基于ARM的温度采集系统设计

基于ARM的温度采集系统设计
基于ARM的温度采集系统设计

基于ARM的温度采集系统设计

2013554013

王义涛

一.引言

本文针对试验对温度监控系统的要求,设计、开发了基于嵌入式操作系统Linux 和 S3C2410 处理系统软硬件平台的嵌入式多通道高精度温度测量系统的软、硬件设计与实现方法,研究并实现热电阻的多通道高精度监测电路。本文在对测温技术发展研究的基础上,根据本课题设计的任务要求,设计了基于 PT100(铂电阻)传感器的新型多通道温度检测板(8 通道)。在该多点温度测量系统中,要求温度监测点 12个,测量范围:0℃~+50℃,分辨力:±0.1℃,准确度:±0.2℃。温度检测系统将实现多点温度数据的采集、保存、上传。该系统主要包括两个部分:多通道温度检测板和ARM 通信电路。温度检测板由电源电路、信号放大及调理电路以及 AD 转换电路与单片机接口电路三部分组成。基于ARM 的通信电路通过两种方式:串口及网口方式实现对温度数据的采集、上传、读取、保存。完成 Linux 操作系统在嵌入式系统上的移植,以及 Linux 实时性能改造;软件任务划分与设计,包括 A/D 数据采集任务,算法任务,编制构成本温度多路测量仪的嵌入式程序,并对各部分电路进行实验、调试。

二.系统硬件设计

2.1温度检测系统架构框图

温度检测系统将实现多点温度数据的采集、保存、上传。其系统结构图如下:

2.1基于四线制接法和自校正设计的电阻测量电路

当温度探头附近环境温度发生改变的时候,引起了温度探头 PT100 电阻值的改变。由于流经 PT100 的电流为恒定值,因此温度采集板通过对 PT100 两端的电压值采集便可以计算出环境温度。本温度采集板中的温度探头采用了 4 线制解法,可以避免因导线过长带来的电阻误差。6 路采样信号和 2 路标准电阻信号通过多路模拟开关分时段被进行采样,采样得到的值依次通过信号放大电路和A/D 转换电路进入微控制器(MCU)。通过自校准算法,从而得到精确温度值采集到的温度测量值可以通过串口或网口的方式与上位机相连。

2.2基于ARM的通信电路

2.2.1 ARM 核心板

本核心板采用 NAND FLASH 芯片 K9F1208 作为存储器,用来存储数据和程序。一片 K9F1208 的容量为 64M,能够满足系统的需要。K9F1208 和 S3C2410 接口电路图如图所示。

2.2 K9F1208 和 S3C2410 接口图

在本系统中,ARM 核心板主要起到对前端采集到的温度数据的收发。核心板的接口电路如下:

2.3 ARM 核心板接口图

2.2.2 信号输入电路

该信号为温度板采集得到的信号,通过 4PIN 的外接端子接入。由于信号之间有相互干扰,故需要采取隔离措施。ISO7221 是双通道数字隔离器,该系列器件有一个由 SiO2隔离栅组成的逻辑输入输出缓冲区,隔离电压达 4KV。若在独立的电源系统中联合应用,它们可以阻止高电压,隔离地平面和阻止噪声流入数据总线或者其它线路,预防干扰或者破坏敏感线路。隔离后的信号直接与 ARM 相连进行通信。

2.4信号输入电路

2.2.3ARM 与串口和网口连接电路

对于数据的传输,我们采取两种方式分别是:网口方式和串口方式。对于网口方式,我们选用 RJ45 接口为网卡接口。10/100base tx RJ45 接口是常用的

以太网接口,支持10M 和 100M 自适应的网络连接速度,10/100base tx RJ45 接口引脚定义如下:

2.5 RJ45接口引脚定义

2.6 网口连接电路

由于 ARM 与 PC 机的传输协议不同,因此需要将 RS232 转换为 TTL。这里我们选用MAX3232 为转换元件。原理图如下:

2.7 串口连接图

三.系统软件设计

3.1单片机系统软件

单片机软件系统的设计与开发是实现对于温度数据实时采集的重要保证,温度数据采集结果的好坏与单片机软件系统的编写密切相关。本节将会详细的介绍系统软件开发的设计思想、程序设计和编写、各个功能模块的实现以及各个功能模块的流程图。

3.1.1主体程序设计

系统的主程序设计主要完成整个系统的初始化、中断优先级设定以及调用各个模块程序,既主要实现各个模块程序的连接。

3.1主程序控制流程图

3.1.2数据采集子程序设计

该子程序功能是将 PT100 所检测到的温度模拟信号转换为数字信号。完成以下主要操作:分时段轮询 8 测温通道、启动 AD7715、延时等待 A/D 转换结果、读取转换结果并将结果存入 RAM 和上传给上位机等。程序框图如下:

3.2数据采集流程图

3.2嵌入式Linux操作系统的建立

3.2.1开发前的准备工作

(1)交叉编译环境的建立

交叉编译器选用的是集成交叉编译器cross-3.4.1。程序下载方式选择串口方式。程序编写调试在台式计算机集成开发环境下进行,编译生成可执行代码后,通过串口下载到嵌入式目标板上。

(2)基于 S3C2410 的 BootLoader 移植

本项目选用的 BootLoader 是由深圳优龙公司自行开发的、专门针对

S3C2410 运用的 ST2410_BIOS_V2.36。该 BootLoader 具有的功能是:配合三星公司开发的 DNW 软件,利用 USB 或者串行口下载文件;执行 FLASH 烧写功能;从 NANDFLASH 中启动操作系统;擦除 NAND FLASH 分区;设置启动参数等。这个 BootLoader运行稳定可靠,使用简单方便,而且源码开放,可以根据自己的应用需求任意修改BootLoader 源码,满足了项目需求。

(3)Linlux 内核移植

所谓 Linux 内核移植,就是针对具体的目标平台对 Linux 做必要的改写后,

安装到该目标平台并使其正确运行的过程。基本内容包括:

①获取某一版本的 Linux 内核源码。

②内核裁剪:根据具体的目标平台和系统要求,对源码进行量身定做的改写

(主要是有关体系结构的部分);然后添加一些驱动模块,构成一款合适目标平台的新的操作系统。

③对该系统进行针对目标平台的交叉编译,生成一个内核映像文件(Makefile

文件),该文件可以在目标平台运行。

④对该映像文件烧写、安装到目标平台中。

(4)Linux 文件系统

文件系统是文件存储的物理空间,Linux 操作系统的运行离不开对文件的操作。文件系统的任务是对逻辑文件进行管理,包括复制、删除、修改等操作,方便用户操作文件和目录。为适应便携与移动的需求,嵌入式系统一般采用Flash 作为存储介质。考虑到 Flash 的持久存储能力、可写性、压缩性和掉电保护能力等因素,Flash 必须使用专门的文件系统。本项目采用的文件系统是cramfs+yaffs 文件系统的形式,cramfs 文件系统是一种只读文件系统,用来存储系统运行所必须的一些配置、环境变量、数据等;yaffs文件系统是一种可读写的文件系统,用来存储用户的程序、数据等。yaffs 文件系统挂接在 cramfs 文件系统/mnt 目录下,完整的目录路径名为/mnt/yaffs。/mnt/yaffs 目录可读可写,用户可以将自己的程序下载到这里运行,同时也可以在这个目录下配置用户级的环境变量、启动参数等。

3.2.2 系统应用程序的设计

为了实现本系统功能,需要对系统划为多个不同的子任务,并且要分配不同的优先级别。在嵌入式实时系统中,对任务合理的划分和优先级合理的设置是至关重要的。任务划分得越准确,不仅可以减少软件设计的工作量,而且也可以增强系统的稳定性。对任务优先级的合理设置,则是对嵌入式系统实时性的主要保障,可以保证任务调度的合理性。

具体到本系统的基本功能划分如下几个子任务: 温度量数据采集任务,数据串行通信给上位机任务,以太网模块数据传输任务,用户配置任务。应用程序编写、调试完毕后,编译成模块,然后将模块下载到/mnt/yaffs 目录下,编辑相关启动脚本,使操作系统启动后自动加载这三个程序模块。以模块的形式加载应用程序,应用灵活,方便升级。

3.3 应用程序总体框架图

由于时间的制约,该版本的温度测量系统只包含基本的温度量采集和将采集到的数据上传给网络的功能。关于用户配置功能,待以后继续完善。线程一:温度量采集,通过采集前端部分与 ARM 系统采用串口通讯连接。线程二:采集数据上传给网络,利用S3C2410 通过串口调用采集前端的各种数据,然后通过基于 DM9000A 的 100M 以太网接口传送给远程的网络监控系统。线程三:数据串行通信给上位机,利用上位机自带的串口与 ARM 进行数据的传递。

1.温度量输入采集线程

开关量输入采集线程的整体流程如图所示。该线程首先利用标准系统函数 open()打开各温度测量通道输入设备,再调用标准系统函数 read()读取各温度采集通道的值,然后申请对互斥锁 net_wr_buf_mutex 上锁,来实现将各温度采集通道结果写入 net_wr_buf结构体。若此时有其它线程对互斥锁 net_wr_buf_mutex 已上锁,该线程将阻塞,直到互斥锁 net_wr_buf_mutex 解锁为止;等到该线程对互斥锁 net_wr_buf_mutex 上锁后,将各通道的逻辑状态更新到结构体成员net_wr_buf.di[8]中;net_wr_buf.di[0]~net_wr_buf.di[7]分别存储着温度采集输入通道 1 到通道 8 的温度值。该线程约每隔 1s 循环进行一次各输入通道温度值采集。

3.4温度输入采集线程流程图

2.串口通信线程

由于串行口为 8 位异步通信接口,一帧信息为 10 位:1 位起始位(0),8 位数据位(低位先)和 1 位停止位(1),TXDI 为发送端,RXDI 为接收端。这些都是对 UART 寄存器的初始化。完成初始化后,图 4-7 是通讯程序流程图。

3.5 RS-232 串口流程图

结论

针对温度测量系统的要求,本文开发出了基于 ARM+Linux 的多通道温度采集系统,该系统可以实时的将不同通道的温度数据采集、保存并通过两种方式上传给上位机。

在硬件方面,本文设计了温度检测系统主板和 ARM 通信板,温度检测板由电源电路、信号放大及调理电路以及 AD 转换电路与单片机接口电路三部分组成。ARM 通信板完成对数据的上传。为了确保高精度测温实现,本设计在硬件调理电路中加入了可靠恒流源,精密电阻校正通道以及公共端校正通道。软件方面设计了 AD7715 的连续采集程序,数字 I/O 控制程序和算法处理程序等。软件方面实现了 A/D 数据采集,温度转换算法,刷新测量结果等实时任务。将通用 Linux 操作系统成功移植到 ARM 微处理器上,按照结构化、模块化的方式进行系统软硬件的设计、调试和最终实现,系统具备嵌入式控制,温度数据实时采集处理,在工业测量与控制领域具有较高的上程价值和广阔的应用前景。

单片机温度采集显示系统

考试序列号____ 单片机课程设计论文 论文题目:温度采集显示系统 课程名称:单片机课程设计 学院物理与光电工程学院 专业班级 08电子3班 学号 3108009223 姓名梁辉浩 联系方式 任课教师 20 年月日

温度采集显示系统 一、功能和要求: (1)温度测量范围 0 - 99℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 (4)使用键盘输入温度的最高点和最低点,温度超出范围时候报警。(报警温度不需要保存) 二、系统方案: 方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 三、核心元件的功能 1、AT89C51 AT89S51美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4K BytesISP(In-system programmable)的可反 复擦写1000次的Flash只读程序存储器,器 件采用ATMEL公司的高密度、非易失性存储技 术制造,兼容标准MCS-51指令系统及AT89C51 引脚结构,芯片内集成了通用8位中央处理器 和ISP Flash存储单元。单片机AT89S51强大 的功能可为许多嵌入式控制应用系统提供高 性价比的解决方案。 AT89C51芯片的引脚结构如图1所示: 1.1功能特性概括: AT89S51提供以下标准功能:40个引脚、 4K Bytes Flash片内程序存储器、128 Bytes 的随机存取数据存储器(RAM)、32个外部双

一种新型多点测温系统的设计

一种新型多点测温系统的设计 一种新型多点测温系统的设计 1温度传感器DS18B20介绍 DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。 DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。 2系统硬件结构 系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集温度采集部分采用8051单片机作为中

温度数据采集系统

第三章系统硬件设计 温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器DS18B20,数据的发送和接收采用无线数据收发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个DS18B20,很方便。具有以下特点: (1)具有独特的1-Wire 接口,只需要一个端口引脚就可以进行通信; (2)具备多节点能力,能够简化分布式温度检测应用中的设计; (3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在3~5.5V; (5)在待机状态下可以不消耗电源电量; (6)测量温度范围在-55~+125℃; (7)在-10~+85℃时测量精度在±0.5℃; (8)可以用程序设定9~12 位分辨率; (9)用户可根据需要定义温度的上下限报警设置。 DS18B203 脚封装的管脚排列图如图3.1.1 所示。

图 3.1.1 DS18B20 管脚排列图 DS18B20 只有三个引脚。其中,引脚1 和3 分别是GND 和VDD,引脚2 是DQ 端,是用于数据信息的输入和输出。当给DS18B20 加电后,单片机可以通过DQ 端写入命令,并可以读出含有温度信息的数字量。在使用寄生电源情况下,可以向DS18B20 提供电源。 3.1.2 DS18B20 的内部结构 DS18B20的内部框图如图3.1.2所示。 图3.1.2 DS18B20的内部框图 DS18B20主要由64位ROM、温度传感器、非易失性温度报警触发器TH和TL及暂存器四部分组成。64位ROM存储器具有独一无二的序列号,可以看作是该DS18B20的地址系列号,是在出厂前就被光刻好的。暂存器各字节具有不同的意义,0和1字节是用于存储温度传感器数字输出的温度寄存器;2字节和3字节分别是非易失性上限报警触发寄存器(TH)和下限报警触发寄存器(TL);4字节的配置寄存器能够用来设置温度转换的精度; 5、6和7字节作为内部保留使用。DS18B20有两种供电方式,可以使用寄生电源供电,也可以使用外部电源。在使用寄生电源的时候,不用外部电源,而是在总线为高时由DQ端提供电源,同时向内部电容充电,以求在总线拉低时为DS18B20提供电量。上电后,DS18B20进入空闲状态;当MCU向DS18B20发出Convert T [44h]的命令后,DS18B20 向MCU传送转换状态,开始温度测量和A/D转换。温度数据以带符号位的补码形式存储在温度寄存器中,温度寄存器格式如图3.1.3所示。 图3.1.3 DS18B20温度寄存器格式 温度的正负值是由符号为来说明的,正为0,负为1。表3.1给出一部分数字数据与温度的对应关系。 表3.1 DS18B20温度与数据对应关系

基于单片机的多功能温度检测系统的设计翻译

基于单片机的多功能温度检测系统的设计一、引言 随着社会的发展和技术的进步,人们越来越注重温度检测与显示的重要性。温度检测与状态显示技术与设备已经普遍应用于各行各业,市场上的产品层出不穷。温度检测及显示也逐渐采用自动化控制技术来实现监控。本课题就是一个温度检测及状态显示的监控系统。二、系统方案 本系统采用AT89S52 作为该系统的单片机。系统整体硬件电路包括,电源电路,传感器电路,温度显示电路,上下限报警电路等如图1 所示。图中报警电路可以在被测温度不在上下限X围内时,发出报警鸣叫声音。温度控制的基本原理为:当DSl8B20 采集到温度信号后,将温度信号送至AT89S52 中处理,同时将温度送到LCD 液晶屏显示,单片机根据初始化设置的温度上下限进行判断处理,即如果温度大于所设的最高温度就启动风扇降温;如果温度小于所设定的最低温度就启动报警装置。温度控制器的原理图二三、系统硬件设计1.单 片机AT89S52 的介绍 AT89S52 是一种低功耗、高性能CMOS8 位微控制器,具有8K 可编Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash 允许程序存储器在系统编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU和在系统可编程Flash,使AT89S52 为众多嵌入式控制应用系统提供高灵活、超有效的解决方案[5]。AT89S52 具有以下标准功能:8k 字节Flash,256 字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6 向量2 级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2 种软

虚拟仪器温度采集系统

内蒙古科技大学虚拟仪器期末大作业 题目:虚拟仪器温度采集系统 姓名:王伍波 专业:测控技术与仪器 学号:1067112240 班级:测控10-2班 教师:肖俊生 时间:2013年6月18日

一、设计题目:虚拟仪器温度采集系统 二、设计要求: 1.连续采集温度信号,并存储 2.温度上下限报警功能,上下限可调 3.华氏、摄氏可转换显示 三、设计思路: 该设计是以计算机和单片机数据采集系统为核心,单片机数据采集系统主要完成对温度信号进行数据采集,计算机主要完成温度信号的分析、显示和控制等功能。设计中采用Intel 公司的89C51 单片机完成数据采集,采用A D 5 7 4 完成数据的A/D 转换。图2 为AD574 与89C51 单片机的接口电路。 1.设计虚拟前面板 温度监测软件设计本系统以labview8.5 作为开发工具。现以仿真数据为例来讲述系统软件对温度的监测、报警及显示功能。利用labview8.5编程使温度可以在华氏和摄氏之间随时进行切换,同时对温度实时监测。当温度超过上限要求时会及时点亮报警灯进行报警并显示每次采集过程中累加的报警次数,报警的上限值可以通过前面板的输入控件改变其值。采集进度定义为每次采集100 点。为了防止程序陷入死循环每次采集之间的时间间隔为1000ms。开始采集后在整个采集过程中可以暂停采集以便随时对温度进行观察。 2、编辑流程图 每一个程序前面板都对应着一段框图程序框图程序用

LabVIEW 图形编程语言编写.可以把它理解成传统程序的源代码。框 图程序由端口、节点、.图框和连线构成。其中端口被用来同程序前 面板的控制和显示传递数据.节点被用来实现函数和功能调用.图框 被用来实现结构化程序控制命令.而连线代表程序执行过程中的数据流.定义了框图内的数据流动方向 3、运行检验 检验是否能够完成系统的功能.改变相应参数进行进一步验证.以方便根据实际情况修改设计.从而方便实际器件的设计、调试。4、功能描述 创建一个VI程序模拟温度测量:把创建的温度计程、序 T(hermometerVI1作为一个子程序用在当前新建程序里.先前的温 度计子程序用于采集数据.而当前的程序用于显示温度曲线.并在前 面板上设定测量次数和每次测量间隔的延时;再创建一个新VI程序,进行温度测量,并把结果在波形图表上显示:利用新创建的VI程序.再输入新的字符串;据采集过程中。实时地显示数据;当采集 过程结束后,在图表上画出数据波形.并算出最大值、最小值和平 均值(此处只使用摄氏温度单位):修改TemperatureAnalysis.VI DemoReadVohageVI程序以检测温度是否超出范围.当温度超出上限(High Limit)时,前面板上的LED点亮,并且有一个蜂鸣器发声。5、设计过程 创建一个VI程序模拟温度测量假设传感器输出电压与温度成 正比。例如.当温度为70时,传感器输出电压为0.7V。本程序也

基于单片机的温度数据采集系统实验报告

基于单片机的温度数据采集系统实验报告 班级:电技10—1班 姓名:田波平 学号:1012020108 指导老师:仲老师

题目:基于单片机的温度数据采集系统 一.设计要求 1.被测量温度范围:0~120℃,温度分辨率为0.5℃。 2.被测温度点:2个,每5秒测量一次。 3.显示器要求:通道号2位,温度4位(精度到小数点后一位)。 显示方式为定点显示和轮流显示。 4.键盘要求: (1)定点显示设定;(2)轮流显示设定;(3)其他功能键。 二.设计内容 1.单片机及电源模块设计 单片机可选用AT89S51及其兼容系列,电源模块可以选用7805等稳压组件,本机输入电压范围9-12v。 2.存储器设计 扩展串行I2C存储器AT24C02。 要求: AT24C02的SCK接P3.2 AT24C02的SDA接P3.4 2.传感器及信号转换电路 温度传感器可以选用PTC热敏电阻,信号转换电路将PTC输出阻值转换为0-5V。 3.A/D转换器设计 A/D选用ADC0832。 要求: ADC0832的CS端接P3.5 ADC0832的DI端接P3.6 ADC0832的DO端接P3.7 ADC0832的CLK端接P2.1 4.显示器设计。 6位共阳极LED显示器,段选(a-h)由P0口控制,位选由P2.2-P2.7控制。数码管由2N5401驱动。 5.键盘电路设计。 6个按键,P2.2-P2.7接6个按键,P3.4接公共端,采用动态扫描方式检测键盘。 6.系统软件设计。 系统初始化模块,键盘扫描模块,数据采集模块,标度变换模块、显示模块等。 三.设计报告要求 设计报告应按以下格式书写: (1)封面; (2)设计任务书; (3)目录; (4)正文;

温度检测系统汇总

机电专业课程设计温度检测系统 学生姓名李晓晓 学院中国矿业大学年级专业2011机电专本指导教师孙长青完成日期2012年6月 前言

温度是表征物体冷热程度的物理量,是工业生产和自动控制中最常见的工艺参数之一,生产过程中常常需要对温度进行检测和监控。在传统的温度测控系统设计中,往往采用模拟技术进行设计,这样就不可避免地遇到诸如传感器外围电路复杂及抗干扰能力差等问题;而其中任何一环节处理不当,就会造成整个系统性能的下降。采用数字温度传感器与单片机组成的温度检测系统进行温度检测、数值显示和数据存储,体积减小,精度提高,抗干扰能力强,并可组网进行多点协测,还可以实现实时控制等技术,在现代工业生产中应用越来越广泛。 本设计就采用以51单片机为核心,和单总线数字式温度传感器DS18B20 模拟出一温度控制系统,当温度没有超过预设温度时数码管显示当前温度,此本系统就是一个温度计。当温度超过预设温度时电路中的发光二极管就会闪烁报警,当温度降下时就停止闪烁,此时本系统就是一个温度监控器。以DS18B20 为代表的新型单总线数字式温度传感器集温度测量和A/D转换于一体,直接输出数字量,与单片机接口电路结构简单,广泛使用于距离远、节点分布多的场合,具有较强的推广应用价值。 目录

前言 (1) 1 总体设计方案 (3) 1.1设计的目的及意义 (3) 1.2总体设计思路 (3) 1.3总体设计方案设计 (3) 2 系统的硬件结构设计 (4) 2.1器件的选择 (4) 2.2电路设计及功能 (8) 2.3单片机的内部资源 (9) 2.4芯片DS18B20器件介绍 (10) 3 系统的软件设计 (13) 3.1设计的流程图 (13) 3.2系统部分程序的设计和分析 (14) 结论 (16) 附录Ⅰ程序设计 (17) 附录Ⅱ参考文献 (21) 附录Ⅲ结束语 (22) 附录Ⅳ实物照片 (23) 1 总体方案设计

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图 1.2温度测量及数据采集前面板图

二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数, 是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。 是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。

基于DS18B20的多点温度测量系统设计

一、绪论 1.1 课题来源 温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时它也是一种最基本的环境参数。人民的生活与环境温度息息相关,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,在电力、化工、石油、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对环境温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境,许多电子设备不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。可见,研究温度的测量具有重要的理论意义和推广价值。 随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。 本设计要求系统测量的温度的点数为4个,测量精度为0.5℃,测温范围为-20℃~+80℃。采用液晶显示温度值和路数,显示格式为:温度的符号位,整数部分,小数部分,最后一位显示℃。显示数据每一秒刷新一次。 1.2 课题研究的意义 21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于: (1)掌握数字温度传感器DS18B20的原理、性能、使用特点和方法,利用C51对系统进行编程。

简易数字温度采集系统设计

电子技术课程设计 题目: 简易数字温度采集系统设计 学生姓名 专业 班级 指导教师 成绩 工程技术学院 2015 年12 月

*1、前言 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,电子技术得到了的迅猛发展,数字电路应用广泛,电子技术深入各个领域。通过这一电子技术课程设计来让我们熟悉理论知识与实践相结合的综合训练,从而达到对我们运用能力进行检查和综合素质的培养。 *1.1课程设计要求与目的 1.1.1基本设计要求与原则 本次课程设计的所选题目是简易温度数字采集系统设计。该系统的电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此温度采集系统可以测量得温度范围—55~+125℃并通过一个四位一体的7段数码管显示出来。 整个课程设计以先设计,再仿真,最后进行实物焊接与调试的步骤进行。 基本要求: 1、能够根据设计任务和指标要求,综合运用电子技术课程中所学到的理论知识与实践技能独立完成一个设计课题。 2、根据课题需要选择参考书籍,查阅手册、图表等有关文献资料。要求通过独立思考、深入钻研课程设计中所遇到的问题,培养自己分析、解决问题的能力。 3、进一步熟悉常用电子器件的类型和特性,掌握合理选用的原则。 4、学会电子电路的安装与调试技能,掌握常用仪器设备的正确使用方法。利用“观察、判断、实验、再判断”的基本方法,解决实验中出现的问题。 基本原则: 1,小组团队设计不能从网上下载,自己动手编排电路,流程图,编写程序。 2,电路图必须采用PROTEL软件绘制,用multisim或者proteus软件仿真,并提交程序及结果、课程论文电子版。 1.1.2设计的基本目的

单片机温度采集系统

课程设计 课程设计名称:温度采集装置 班级:数控技术0901 学号: 课程设计时间:2011.12.5—12.11

目录 1 设计任务 (2) 2 确定设计方案 (3) 2.1 温度传感器—AD22100K (3) 2.2 A/D转换器—ADC0809 (4) 2.3 单片机的选择—80C51 (6) 2.4 显示器接口—LED动态显示接口 (8) 3 硬件电路的设计 (10) 3.1 温度传感器与A/D转换器的接口电路 (10) 3.2 A/D转换器与89C51的接口电路 (10) 3.3 89C51与显示器间的接口电路 (11) 3.4 晶振电路和复位电路的设计 (12) 4 软件设计 (13) 4.1温度采集的主程序流程图 (13) 4.2 程序清单 (15) 5 心得体会 (20) 附录 (21) 温度采集装置 1、设计任务

设计一个温度采集系统,要求按1路/s的速度顺序检测8路温度点,测温范围为+20℃~+100℃,测量精度为±1%。要求用5位数码管显示温度,最高位显示通道号,次高位显示“—”,低三位显示温度值。 2、设计方案 2.1 温度传感器—AD22100K AD22100K是有信号调节的单片温度传感器,工作温度范围为-50~+150,信号调节不需要调节电路、缓冲器和线性化电路,简化了系统设计。输出温度与电压和电源电压的乘积(比率测量)成比例。输出电压摆幅为0.25V(对应-50℃)和4.75V(对应150℃),用5V单电源工作。 2.1.1 AD22100K的引脚图如2.1.1 图2.1.1 AD22100K的引脚图 注:1.V电源 4.GND接地 2.U输出 3、5~8 NC不连接

简单多点温度测量系统课程设计

课程设计报告(2010 —2011 年度第2学期) 题目:基于DS18B20的多点温度测量系统 院系: 姓名: 学号: 专业: 指导老师: 2011年5 月22 日

目录 1设计要求…………………………………………………………………………2设计的作用、目的………………………………………………………………3设计的具体实现…………………………………………………………………. 3.1系统概述……………………………………………………………………. 3.2单元电路设计与分析……………………………………………………… 3.3电路的安装与调试…………………………………………………………4心得体会及建议………………………………………………………………… 4.1心得体会…………………………………………………………………… 4.2建议…………………………………………………………………………5附录………………………………………………………………………………6参考文献…………………………………………………………………………

基于DS12B20的多点温度测量系统设计报告 1设计要求 运用DS12B20温度测量芯片实现一个多点温度测量系统,要求如下: (1).测量点为两点。 (2).测量的温度为-40~+40°C (3).温度测量的精度为±0.5°C (4).测量系统的响应时间要小于1S。 (5).温度数据的传输方式采用串行数据传送的方式。 2 设计的作用、目的 通过本设计可以进一步了解熟悉单片机的控制原理以及外设与单片机的数据通信方法,尤其是串行通信方法以及单片机与外设间的接口问题。 本设计旨在提高学生的实际应用系统开发能力,增长学生动手实践经验,激起学生学以致用的兴趣。 3设计的具体实现 3.1系统概述 本系统分为温度采集模块、核心处理模块、控制模块和显示模块。温度采集模块由DS18B20温度测量芯片构成,它负责测量温度后将温度量转化为数字信号,传输到数据处理模块;核心处理模块由AT89S52单片机组成,它负责与温度采集模块进行数据通信、对数据进行操作处理已经对各种外设的响应与控制;控制模块由几个按键组成,实现对测量点的选择以及电路复位的操作;显示模块由一块四位的八段译码显示管和驱动芯片组成,它的作用是显示测量的温度值。 系统模块组成图:

一种多点测温系统的设计

一种多点测温系统的设计 1 温度传感器DS18B20 介绍DALLAS 公司单线数字温度传感器DS18B20 是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而 且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新 概念。DS18B20 支持“一线总线”接口,测量温度范围为-55℃~+125℃,在- 10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12 位的数字值读数方式;可以分别在93.75ms 和750ms 内将温度值转化为9 位和12 位的数字量。每个DS18B20 具有唯一的64 位长序列号,存放于DS18B20 内部ROM 只读存储器中。DS18B20 温度传感器的内部存储器包括1 个高速暂存RAM 和1 个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL 和结 构寄存器。暂存存储器包含了8 个连续字节,前2 字节为测得的温度信息,第 1 个字节为温度的低8 位,第 2 个字节为温度的高8 位。高8 位中,前4 位表示温度的正(全“0”)与负(全“1”);第 3 个字节和第 4 个字节为TH、TL 的易失性 拷贝;第5 个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复 位时被刷新;第6、7、8 个字节用于内部计算;第9 个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1 列 出了温度与温度字节间的对应关系。 2 系统硬件结构系统分为现场温度数据采集和上位监控PC 两部分。图1 为系统的结构图。需要指出的是,下位机可以脱离上位PC 机而独立工作。增加 上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分 采用8051 单片机作为中央处理器,在P1.0 口挂接10 个DS18B20 传感器,对10 个点的温度进行检测。非易失性RAM 用作系统温度采集及运行参数等的缓 冲区。上位PC 机通过RS485 通信接口与现场单片微处理器通信,对系统进行

单片机温度采集与显示

1、课程设计目的 (1)利用单片机及相应温度传感器设计单检测节点或多检测节点数字温度计 (2)精度误差:0.5摄氏度以内;测温范围:10-50摄氏度 (3)LED数码管或LCD直接显示 (4)完成对设计系统测试 2、数字温度计正文 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术,本文主要介绍了一个基于89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行介绍,该系统可以方便的实现温度采集和显示,并可根据需要任意设定上下限报警温度,使用起来相当方便,适合于我们日常生活和嵌入其它系统中,作为其AT89C52结合最简温度检测系统,该系统恶劣环境下进行现场温度测量,有广泛的应用前景。本文将介绍一种基于单片机往制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 关键词:单片机,数字控制,温度计,DSIBB20, AT89C52 2.1引言 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技构中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域己经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段 ①传统的分立式温度传感器 ②模拟集成温度传感器 ③智能温度传感器 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,AT89C52单片机为控制器构成的数字温度测量装置的工作

多点温度检测系统设计

摘要 环境温度对工业、农业、商业与人们得日常生活都有很大得影响,而温度得测量也就成为人们生产生活中一项必不可少得工作。随着单片机技术得不断发展,单片机在日用电子产品中得应用越来越广泛,温度传感器DS18B20具有线性优良、性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度得测量与控制。 本设计所介绍得数字温度计使用单片机AT89s52单片机,测温传感器使用DS18B20,用4位共阴极LED数码管以动态方式实现温度显示,分时轮流通电,从而大大简化了硬件线路,同时,采用串口通信方式可大大简化硬件电路与软件程序得设计,节省了I/O口。DS18B20数字温度传感器就是单总线器件与51单片机组成得测温系统,具有线路简单、体积小等特点,而且在一根通信线上,可以挂接多个DS18B20,因此可以构成多点温度测控系统。 关键词:单片机;多点检测;串口通信

Abstract Environmental temperature to industry, agriculture, merce, and people's daily life has a lot of influence, and the measurement of the temperature will bee an indispensable people production and life of the work、 Along with the development of the single chip microputer technology, microputer in the daily electronic products is more and more extensive application, the temperature sensor DS18B20 have good linear, stable performance, high sensitivity, anti-interference ability strong, easy to use, widely used in the refrigerator, air conditioner, granaries, etc in daily life temperature measurement and control、 The design of the digital thermometer introduced use single chip puter 89 s52 microcontroller, temperature sensor DS18B20 use, with a total of 4 cathode tube LED digital display to realize dynamic way temperature, in turn time-sharing electricity, which greatly simplified the hardware circuit, and at the same time, the serial interface munication mode can greatly simplified the hardware circuit and software program design, save the I/O port、 Digital temperature sensor DS18B20 is the single bus devices and 51 SCM position, temperature measurement system, with simple line, little volume features, but at a munications line, can be articulated multiple DS18B20, so can form multi-point temperature measurement and control system、 Key Words:Single Chip Microputer; Multi-point detection; Serial mun- -ication

温度数据采集系统

第三章 系统硬件设计温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器 DS18B20,数据的发送和接收采用无线数据收 发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由 DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个 DS18B20,很方便。具有以下特点:(1)具有独特的 1-Wire 接口,只需要一个端口引脚就可以进行通信;(2)具备多节点能力,能够简化分布式温度检测应用中的设计;(3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在 3~5.5V ;(5)在待机状态下可以不消耗电源电量;(6)测量温度范围在-55~+125℃;(7)在-10~+85℃时测量精度在±0.5℃;(8)可以用程序设定 9~12 位分辨率;(9)用户可根据需要定义温度的上下限报警设置。DS18B203 脚封装的管脚排列图如图 3.1.1 所示。、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

温湿度采集系统设计

目录 第1章设计意义及要求 (1) 1.1 设计意义 (1) 1.2 设计要求 (1) 第2章硬件设计 (2) 2.1 AT89S52芯片介绍 (2) 2.2 液晶显示器LCD1602 (3) 2.2.1 液晶显示原理 (3) 2.2.2 液晶显示器分类 (3) 2.2.3 显示原理 (3) 2.2.4 LCD1602的基本参数及引脚功能 (4) 2.3 温湿度模块DHT11介绍 (6) 2.3.1 DHT11概述 (6) 2.3.2 DHT11传感特性说明 (7) 2.3.3 DHT11封装信息 (8) 2.3.4 串行接口(单线双向) (8) 第3章设计实现 (11) 3.1 设计框图及流程 (11) 3.2 设计结果及分析 (11) 第4章设计总结 (13) 参考文献 (14) 附录 (15)

第1章设计意义及要求 1.1 设计意义 最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。在实时运作和自动控制的单片机应用到系统中,单片机如今是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。 现代社会越来越多的场所会涉及到温度与湿度并将其显示。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,例如:冬天温度为18至25℃,湿度为30%至80%;夏天温度为23至28℃,湿度为30%至60%。在此范围内感到舒适的人占95%以上。在装有空调的室内,室温为19至24℃,湿度为40%至50%时,人会感到最舒适。如果考虑到温、湿度对人思维活动的影响,最适宜的室温度应是工作效率高。18℃,湿度应是40%至60%,此时,人的精神状态好,思维最敏捷。所以,本课程设计就是通过单片机驱动LCD1602,液晶显示温湿度,通过此设计,可以发现本设计有一定的扩展性,而且可以作为其他有关设计的基础。如何高效、稳定地对数据(包括温度、湿度光线、压力等项目)进行实时采集对于现代的企业、工厂、研究所等对数据精度要求较高的单位具有非常重要的意义。 1.2 设计要求 本系统设计采用温度和湿度作为采集对象,是以单片机为核心的温度、湿度采集、数字显示系统,用液晶显示出当前温度、湿度的信息。以此了解AT89S52芯片为核心外接温度传感器和湿度传感器模块在液晶显示屏上显示当前的温度和湿度的过程。

单片机温度采集程序

单片机温度采集程序 用一片DS18B20 构成测温系统,测量的温度精度达到0.1 度,测量的温度的范围在-20 度到+100 度之间,用8 位数码管显示出来。 由于DS18B20 是在一根I/O 线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20 有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。 DS18B20 的读时序 对于DS18B20 的读时序分为读0 时序和读1 时序两个过程。 对于DS18B20 的读时隙是从主机把单总线拉低之后,在15 秒之内就得释放单总线,以让DS18B20 把数据传输到单总线上。DS18B20 在完成一个读时序过程,至少需要60us 才能完成。 对于DS18B20 的写时序仍然分为写0 时序和写 1 时序两个过程。 对于DS18B20 写0 时序和写1 时序的要求不同,当要写0 时序时,单总线要被拉低至少60us ,保证DS18B20 能够在15us 到45us 之间能够正确地采样IO 总线上的“0 ”电平,当要写1 时

序时,单总线被拉低之后,在15us 之内就得释放单总线。 本程序实现温度的采集并且实时在数码管上显示出来。 具体程序如下: /*----------------------------------------------- 名称:18B20温度传感器 日期:2009.5 修改:无 内容:18B20单线温度检测的应用样例程序,请将18b20插紧, 然后在数码管可以显示XX.XC,C表示摄氏度,如显示25.3C表示当前温度25.3度 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #include #include #define uchar unsigned char #define uint unsigned int; /******************************************************************/ /* 定义端口*/ /******************************************************************/ sbit seg1=P2^0; sbit seg2=P2^1; sbit seg3=P2^2; sbit DQ=P1^3;//ds18b20 端口 sfr dataled=0x80;//显示数据端口 /******************************************************************/ /* 全局变量*/ /******************************************************************/ uint temp; uchar flag_get,count,num,minute,second; uchar code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //7段数码管段码表共阳 uchar str[6]; /******************************************************************/ /* 函数声明*/ /******************************************************************/ void delay1(uchar MS); unsigned int ReadTemperature(void); void Init_DS18B20(void); unsigned char ReadOneChar(void);

相关文档
最新文档