高等代数与解析几何第七章(1-3习题) 线性变换与相似矩阵答案

高等代数与解析几何第七章(1-3习题) 线性变换与相似矩阵答案
高等代数与解析几何第七章(1-3习题) 线性变换与相似矩阵答案

第七章线性变换与相似矩阵

习题7.1

习题7.1.1判别下列变换是否线性变换?

(1)设是线性空间中的一个固定向量,

(Ⅰ),,

解:当时,显然是的线性变换;

当时,有,,则

,即此时不是的线性变换。

(Ⅱ),;

解:当时,显然是的线性变换;

当时,有,,则

,即此时不是的线性变换。

(2)在中,

(Ⅰ),

解:不是的线性变换。因对于,有,

,所以。

(Ⅱ);

解:是的线性变换。设,其中,,

则有

(3)在中,

(Ⅰ),

解:是的线性变换:设,则

,。

(Ⅱ),其中是中的固定数;

解:是的线性变换:设,则

,。

(4)把复数域看作复数域上的线性空间,,其中是的共轭复数;

解:不是线性变换。因为取,时,有,

,即。

(5)在中,设与是其中的两个固定的矩阵,,

解:是的线性变换。对,,有

习题7.1.2在中,取直角坐标系,以表示空间绕轴由

轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转900的变换,以表示空间绕轴由轴向方向旋转900的

变换。证明(表示恒等变换),

并说明是否成立。

证明:在中任取一个向量,则根据,及的定义可

知:,,;,

,;,,

,即,故。

因为,

,所以。

因为,

,所以。

因为,

,所以。

习题7.1.3在中,,,证明。证明:在中任取一多项式,有

。所以。

习题7.1.4设,是上的线性变换。若,证明

证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对

也成立。因有

,即等式对也成立,从而对任意自然数都成立。习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且

证明:(1)设都是的逆变换,则有,。进而。即的逆变换唯一。

(2)因,都是上的可逆线性变换,则有

,同理有

由定义知是可逆线性变换,为逆变换,有唯一性得

习题7.1.6设是上的线性变换,向量,且,,,

都不是零向量,但。证明,,,

线性无关。

证明:设,依次用可得

,得,而,

故;同理有:,得,

即得;依次类推可得,即得,进而得

有定义知,,,线性无关。

习题7.1.7设是上的线性变换,证明是可逆线性变换的充要条件为既是单射线性变换又是满射线性变换,即是一一变换。

证明:已知是可逆线性变换,即存在。若,则两端用作用即得,因此是单射线性变换。

若任取,则存在,使得,即是满射线性变换。

已知既是单射线性变换又是满射线性变换,即双射。现定

义新的变换:,定有,且有,规定,有

,同时有,即有。由定义知是可逆线性变换。

习题7.1.8设是上的线性变换,证明(1)是单射线性变换的充

要条件为;(2)是单射线性变换的充要条件为把线性无关的向量组变为线性无关的向量组。

证明:(1)已知是单射线性变换,对,则有

,由单射得,即。

已知,若,则有,得

,即得,故是单射。

(2)已知是单射线性变换。设线性无关,现证

也线性无关。令,整理有,而是单射,有,

已知线性无关,所以,故

也线性无关。

已知把线性无关的向量组变为线性无关的向量组。若

,则有,并一定有。否则若,则说明向量线性无关,而表示把线性无关的向量组变为线性相关的向量组,与条件矛盾。而由可得,即是单射线性变换。

习题7.1.9设是中全体可逆线性变换所成的子集,证明

关于线性变换的乘法构成一个群。(超范围略)

习题7.1.10设,是上的线性变换,且证明(1)若,则;

(2)若,则。

证明:(1)因为,。所以

从而或。又因为

故。

(2)因为,,所以

习题7.1.11设与分别是数域上的维与维线性空间,

是的一个有序基,对于中任意个向量,证明存在唯一的线性映射,使,。

证明:先证明存在性。对任意的,有唯一的线性表达式

我们定义

显然有,。

现验证为到的一个线性映射。

(1)对任意的向量,因为

,由定义得

(2)对任意的,因为,由定义得

。所以为到的一个线性映射。

再证唯一性:若另有到的一个线性映射,也使得

,。

则对任意向量,一定有

由在中的任意性,可得。

习题7.1.12设与分别是数域上的维与维线性空间,

是线性映射。证明是的子空间,是的子空间。又若有限,证明。这时称为的零度,称为的秩。

证明:(1)先证与分别为与的子空间,

对,,有,

所以,故为的子空间;同理,对,

,则,使,,所以

所以为的子空间.

(2)再证

因有限,不妨设,,在中取一个基

,再把它扩充为的一个基,则

是像空间的一个基.

事实上,对,存在,使得。

设,则有

即中的任意向量都可由线性表示。

现证向量组线性无关:

设,有,即

,所以向量可由向量组

线性表示,进而有

,整理有

又因线性无关,所以必有,因此

线性无关,即为的一个基,故

习题7.1.13证明关于定义7.1.12中所定义的线性映射的加法与数量乘法构成上的一个线性空间。

证明:现证明定义7.1.12中所定义的线性映射的加法与数量乘法都是从到的线性映射。

事实上,对,,有

故为到的线性映射。同理,对,,有

故为到的线性映射。

另外线性映射的加法与数量乘法显然满足:

(1)结合律:;

(2)交换律: ;

(3)存在零线性映射,对,有;

(4)对,有负线性映射,使得;

(5);(6);(7);

(8)。其中,

所以关于定义7.1.12中所定义的线性映射的加法与数量乘法构成上的一个线性空间。

习题7.1.14证明:。

证明:设为维线性空间,为维线性空间,即,

。取定的一组基和的一组基。令

为到的如下映射:,其中为在基

与基下的矩阵。这样定义的是到的同构映射。

事实上,(1)若,,且,则有

,。由于,对每一个都有,故有,即是单射。

(2),令

则存在唯一的线性映射使得,并且

由此可见,是满射。

(3)对,,有,,其中

即有,

,所以

,故有,所以是

到的同构映射。进而有

习题7.2

习题7.2.1求下列线性变换在所指定的一个基下的矩阵:

(1)的线性变换,,其中

为固定矩阵。求,在这个基下的矩阵;

(2)设是线性空间的线性变换,求在基

下的矩阵;

(3)6个函数:,,,

,,

的所有实系数线性组合构成实数域上一个6维线性空间。求微分变换在基下的矩阵。

解:(1)由,的定义直接可得:

。所以在这个基下的矩阵为

所以在这个基下的矩阵为

(2)由直接可得:

………………………

………………………

所以在基下的矩阵为:

(3)由微分运算性质直接可得:

所以微分变换在基下的矩阵为:

习题7.2.2设是的一个基,

,,,。

已知线性无关。证明:

(1)存在唯一的线性变换,使,;

(2)(1)中的在基下的矩阵为;

(3)(1)中的在基下的矩阵为。

证明:(1)因为线性无关,所以也是的一个基。故对的一个基及个向量,定存在唯一的线性变换,使,。

(2)由已知条件有

,,

其中与都是的基,所以可逆,且有

,进而有。再由(1)得

,所以在基下的矩阵为。

(3)类似有

,所以在基下的矩阵为。

习题7.2.3在中,定义线性变换为

,,,

其中,,。

(1)求在基下的矩阵;

(2)求在基下的矩阵。

解:(1)由定义知

,,所以有

故在基下的矩阵为:。

(2)类似有

故在基下的矩阵为:。

习题7.2.4在中,线性变换在基,,下的矩阵是。求在基下的矩阵。

解:已知,

则有

即在基下的矩阵为:。

习题7.2.5设数域上3维线性空间的线性变换在基下的矩阵为

(1)求在基下的矩阵;

(2)求在基下的矩阵;

(3)求在基下的矩阵。

解:(1)由已知可得

所以在基下的矩阵为:。

(2)由已知可得

所以在基下的矩阵为:。

(3)由已知可得

所以在基下的矩阵为:

习题7.2.6在维线性空间中,设有线性变换与向量使

,但。证明:在中存在一个基,使在该基下的矩阵为

证明:由习题7.1.6知:维线性空间的向量组,,,

线性无关,且有个向量,即构成的一组基,而线性变

换作用此基有:,

……………

故在基,,,下的矩阵为:

习题7.2.7设是数域上维线性空间的全体线性变换组成的数域上的线性空间,试求,并找出中的一个基。

求证:任取的一组基,令为到的映射:

,其中。由引理7.2.6及定理7.2.7

知为同构映射,即。所以它们的维数相同,而

,故。

现取,,使得

,即,。已知,是

的一组基,故,为的一组基。

习题7.2.8证明:与维线性空间的全体线性变换都可交换的线性变换是数乘变换。

证明:在某组确定的基下,数域上的维线性空间的线性变换与数域上的阶方阵间建立了一个双射,因为与一切阶方阵可交换

的方阵为数量矩阵,所以与一切线性变换可交换的线性变换必是数乘变换。

习题7.2.9设是维线性空间的一个线性变换,如果在的任意一个基下的矩阵都相同,则是数乘变换。

证明:设在基下的矩阵为,只要证明为数量

矩阵即可。设为任意可逆矩阵,令,则

也是的一组基,且在这组基下的矩阵为,依题意有。特别地,当取时,计算可得

再取,由可得,即为数量矩阵,所以是数乘变换。

习题7.2.10证明:

相似,其中是的一个排列。

证明:用依次表示这两个矩阵,取一个维线性空间及其一组基,对于矩阵,存在的线性变换,使得

由此可得

因为与是在不同基下的矩阵,所以与相似。

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷 a ?? 的子空间.

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共2 页第2 页

,,是的值域与核都是a b b a a ? ????? ,a b ≠上线性空间V 上的线性变换,多项式

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'6662α--=(-. 所以正交阵1 2612 10210 2 2T ?-????? ?=??????????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 01 0011 0n E D E -?? ?? ? ??? ? ?== ????? ?????? ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1,, ,,n n D D D D E -=在P 上线性无关.

且21121n n n n A a E a D a D a D ---=++++,令112(),n n f x a a x a x -=++有 ()A f D =. B M ?∈,必P ?上1n -次多项式()g x ,使()B g D =,反之亦真. ()()()()AB f D g D g D f D BA ∴=== (3)由上可知:2 1,,, ,n E D D D -是M 的一组基,且dim M n =. 四.解:A 的行列式因子为3 3()(2)D λλ=+, 21()()1D D λλ==. 所以,不变因子为3 3()(2)d λλ=+, 21()()1d d λλ==,初等因子为3 (2)λ+, 因而A 的Jordan 标准形为21212J -?? ??=-?? ??-?? 五.证:"":()()() ()()()0f x g x q x f A g A q A ?=∴== ""?:()0,()0f A g A == 设()()()()f x g x q x r x =+, ()0r x =或(())(())r x g x ?

一、高等代数与解析几何之间的关系

利用几何直观理解高等代数中抽象的定义和定理 一、高等代数与解析几何的关系 代数为几何的发展提供了研究方法,几何为代数提供直观背景。 解析几何中的很多概念、方法都是应用线性代数的知识、定义来刻画、描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。 “如果代数与几何各自分开发展,那它的进步十分缓慢,而且应用范围也很有限,但若两者互相结合而共同发展,则就会相互加强,并以快速的步伐向着完善化的方向猛进。” --------拉格朗日 二、目前将高等代数与解析几何合并开课的大学 中国科大: 陈发来,陈效群,李思敏,线性代数与解析几何,高等教育出版社,北京:2011. 南开大学: 孟道骥,高等代数与解析几何(上下册)(第二版),科学出版社,北京:2007. 华东师大: 陈志杰,高等代数与解析几何 (上下册) (第2版),高等教育出版社,北京:2008. 华中师大: 樊恽,郑延履,线性代数与几何引论,科学出版社,北京:2004. 同济大学: 高等代数与解析几何同济大学应用数学系高等教育出版社 (2005-05出版) 兰州大学,广西大学,西南科技大学,成都理工大学 三、高等代数的特点 1、逻辑推理的严密性; 2、研究方法的公理性; 3、代数系统的结构性。 四、高等代数一些概念的引入 对于刚上大学的一年级新生, 大多数难以适应高等代数的抽象概念的引入、推导 和应用。通过一些实例,特别是几何实例,引入高等代数的相关概念,一方面可以让学生了解抽象概念的来龙去脉,另一方面可以让学生找到理解抽象概念的思维立足点。

高等代数多项式习题解答

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9731929269 791437134373 132131232223232 ----+----+----+-x x x x x x x x x x x x x x 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 1 752 5 422225200222223232 342342-++--+-+--+---+-+-+++-x x x x x x x x x x x x x x x x x x x x x x 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 m x m q x p m m x m x m q x p mx x mx x q px x x mx x --++++--+++--++++-+) ()1()1(01 222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.

本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 )1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--0 10)2(22m p q m p m ,即???=+=,1,0p q m 或???==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 )1)((2224++++=++mx x q ax x q px x .)()1()(234q x mq a x q ma x a m x ++++++++= 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r . 1);3)(,852)(35+=--=x x g x x x x f 解:运用综合除法可得 327 1093913623271170 83918605023--------- 商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r

高等代数习题

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、(){ }321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==n i i i x 1αβ,那么 ∑== n i i x 1 2 β。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()() ()()()n n n x g x f x g x f ,,=; ②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=?=; ③()()()()()()()x g x g x f x g x f ,,+=; ④若()()()()()()()()1,1,=-+?=x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

高等代数试题附答案

高等代数试题附答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 4232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( )

高等代数与解析几何之间的联系

高等代数与解析几何之间的关联性 数学0803班康若颖20081692 内容摘要:在我们的学习过程中,可以发现高等代数和解析几何中有很多相似之处。确切的说是高等代数中 的一些理论是从解析几何中发展和改进而来的。比如说通过解析几何中多元一次方程组的解法高等代数提出了行列式,使行列式有了几何意义,同时是行列式直观化。也是通过行列式,多元方程组的解答更便捷、快速。又比如说欧式空间的提出。我们都知道几何空间中的向量以及他的一些性质。在高等代数中先后提出来线性空间、欧式空间。线性空间将向量做了推广,使向量抽象化。欧式空间在线性空间的基础上提出内积,使几何空间中的向量的一些度量性质推广化,等等,这样的例子很多很多。总体来说高等代数与解析几何是相互联系、相互促进的。可以更确切一点的说是解析几何是高等代数的基石,而高等代数是解析几何的推广和并使之抽象化。 关键词:行列式、正交变换、向量、线性方程组、二次型和二次曲线、二次曲面、欧式空间 导言:从代数与几何的发展来看,高等代数与解析几何从来就是相互联系、相互促进的。它们的关系可以归 纳为“代数为几何提供研究方法,几何为代数提供直观背景”。通过对高等代数和解析几何的学习和研究中,我们可以看到解析几何和高等代数中有着紧密的联系。运用解析几何来分析高等代数更直观,同时,高等代数也是解析几何的一个发展、拓宽。比如说欧式空间。运用高等代数的解题方法来解答解析几何中的一些问题更加简便,快捷。比如说运用行列式的计算来解答多元方程组问题。 内容: 解析几何中以代数为工具,解析几何中的很多概念、方法都是应用线性代数的知识来定义来刻画、 描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。从概念的内涵的外延来看,两门课之间存在着特殊与一般的关系,解析几何的一、二、三维空间是线性代数n 维空间的特例,而线性空间的大量理论又是来源于一、二、三维几何空间的推广(抽象)。平面方程及平面间的位置关系与线性方程组的理论,二次曲线,二次曲面的化简与代数中的二次型理论,几何与代数中欧式空间的理论等等。 (一)线性代数中一些概念的几何直观解释: 1.关于行列式的几何背景 设α=(321,,a a a ),β=(321,,b b b ),γ=(321,,c c c );两个向量的向量积可以用行列式写为 321 32 1b b b a a a k j i =?βα 它在几何上表示的是与α,β向量都垂直且成右手系的向量。 三个向量的混合积可以用行列式表示为图1 平行六面体 (γβα,,)=(βα?)γ?=321 32 132 1c c c b b b a a a 此行列式的几何解释是它的绝对值等于以它们3个向量为相邻棱所作的平行六面体的体积(如图1)。特别地,当(α,β,γ)=0时,由于平行六面体的体积为零,所以共面。γβα,,0321321 321 ?=c c c b b b a a a 图1 平行六面体

高等代数习题答案.doc

高等代数(北大第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章—矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第二部分,其他请搜索,谢谢!

12.设 A 为一个 n 级实对称矩阵,且 A 0 ,证明:必存在实 n 维向量 X 0 ,使 X AX 0 。 证 因为 A 0,于是 A 0 ,所以 rank A n ,且 A 不是正定矩阵。故必存在非 退化线性替换 X C 1Y 使 XAX YC 1 ACY Y BY y 12 y 22 y p 2 y p 2 1 y p 2 2 y n 2 , 且在规范形中必含带负号的平方项。于是只要在 Z C 1Y 中,令 y y 2 y p 1 0, y p 1 y p 2 y n 1, 则可得一线性方程组 c 11 x 1 c 12 x 2 c 1n x n c p 1 x 1 c p 2 x 2 c pn x n , c p 1,1 x 1 c p 1, 2 x 2 c p 1,n x n 1 c n1 x 1 c n 2 x 2 c nn x n 1 由于 C 0 ,故可得唯一组非零解 X s x 1s , x 2s , , x ns 使 X s AX s 0 0 0 1 1 1 n p 0 , 即证存在 X 0,使 X AX 0 。 13 .如果 A, B 都是 n 阶正定矩阵,证明: A B 也是正定矩阵。 证 因为 A, B 为正定矩阵,所以 X AX , X BX 为正定二次型,且 X AX 0 , X BX 0 , 因此 X A B X X AX X BX 0 , 于是 X A B X 必为正定二次型,从而 A B 为正定矩阵。 14 .证明:二次型 f x 1 , x 2 , , x n 是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数 p 秩 r ,则 p r 。即 f x 1 , x 2 , , x n y 2 y 2 y 2 y 2 y 2 , 1 2 p p 1 r 若令

《高等代数》试题库

《高等代数》试题库 一、选择题 1.在里能整除任意多项式的多项式是()。 .零多项式.零次多项式.本原多项式.不可约多项式 2.设是的一个因式,则()。 .1 .2 .3 .4 3.以下命题不正确的是()。 . 若;.集合是数域; .若没有重因式; .设重因式,则重因式 4.整系数多项式在不可约是在上不可约的( ) 条件。 . 充分 . 充分必要 .必要.既不充分也不必要 5.下列对于多项式的结论不正确的是()。 .如果,那么 .如果,那么 .如果,那么,有 .如果,那么 6.对于“命题甲:将级行列式的主对角线上元素反号, 则行列式变为;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。 .甲成立, 乙不成立;. 甲不成立, 乙成立;.甲, 乙均成立;.甲, 乙均不成立 7.下面论述中, 错误的是( ) 。 . 奇数次实系数多项式必有实根; . 代数基本定理适用于复数域; .任一数域包含;.在中, 8.设,为的代数余子式, 则=( ) 。 . . . . 9.行列式中,元素的代数余子式是()。 .... 10.以下乘积中()是阶行列式中取负号的项。 .; .;.;. 11. 以下乘积中()是4阶行列式中取负号的项。 .; .;.; . 12. 设阶矩阵,则正确的为()。 . . . . 13. 设为阶方阵,为按列划分的三个子块,则下列行列式中与等值的是() . . . . 14. 设为四阶行列式,且,则() . . . . 15. 设为阶方阵,为非零常数,则() . . . . 16.设,为数域上的阶方阵,下列等式成立的是()。 .;. ;

.; . 17. 设为阶方阵的伴随矩阵且可逆,则结论正确的是() . . . . 18.如果,那么矩阵的行列式应该有()。 .; .;.; . 19.设, 为级方阵, , 则“命题甲:;命题乙:”中正确的是( ) 。 . 甲成立, 乙不成立;. 甲不成立, 乙成立;.甲, 乙均成立;.甲, 乙均不成立 20.设为阶方阵的伴随矩阵,则()。 . . . . 21.若矩阵,满足,则()。 .或;.且;.且;.以上结论都不正确 22.如果矩阵的秩等于,则()。 .至多有一个阶子式不为零; .所有阶子式都不为零;.所有阶子式全为零,而至少有一个阶子式不为零;.所有低于阶子式都不为零 23.设阶矩阵可逆,是矩阵的伴随矩阵,则结论正确的是()。 .;.;.;. 24. 设为阶方阵的伴随矩阵,则=() . . . . 25.任级矩阵与-, 下述判断成立的是( )。 . ; .与同解; .若可逆, 则;.反对称, -反对称 26.如果矩阵,则() . 至多有一个阶子式不为零;.所有阶子式都不为零.所有阶子式全为零,而至少有一个阶子式不为零;.所有低于阶子式都不为零 27. 设方阵,满足,则的行列式应该有()。 . . . . 28. 是阶矩阵,是非零常数,则 ( )。 . ; . ;. . 29. 设、为阶方阵,则有(). .,可逆,则可逆 .,不可逆,则不可逆 .可逆,不可逆,则不可逆.可逆,不可逆,则不可逆 30. 设为数域上的阶方阵,满足,则下列矩阵哪个可逆()。 . . . 31. 为阶方阵,,且,则()。 .; .;.;. 32. ,,是同阶方阵,且,则必有()。 . ; . ;.. 33. 设为3阶方阵,且,则()。 .;.;.;. 34. 设为阶方阵,,且,则(). . .或. . 35. 设矩阵,则秩=()。 .1 .2 .3 .4

《高等代数》(上)题库

《高等代数》(上)题库 第一章多项式 填空题 (1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数 是。 (1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或 p(x)|g(x)。 (1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。 (1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b 。 (1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。 (1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。 (1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。 (1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为 f(x)= 。 (1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根 是。 (1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。 (1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。 (1.3)12、如果f(x)|g(x),g(x)|h(x),则。 (1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。 (1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。 (1.3)15、若f(x)|g(x),f(x)| h(x),则。 (1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。 (1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。 (1.7)19、α是f(x)的根的充分必要条件是。 (1.7)20、f(x)没有重根的充分必要条件是。 答案 1、-x+6 2、不可约 3、互素 4、a=0,b=1 5、k=3 6、a=3,b=-7 7、k=±2

高等代数 第四章 线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则

高等代数与解析几何教学大纲

附件1 高等代数与解析几何教学大纲 课程编号: 课程英文名:Advanced Algebra and Analytic Geometry 课程性质:学科基础课 课程类别:必修课 先修课程:高中数学 学分:4+4 总学时数:72+72 周学时数:4+4 适用专业:统计学 适用学生类别:内招生 开课单位:信息科学技术学院数学系 一、教学目标及教学要求 1.本课程是统计学专业的一门重要基础课。它不仅是学习后继课程及在各个学科领域进行理论研究和实际应用的必要基础,同时还为培养学生的独立工作能力提供必要的训练。学生学好这门课程的基本内容和方法,对今后的提高和发展有着深远的影响。 2.通过本课程的学习,要使学生了解高等代数与解析几何的概貌、各部分内容的结构和知识的内在联系;学会代数与几何方法,培养学生抽象思维能力、逻辑推理能力、想象能力、运算能力和综合应用能力。 3.要求学生熟练掌握本课程的基本概念、基本理论、基本运算及方法。通过课堂教学及进行大量的习题训练等各个教学环节,使得学生做到概念清晰、推理严密、运算准确,并且学会应用这些基本理论及方法去处理实际问题。 二、本课程的重点和难点 (略。由课任教师自行掌握) 三、主要实践性教学环节及要求

精讲、细读、自学相结合方法,加强课内外训练为手段。 四、教材与主要参考文献 教材:《高等代数与解析几何》(上、下)(第二版),孟道骥编著,科学出版社,2004年。 参考书: 1.《高等代数与解析几何》,陈志杰编著,高等教育出版社, 2000年; 2.《数论基础》,张君达主编,北京科学技术出版社,2002年。 五、考核形式与成绩计算 考核形式:闭卷考试。 成绩计算:平时成绩(包括平时作业、小测验、考勤等)占30%, 期末考试占70%。 六、基本教学内容 第二学期 第一周—第二周:(8课时) 第一章:向量代数与解析几何基础 1.代数与几何发展概述。 2. 向量的线性运算及几何意义:定义与性质、向量的共线、共面与线 性关系 3. 坐标系:标架、向量和点的坐标、n维向量空间。 4. 向量的线性关系与线性方程组。 5. 三维空间中向量的乘积运算:内积、外积、混合积、三重外积。 6. 方程及几何意义: (1)二元方程及几何意义:平面曲线的表示(非参数式、极坐标、 参数式、向量式); (2)三元方程及几何意义:直线与平面方程、曲线与曲面方程(非 参数式、参数式、向量式)。 第三周—第五周:(12课时)

高等代数(北大版)第7章习题参考答案

第七章 线性变换 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ; 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高等代数与解析几何同济答案

高等代数与解析几何同济答案 【篇一:大学所有课程课后答案】 资料打开方法:按住 ctrl键,在你需要的资料上用鼠标左键单击 资料搜索方法:ctrl+f 输入关键词查找你要的资料 【数学】 o o o o o o o o o o o o o o o o o

习题答案 o o o o o o o o o o o o o o o o o o o o 【计算机/网络/信息】 o

o o o 【经济/金融/营销/管理/电子商务】 o o o o o o o o o o o o 【 o o o o o

【篇二:各门课程课后答案】 式]《会计学原理》同步练习题答案 [word格式]《成本会计》习题及答案(自学推荐,23页) [word格式]《成本会计》配套习题集参考答案 [word格式]《实用成本会计》习题答案 [word格式]《会计电算化》教材习题答案(09年) [jpg格式]会计从业《基础会计》课后答案 [word格式]《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先) [word格式]《宏观经济学》习题答案(第七版,多恩布什) [word格式]《国际贸易》课后习题答案(海闻 p.林德特王新奎) [pdf格式]《西方经济学》习题答案(第三版,高鸿业)可直接打印 [word格式]《金融工程》课后题答案(郑振龙版) [word格式]《宏观经济学》课后答案(布兰查德版) [jpg格式]《投资学》课后习题答案(英文版,牛逼版) [pdf格式]《投资学》课后习题答案(博迪,第四版) [word格式]《微观经济学》课后答案(高鸿业版) [word格式]《公司理财》课后答案(英文版,第六版) [word格式]《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版)

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

高等代数 线性变换自测题

线性变换自测题 一、填空题(每小题3分,共18分) 1.σ是22?F 上的线性变换,若??? ? ??=100 71 )(A σ,则=-)3(A σ . 2.σ:22R R →,)0,2(),(y x y x +-=σ;τ:22R R →,) ,3(),(y x y y x + -=τ, 则=+),)((y x τσ .=),)((y x τσ .=-),)(2(y x σ . 3.设???? ? ?=2231 A ,则向量???? ??11是A 的属于特征值 的特征向量. 4.若???? ? ??--=10 0001 011 A 与???? ? ? ?--10101 01k k B 相似,则k = . 5.设三阶方阵A 的特征多项式为322)(2 3 +--=λλλλf ,则=||A . 6.n 阶方阵A 满足A A =2,则A 的特征值为 . 二、判断说明题(每小题5分,共20分) 1.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A . 2.已知1 -=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特 征向量与P 有关. 3.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关. 4.α为V 上的非零向量,σ为V 上的线性变换,则} )(|{)(1 αησηασ==-是 V 的子空间. 三、计算题(每小题14分,共42分) 1.设??? ? ? ? ?----=a A 3 3242 111 与??? ? ? ??=b B 0 0020 002 相似. (1)求b a ,的值; (2)求可逆矩阵,使B AP P =-1.

相关文档
最新文档