料的性质选用切削液切削塑性材料时需用切削液。切削铸铁、黄铜等脆性材料时,一般不用切削液,以免崩碎切屑黏附在机床的运动部件上。加工高强度钢、高温合金等难加工材料时,由于切削加工处于极压润滑摩擦状态,故应选用含极压添加剂的切削液。切削有色金属和铜、铝合金时,为了得到较高的表面质量和精度,可采用10%~20%的乳液化、煤油或煤油与矿物油的混合物。但不能用含硫的切削液,因硫对有色金属有腐蚀作用。切削镁合金时,不能用水溶液,以免燃烧。

切削温度测量方法概述..

热工测量仪表作业 切削温度测量方法概述Summary of Cutting Temperature Measurement Methods 作者姓名:王韬 专业:冶金工程 学号:20101360 指导老师:张华 东北大学 Northeastern university 2013年6月

切削温度测量方法概述 王韬 东北大学 摘要:高速切削加工现已成为当代先进制造技术的重要组成部分,切削热与切削温度是高速切削技术研究的重要内容。本文根据国内外高速切削温度测量方法的研究现状,对目前常用的切削温度测量方法进行了分类和比较,主要包括接触式测温、非接触式测温和其他测量方法三种,详细介绍了热电偶法、光辐射法、热辐射法、金相结构法等几种常用切削测温方法的基本原理、优缺点、适用范围及发展状况;介绍了几种新型高速切削温度测量方法。最后对各种测量方法作了比较,探讨了切削温度实验测量方法研究的发展方向。 关键词: 切削温度,测量方法,发展状况 Summary of Cutting Temperature Measurement Methods Wang Tao Northeastern university Abstract: High-speed machining has become an important part of the contemporary advanced manufacturing technology. Cutting heat and cutting temperature is the important content of high speed cutting technology research. This paper gives the background to the measurement of metal cutting temperatures and a review of the practicality of the various methods of measuring cutting temperature while machining metals. Classify the cutting temperature measurement methods, mainly including non-contact temperature measurement, non-contact temperature test of other three kinds of measurement methods; Introduced the thermocouple method, radiation method, radiation method and metallographic structure of the basic principle of several kinds of commonly used cutting temperature measurement method, the advantages and disadvantages, applicable scope and the status of the development; Several new high-speed cutting temperature measurement methods are introduced. Finally discusses the development direction of cutting temperature experiment measurement method research for a variety of measurement methods. Keywords:metal cutting, cutting temperature, measurement method

切削液性能的评定方法

切削液性能的评定方法 过去对切削液润滑性能的评定,一般采用四球机测定最大无卡咬负荷(PB 值)。近年来已逐渐采用切削机床进行切削试验来评定切削液的使用性能。这种方法是在工件、刀具、切削条件、供液法等全部保持在相同的条件下,仅改变切削液,根据不同的切削液所测定的刀具寿命、加工试件表面粗糙度、尺寸精度、切削力、攻螺纹扭矩等切削特征值来判断切削液的优劣。评定切削液的条件和主要参数 1)加工方法(车削、铣削、钻削、攻螺纹)。 2)工件(材料、硬度、热处理状态、形状)。 3)刀具(种类、材料、形状、表面处理、生产厂)。 4)机床(制造厂商、种类、型号、刚度)。 5)同剂条件(切削速度、进给量、切削深度)。 6)供液方式及供液量。 7)切润液(种类、稀释率) 评定切削液性能的项目 1)刀具寿命(刀具磨损量、加工零件数)。 2)加工试件表面粗糙度。 3)精度(尺寸精度、圆度、圆柱度、扩大量等)。 4)切削力、攻螺纹扭矩、 5)切削温度。 6)其他(刀-屑接触长度、切屑厚度等)。 评定磨削液的条件和参数 1)加工方法(平面磨床、外圆磨床、内圆磨床) 2)适用机床(制造厂商、磨料种类、粒度、硬度、组织、结合剂、形状及尺寸)。 3)工件(材料、硬度、热处理状态、形状) 4)砂轮(制造厂商、磨料种类、粒度、硬度、组织、结合剂、形状及尺寸)。 5)磨削条件(磨削速度、进给量、磨削深度)。 6)修整条件(修整器种类、修整速度、修整深度、修整进给量、修整数)。

7)供液方式及供液量。 8)磨削液(种类、稀释倍数)。 评定磨削液性能的项目 1)砂轮寿命(砂轮磨损量、砂轮的磨损状态等)。 2)磨削力。 3)试件表面粗糙度及尺寸精度。 4)工件表面状态(磨削烧伤、磨削裂纹、加工变质层、残余应力)。 5)磨削温度。 6)磨削比。磨削比的计算如下: 磨削比=工件磨除量/砂轮磨损量 砂轮磨损量=砂轮半径减少量x砂轮直径xπx工件宽度 工件磨除量=(磨前工件高度-磨后工件高度)x 工件长度x工件宽度

切削温度测量方法综述

3中国博士后科学基金资助项目(项目编号:中博基2000-23) 教育部留学回国人员科研启动基金资助项目(项目编号:教外司留 2000-479) 收稿日期:2001年10月 切削温度测量方法综述3 刘战强 黄传真 万 熠 艾 兴 山东大学 摘 要:对目前常用的切削温度测量方法进行了综合评述,介绍了各种测温方法的基本原理、优缺点及适用范围。关键词:金属切削, 切削温度, 测量方法 Summary of Cutting T emperature Measurement Methods Liu Zhanqiang Huang Cuanzhen Wan Y i et al Abstract :The present methods used to measure the cutting temperature are summarized.The fundamental principles ,merits and demerits and application ranges of these cutting temperature measurement methods are introduced. K eyw ords :metal cutting , cutting temperature , measurement method 1 引言 在机械制造业中,虽然已发展出各种不同的零件成型工艺,但目前仍有90%以上的机械零件是通过切削加工制成。在切削过程中,机床作功转换为等量的切削热,这些切削热除少量逸散到周围介质中以外,其余均传入刀具、切屑和工件中,刀具、工件和机床温升将加速刀具磨损,引起工件热变形,严重时甚至引起机床热变形。因此,在进行切削理论研究、刀具切削性能试验及被加工材料加工性能试验等研究时,对切削温度的测量非常重要。测量切削温度时,既可测定切削区域的平均温度,也可测量出切屑、刀具和工件中的温度分布。常用的切削温度测量方法主要有热电偶法、光辐射法、热辐射法、金相结构法等[1~5]。 2 切削温度测量方法 2.1 热电偶法 当两种不同材质组成的材料副(如切削加工中的刀具—工件)接近并受热时,会因表层电子溢出而产生溢出电动势,并在材料副的接触界面间形成电位差(即热电势)。由于特定材料副在一定温升条件下形成的热电势是一定的,因此可根据热电势的大小来测定材料副(即热电偶)的受热状态及温度变化情况。采用热电偶法的测温装置结构简单,测量方便,是目前较成熟也较常用的切削温度测量方法。根据不同的测量原理和用途,热电偶法又可细分为以下几种: (1)自然热电偶法 自然热电偶法[1,3,4]主要用于测定切削区域的 平均温度。采用自然热电偶法的测温装置如图1所示。 它是利用刀具和工件分别作为自然热电偶的两极,组成闭合电路测量切削温度。刀具引出端用导线接入毫伏计的一极,工件引出端的导线通过起电刷作用的铜顶尖接入毫伏计的另一极。测温时,刀具与工件引出端应处于室温下,且刀具和工件应分别与机床绝缘。切削加工时,刀具与工件接触区产生的高温(热端)与刀具、工件各自引出端的室温(冷端)形成温差电势,该电势值可用接入的毫伏计测出,切削温度越高,该电势值越大。切削温度与热电势毫伏值之间的对应关系可通过切削温度标定得到。根据切削实验中测出的热电势毫伏值,可在标定曲线上查出对应的温度值。 图1 自然热电偶法测量切削温度示意图 采用自然热电偶法测量切削温度简便可靠,可 方便地研究切削条件(如切削速度、进给量等)对切削温度的影响。值得注意的是,用自然热电偶法只能测出切削区的平均温度,无法测得切削区指定点的温度;同时,当刀具材料或(和)工件材料变换后,切削温度—毫伏值曲线也必须重新标定。 (2)人工热电偶法 人工热电偶法(也称热电偶插入法)[1,3]可用于

钢的最佳切削速度

钢的最佳切削速度文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

45号钢的最佳切削速度 1.切削速度的选取 切削速度快慢直接影响切削效率。若切削速度太快,虽然可以缩短切削时间,但不可避免刀具产生高热现象,影响刀具的寿命。若切削速度过小,则切削时间会加长,效率低,刀具无法发挥其功能;决定切削速度的因素很多,概括起来有: (1)刀具材料。刀具材料是影响切削速度的最主要因素。刀具材料不同,允许的最高切削速度也不同。高碳钢刀具的切削速度约为5m/min,高速钢刀具的切削速度约为20m/min,硬质合金刀具的切削速度约为 80m/min,涂层硬质合金刀具的切削速度约为200m/min,陶瓷刀具的切削速度可高达1000m/min。 (2)工件材料。工件材料硬度高低会影响刀具切削速度,同一刀具加工硬材料时切削速度应降低,而加工较软材料时,切削速度可以提高。 表4 工件材料刀具材料硬度耐热度(℃)切削速度(m/min) 45号钢高速钢 HRC66~70 600~645 3 硬质合金 HRA90~92 800~1000 100~150 2.切削深度的选取 切削深度要根据机床、工件和刀具的刚度来决定,主要受机床刚度的制约。在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。这样可以减少走刀次数,提高生产效率。 为了保证加工表面质量,应根据加工余量确定,留少量精加工余量,一般粗加工时,一次进给应尽可能切除全部余量。背吃刀量不均匀时,粗加工要分几次进给,并且应当把第一,二次进给时的切削深度尽量取得大一些;在中等功率的机床上,切削深度取为8~10mm。半精加工时,切削深度选取为0.5~2mm。精加工时,切削深度选取0.2~0.5mm。 总之,切削深度的具体数值应根据机床性能、相关的手册并结合实际经验用类比方法确定。 3.进给量的选取 进给量是数控机床切削用量中的重要参数,根据零件的表面粗糙度,零件的加工精度要求,及刀具材料、工件材料等因素来决定,可以参考切削用量手册选取。最大的进给量受到机床刚度和进给驱动以及数控系统的限制。

切削力计算的经验公式.-切削力计算

您要打印的文件是:切削力计算的经验公式打印本文 切削力计算的经验公式 作者:佚名转贴自:本站原创

度压缩比有所下降,但切削力总趋势还是增大的。强度、硬度相近的材料,塑性大,则与刀面的摩擦系数μ也较大,故切削力增大。灰铸铁及其它脆性材料,切削时一般形成崩碎切屑,切屑与前刀面的接触长度短,摩擦小,故切削力较小。材料的高温强度高,切削力增大。 ⑵切削用量的影响 ①背吃刀量和进给量的影响背吃刀量ap或进给量f加大,均使切削力增大,但两者的影响程度不同。加大ap 时,切削厚度压缩比不变,切削力成正比例增大;加大f加大时,有所下降,故切削力不成正比例增大。在车削力的经验公式中,加工各种材料的ap指数xFc≈1,而f的指数yFc=0.75~0.9,即当ap加大一倍时,Fc也增大一倍;而f加大一倍时,Fc只增大68%~86%。因此,切削加工中,如从切削力和切削功率角度考虑,加大进给量比加大背吃刀量有利。 ②切削速度的影响在图3-15的实验条件下加工塑性金属,切削速度vc>27m/min 时,积屑瘤消失,切削力一般随切削速度的增大而减小。这主要是因为随着vc的增大,切削温度升高,μ下降,从而使ξ减小。在vc<27m/min时,切削力是受积屑瘤影响而变化的。约在vc=5m/min时已出现积屑瘤,随切削速度的提高,积屑瘤逐渐增大,刀具的实际前角加大,故切削力逐渐减小;约在vc=17m/min处,积屑瘤最大,切削力最小;当切削速度超过vc=17m/min,一直到vc=27m/min时,由于积屑瘤减小,使切削力逐步增大。 图3-15 切削速度对切削力的影响 切削脆性金属(灰铸铁、铅黄铜等)时,因金属的塑性变形很小,切屑与前刀面的摩擦也很小,所以切削速度对切削力没有显著的影响。 ⑶刀具几何参数的影响 ①前角的影响前角γo加大,被切削金属的变形减小,切削厚度压缩比值减小,刀具与切屑间的摩擦力和正应力也相应下降。因此,切削力减小。但前角增大对塑性大的材料(如铝合金、紫铜等)影响显著,即材料的塑性变形、加工硬化程度明显减小,切削力降低较多;而加工脆性材料(灰铸铁、脆铜等),因切削时塑性变形很小,故前角变化对切削力影响不大。 ②负倒棱的影响前刀面上的负倒棱(如图3-16a),可以提高刃区的强度,

切削热的产生与切削温度的测量

切削热的产生与切削温度的测量 切削热和由此产生的切削温度是金属切削过程中的一个重要物理现象。大量的切削热使切削区域的温度升高,直接影响刀具的磨损和寿命,并影响工件的加工精度和表面质量。切削温度也可作为自动化生产中监控因素,所以研究切削热和切削温度变化规律对生产时间有重要的意义。 (一)切削热的产生和传出 被切金属层在刀具的作用下发生弹性变形和塑性变形,这是切削热的一个来源。同时,切屑与前刀面、工件与后刀面间消耗的摩擦功也将转化为热能,这是切削热的又一个来源(见图1)。 如果忽略后刀面上的摩擦功和进给运动所消耗的功,并假定主运动所消耗的功全部转化为热能,则单位时间内产生的切削热可算出: Qc=Fzvc 式中Qc--每秒钟内产生的切削热,单位为J/s; Fz--主切削力,单位为N; vc--切削速度,单位为m/s。 图1 切削热的产生和传出 (二)切削温度及其测量方法 切削温度一般是指刀具与工件接触区域的平均温度。切削温度测量的方法很多,如图2所示。目前比较常用的测量切削温度的方法是热电偶法和光热辐射法。下面将分别进行阐述。

图2 切削温度的测量方法 1.热电偶法 热电偶法又分为自然热电偶法和人工热电偶法(见表1)。 表1 自然热电偶与人工热电偶比较

图3 自然热电偶法测温示意图 1.铜顶尖 2.铜销 3.车床主轴尾部 4.工件 5.刀具 图4 人工热电偶法测温示意图 a)测前刀面温度b)测工件温度 要想知道前刀面上的温度,还需应用传热学的原理和公式进行推算。应用人工热电偶法测温,并辅以传热学计算所得到的刀具、切屑和工件的切削温度分布情况(见图5)。

[超实用] 判断切削液性能和质量差异的简单方法

机械工厂如何简单判断不同切削液的性能和质量差异 可按如下方法在工厂内对不同的切削液产品的主要性能指标进行简单可行的比较: 1、润滑性能 在相同设备、同样刀具并加工同样工件的情况下,比较刀具寿命(单把刀可加工的零件数或者切削距离)以及加工质量(表面光洁度)。刀具寿命越长、加工表面光洁度越好,则切削液润滑性能越优秀。润滑性能是切削液非常重要的指标。直接影响加工质量和成本。但是无法直观判断,因为你无法获知切削液的配方及其有效润滑成分的多少。 2、稳定性 取原液适量放置在透明容器中静置24小时,观察原液是否有分层和杂质,是否均匀; 取原液适量用自来水配制成5%稀释液在透明容器中静置15分钟,观察稀释液是否均匀,是否有分层和杂质。 上述两项有任何一项出现分层、杂质及不均匀现象。即可判定切削液稳定性较差。 3、泡沫性能 配置5%浓度稀释液并放置在透明的试剂瓶中,盖好盖子。然后用正常力量上下摇动试剂瓶15秒钟然后静置在桌面上开始计时并观察:瓶中产生的泡沫如能在15秒内消失,则泡沫性能合格。消失速度越快越好。 4、防锈性能及防腐蚀性能 配置5%浓度稀释液适量,选取尺寸适中的所加工零件(有经过切削加工的加工面)在切削液中浸泡适当时间(半小时到数小时。根据零件加工时间长短)后取出在空气中静置观察:多长时间以后零件出现锈蚀或者腐蚀。基本的要求是3-5天。时间越长,自然防锈防腐能力越长。 特别说明,对此性能用这种方法只能初略判断。对一些特殊的材料(比如航空铝合金),往往需要严格的实验室验证。 5、抗菌能力 配置5%浓度稀释液适量并在容器中静置,定期嗅闻切削液味的变化。越早变味发臭的切削液,其抗菌能力越差。

切削液及其选用分析

切削液及其选用分析 一、前言 合理选用冷却润滑液,可以有效地减小切削过程中的摩擦,改善散热条件,而降低切削力,切削温度和刀具磨损,提高刀具耐用度,切削效率和已加工表面质量及降低产品的加工成本。随着科学技术和机械加工工业的不断发展,特别足大量的难切削材料的应用和对产品零件加工质量要求越来越高,这就给切削加工带来了难题。为了使这些难题获得解决,除合理选择别的切削条件外,合理选择切削液也尤为重要。 二.切削的分类 1.水溶液: 其主要成分是水。由于水的导热系数是油的导热系数三倍,所以它的冷却性能好。在其中加入一定量的防锈和汕性添加剂,还能起到一定的防锈和润滑作用。 2.乳化液: (1)普通乳化液:它是由防锈剂,乳化剂和矿物油配制而成。清洗和冷却性能好,兼有防 锈和润滑性能。 (2)防锈乳化液:在普通乳化液中,加入大量的防锈剂,其作用同上,用于防锈要求严格 的工序和气候潮湿的地区。 (3)极压乳化液:在乳化液中,添加含硫,磷,氯的极压添加剂,能在切削时的高温,高 压下形成吸附膜,起润滑作用。 3.切削油: (1)矿物油:有5#、7#、10#、20#、30#机械油和柴油,煤油等,适用于一般润滑。 (2)动,植油及复合油:有豆油、菜子油、棉子油、蓖麻油、猪油等。复合油是将动、植、 矿三种油混合而成。它具有良好地边界润滑。 (3)极压切削油:它是以矿物油为基础,加入油性,极压添加剂和防锈剂而成。具有动, 植物油良好地润滑性能和极压润滑性能。 三.切削液的作用 1.冷却作用: 它可以降低切削温度,提高刀具耐用度和减小工件热变形,保证加工质量。一般的情况下,可降低切削温度50~150℃。 2.润滑作用: 可以减小切屑与前刀面,工件与刀具后刀面的摩擦,以降低切削力,切削热和限制积屑瘤和鳞刺的产生。一般的切削油在200℃左右就失去润滑能力。如加入极压添加剂,就可以在高温(600~1000℃)、高压(1470~1960MPa)条件下起润滑作用。这种润滑叫做极压润滑。 3.清洗作用: 可以将粘附在工件,刀具和机床上的切屑粉末,在一定压力的切削液作用下冲洗干净。 4.防锈作用: 防止机床、工件、刀具受周围介质(水分、空气、手汗)的腐蚀。 四.冷却润滑液中的添加剂 1.油性添加剂: 动植物油、脂肪酸及其皂、脂肪醇及多元醇、酯类、酮类、胺类等化合物。 2.极压添加剂: 含硫、磷、氯等有机化合物。如氯化石腊、四氯化碳、硫化磷酸盐、二烷基二硫代磷酸锌等。含硫的极压切削油在切削过程中和金属起化学反应,生成硫化铁,它的熔点高

相关文档
最新文档