实验4 氨基酸类物质的荧光光谱分析

实验4 氨基酸类物质的荧光光谱分析
实验4 氨基酸类物质的荧光光谱分析

氨基酸类物质的荧光光谱分析

【摘要】

荧光物质吸收特定频率辐射能量后会产生荧光,不同荧光物质的最大吸收波长、最大激发波长以及荧光谱图不同,以此可以鉴定未知物质。荧光还与物质浓度在一定范围内有线性关系,可以通过测定未知浓度的已知物荧光吸收强度来测定浓度。

【实验目的】

1、熟悉荧光分析法的基本原理;

2、了解RF–5301 型荧光分光光度计的构造、原理,掌握荧光分析法的基本操作;

3、掌握荧光分析技术应用于定量分析的原理及方法。

【基本原理】

原理概述:利用荧光物质分子在吸收特定频率辐射能量后,由基态跃迁至激发态的任一振动能级,在溶液中以热的形式损失部分能量后回到第一电子激发态的最低振动能级,再以辐射形式去活化跃迁到电

子基态的任一振动能级,便产生荧光。

荧光的产生:荧光物质分子在吸收特定频率辐射能量后,由基态跃迁至第一电子激发态(或更高激发态)的任一振动能级,在溶液中这种激发态分子与溶剂分子发生碰撞,以热的形式损失部分能量后,

而回到第一电子激发态的最低振动能级(无辐射跃迁)。然后再以辐射形式去活化跃迁到电子

基态的任一振动能级,便产生荧光。能产生强荧光的物质分子,一般都具有大的共轭π 键结构

或具有刚性平面结构等特征。

发射光谱与吸收光谱:

荧光分析法的特点:

优点:灵敏度高、选择性好、工作曲线线性范围宽,能提供激发光谱、发射光谱、发光强度、发光寿命、量 子产率、荧光偏振等诸多信息;

缺点:由于能够产生强荧光的物质相对较少,荧光分析法的应用不太广泛;

改进:对于没有强荧光或没有荧光的物质的测定可设计相应的反应使其生成具有荧光特性的配合物进行测定。

氨基酸:含有氨基和羧基的一类有机化合物,是生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质。色氨酸(Try)、酪氨酸(Tyr)和苯丙氨酸(Phe)是天然氨基酸中仅有能发

射荧光的组分,可以用荧光法测定。

【仪器与试剂】

1、仪器:F-4600 型荧光分光光度计,10 mL 带玻璃塞的比色管10 只,移液管

图1荧光光谱仪结构示意图

2、试剂:标准溶液a:4×10-4mg/mL的酪氨酸溶液;

标准溶液b:1×10-3mg/mL的苯丙氨酸溶液;

标准溶液c:1×10-3mg/mL的色氨酸溶液;

色氨酸待测样;

去离子水。

【实验步骤】

1、配制实验样品:

(1)分别移取标准溶液a、标准溶液b 和色氨酸待测样于10 mL 比色管中,待用。

(2)分别移取0.0、1.0、2.0、3.0、4.0、5.0、6.0mL标准溶液c于7个10 mL比色管中,并用去离子水稀释、定容,摇匀,待用。

2、仪器操作:

(1)打开计算机和分光光度计主机,双击分光光度计图标―FL-Solutions‖,等系统自检结束。预热15-30分钟待仪器稳定后方可使用。

(2)选择光谱测量界面(―Method‖—―General‖—―Measurement‖—―Wavelength scan‖),绘制上述步骤(1)中各溶液的激发光谱和发射光谱,并确定各自的λEmmax和λExmax。

(3)选择定量测定界面(―Method‖--―General‖--―Measurement‖--―photometry‖),依据上述步骤中测得的酪

氨酸的λEmmax 和λExmax ,设定定量测定的参数,测定系列标准溶液的荧光强度Is 值,然后在相同条件下测量未知样的相对荧光强度I x ,并记录实验数据。

【数据处理与实验结果分析】

1、 色氨酸的荧光分析:

调整狭缝宽度至最佳值:d ex =5.0nm ,d em =5.0nm 。首先预扫。 取 λEm =350nm

图2 色氨酸激发光谱

选择最大强度对应的波长约 220nm 处,得到色氨酸的发射光谱:

0500

1000

1500

2000

2500

3000

荧光强度

波长 (nm)

5001000

1500

2000

2500

荧光强度

波长 (nm)

图3 色氨酸发射光谱

由色氨酸的发射光谱可以看到,色氨酸的最大发射波长在348nm 左右。

2、 酪氨酸的荧光分析:

取 λEm =301nm

图4 酪氨酸激发光谱

选择最大强度对应的波长约 225nm 处,得到酪氨酸的发射光谱:

图5 酪氨酸发射光谱

由酪氨酸的发射光谱可以看到,酪氨酸的最大发射波长在303nm 左右。

1000

200030004000500060007000荧光强度

波长 (nm)

240

260280300

320340360380400420

-1000

01000

2000300040005000

60007000荧光强度

波长 (nm)

3、 苯丙氨酸的荧光分析:

取 λEm =383nm ,得到激发光谱如图4:

图6 苯丙氨酸激发光谱

选择最大强度对应的波长约208nm 处,得到苯丙氨酸的发射光谱:

图7 苯丙氨酸发射光谱

由苯丙氨酸的发射光谱可以看到,苯丙氨酸的最大发射波长在283nm 左右。

500

1000

1500

2000

2500

荧光强度

波长 (nm)

240

260

280

300

320

340

360

0500

1000

1500

2000

2500

荧光强度

波长 (nm)

4、 将测得的苯丙氨酸、酪氨酸和色氨酸溶液的激发光谱叠加在一个坐标系中:

图8 三种氨基酸的激发光谱

从图8可知,苯丙氨酸的最大激发波长在 210nm 左右,另外在 257nm 处也有峰值;酪氨酸的最大激发波长在 225nm 左右,另外在 275nm 处也有峰值;色氨酸的最大激发波长在 221nm 左右,另外在 275nm 处也有峰值。酪氨酸和色氨酸的最大激发波长比较接近。

图9 三种氨基酸的发射光谱

从图9可知,苯丙氨酸的最大发射波长在283nm 左右,色氨酸的最大发射波长在348nm 左右,酪氨酸的最大发射波长在 303nm 左右。

01000

20003000400050006000

7000荧光强度

波长 (nm)

-1000

1000

2000

300040005000

6000

7000

荧光强度

波长 (nm)

下面从理论分析不同氨基酸具有不同最大激发、发射波长的原因: 如图为三种氨基酸的结构:

图 10 三种氨基酸的结构

根据测得的荧光数据:最大发射波长 λEmmax :苯丙氨酸<酪氨酸<色氨酸,最大激发波长 λExmax :苯丙氨酸<酪氨酸≈色氨酸。三种氨基酸均具有苯环、吲哚环等大的不饱和基团,其中具有吲哚基团的色氨酸的不饱和键数量及其面积最大,故发生红移,具有最大发射波长和最大激发波长,大于苯丙氨酸和酪氨酸的波长;而酪氨酸中的羟基存在给电子共轭效应,其相对苯丙氨酸发生了红移,最大激发波长和最大发射波长大于苯丙氨酸。从共轭角度看,体系的共轭度增强,荧光效率一般也增大。这是由于增大了荧光物质的摩尔吸光系数,π 电子更容易被激发,产生了更多的激发态分子,使荧光增强。

由于不同氨基酸溶液的浓度以及使用的激发电压不同,荧光强度不好直接比较。

5、 色氨酸未知溶液的定量测量:

选择对应激发波长 220nm 和发射波长 350nm ,狭缝宽度与实验步骤 1 的相同:d ex =5.0nm ,d em =5.0nm 。根据系列标准酪氨酸溶液的荧光强度 Is 及浓度 c,绘制 Is –c 工作曲线,如图10:

5001000

1500

2000

2500

荧光强度

浓度 (×10^-4 mg/ml)

图11 色氨酸Is–c 工作曲线

由线性拟合得出线性方程强度Is = 408.9786 c + 96.62357,相关度R2=0.99604,拟合效果较好,测量未知色氨酸溶液的荧光强度Ix=1137,代入线性方程,得到其浓度为2.544×10-4mg·mL-1。

【思考题】

1、本实验中定量测定的条件参数是如何选择的,为什么?

答:定量测定的条件参数有:激发波长,发射波长,狭缝宽度d ex,d em;通过预扫以及激发光谱和发射光谱的荧光测试,确定了这些参数。其中狭缝宽度与前面定性测量寻找最大激发波长和发射波长所使用的宽度一致,选择的激发波长为最大激发波长,选择的发射波长为最大发射波长(近似为整数值)。

2、影响荧光特性的因素有哪些?请列举说明。

答:(1)具有至少一个芳环或多个共轭双键的物质一般具有荧光,具有刚性结构的共轭体系的荧光更强;

(2)取代基的性质:芳环上的取代基会引起荧光峰的改变,给电子基(-OH、-NH2)会使荧光增强,最大吸收波长红移;吸电子基(-NO2、-Cl)会使荧光减弱,使最大吸收波长蓝移甚至荧光消失;

(3)大部分无机盐金属离子不产生荧光,而金属螯合物常具有很强的荧光;

(4)溶剂的性质:例如有机物和金属的有机络合物,在乙醇溶液中的荧光比在水中强;

(5)温度:溶液温度下降时,介质的粘度变大,荧光物质与分子碰撞减小,荧光增强;温度升高,荧光减弱;

(6)pH:例如酚羟基、氨基等,在不同酸碱性下会有不同的存在形式:酚羟基在碱性条件下变为-O-,给电子能力加强,使最大吸收波长红移;-NH2在酸性条件下变为-NH3+,从给电子基团变为吸电子

基团,使最大吸收波长蓝移、荧光减弱甚至消失;

3、根据常规的荧光法能够实现混合物中这三种氨基酸的分别测定吗?若能,请说明原因;若不能,请提出可

行的测定方案。

答:不能,因为这三种氨基酸的最大发射波长有一定交集,相互重叠,即荧光测量时产生的峰会相互影响;

可能的方案:通过同步荧光法,即在混合溶液中加入缓冲液(pH为7.4左右)、稀释后,选择一定的

△λ(一般在55nm左右),通过等波长差同步扫描的方法得到荧光光谱,再将光谱进行一阶导数处理,可得到三种氨基酸的最大吸收波长。

【讨论与体会】

荧光分析实验是表征含不饱和键化合物常用的分析手段之一,实验原理较简单,操作也较轻松,通过荧光分析法定性、定量分析了三种含苯环氨基酸的最大激发波长、最大发射波长,并确定了未知色氨酸溶液的浓度。

下面是本实验的一些经验教训与体会:

(1)测试前应该进行充分的预习,要清楚实验下一步要做什么;

(2)从预扫描可以得到激发和发射波长的初步结果,利用我们得到的初步结果对参数进行设置,然后再测量它们的荧光激发、发射荧光光谱;

(3)要注意谱图中在固定的波长附近会有瑞利散射峰,只要改变固定的波长瑞利散射峰也会改变,不要与荧光的吸收峰弄混

(4)比色皿要清洗干净,保证对氨基酸溶液荧光光谱测定的准确性;

(5)本实验在使用移液管移取氨基酸溶液的过程中,锻炼了我们认真耐心、一丝不苟的态度,回顾了基础分析化学的相关实验操作;在处理数据和作图的过程中,提高了我们处理数据和定量分析的能力。

误差讨论——分析实验过程,在如下几个方面可能产生实验误差:

(1)试剂本身的误差:由于未知样品长时间暴露在空气中,可能会分解、水分挥发等,造成一定误差,不过影响应该不大,基本可以忽略;

(2)荧光仪本身的误差:我们使用的荧光仪的吸收强度与狭缝宽度并不成正比,对实验造成了一定影响;

仪器实验精度也有影响,实验中是每隔0.5nm 的波长进行测量,故不是十分精确;同时图谱不是十分平滑,导致峰不明显或峰有分裂,造成读数困难;

(3)荧光所受外界环境的影响:温度的变化会是荧光的强度变化,温度越高,荧光强度越弱。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

氨基酸纸上层析实验报告

竭诚为您提供优质文档/双击可除氨基酸纸上层析实验报告 篇一:实验六氨基酸的纸层析法 氨基酸的纸层析法 一.目的 了解并掌握氨基酸纸层析的原理和方法。 二、原理 以滤纸为支持物的层析法,称为纸层析法。纸层析所用展层剂大多由水和有机溶剂组成。展层时,水为静止相,他与滤纸纤维亲和力强;有机溶剂为流动相,它与滤纸纤维亲和力弱。有机溶剂在滤纸上又下向上移动的,称为上行法;有上向下移动的,称为下行法。将样品在滤纸上确定的原点处展层,由于样品中各种氨基酸在两相中不断进行分配,且他们的分离系数各不相同,所以不同的氨基酸随流动相移动的速率也不相同,于是各种氨基酸在滤纸上就相互分离出来,形成距原点不等的层析点。 在一定条件下(室温、展层剂的组成、滤纸的质量、ph 值等不变),不同的氨基酸有固定的移动速率(Rf值)Rf=

原点到层析点中心的距离/原点到溶剂前沿的距离。用混合氨基酸做样品时,如果只用一种溶剂展层,由于某些氨基酸的移动速率相同或相近,就不能将它们分开,为此,当用一种溶剂展层后,可将滤纸旋转90度,以第一次所的层析点为原点,在用另一溶剂展层,从而达到分离的目的。这种方法称为双向层析法。 本试验主要介绍的是单向层析法。其中混合氨基酸有精氨酸、酪氨酸、苯丙氨酸组成。 三、实验仪器 1、新华滤纸 2、层析缸 3、细线 4、点样管 5、橡皮筋 6、电吹风 7、喷雾器 四、实验试剂 1、混合氨基酸(精氨酸,酪氨酸,苯丙氨酸) 2、展层剂:正丁醇:12%氨水:95%乙醇:蒸馏水=13:3:3:1(v:v) 3、0.5%茚三酮—无水丙酮溶液:0.5g茚三酮溶于100ml 无水丙酮,贮于棕色瓶中

三维荧光光谱分析法

三维荧光光谱分析法 荧光强度与激发波长Kex、发射波长Kem、衰变时间( t)、荧光寿命(S)、吸光系数(E)、偏振度(P ) 及待测组分浓度(c) 等因素有关。若主要研究荧光强度与Kex 和Kem 的关系, 就构成了Kex2K em2F 三维荧光光谱(EEM ) , EEM 光谱技术简化了复杂组分繁琐的分离过程, 提高了荧光分析的灵敏度、选择性和实用性, 还可进行指纹分析和技术鉴定。许金钩小组应用EEM 技术和方法,获得了生物大分子、有机小分子荧光探针、以及荧光探针分子与生物大分子相互作用的大量信息, 并运用Mon te2Carlo 数学模型对EEM 进行总体积分,建立了EEM 总体积分方法, 用于样品中有机物质和药物分子的定量分析, 获得满意的结果。除了使用EEM 技术和方法外, 还可以根据实际需要, 选择荧光衰变时间( t)、偏振度(P )、荧光寿命(S) 等参数,构成Kex2K em2x (待定参数) 三维荧光光谱, 从不同的角度出发来提高荧光分析的灵敏度、选择性。这种分析技术不仅被用来进行物质的定性和定量分析,而且被用于测定生物大分子的形状、大小、构象, 以及固态物质、生物大分子与有机分子和金属离子相互作用等的研究, 在临床医学、环境检测、法医鉴定、生命科学以及有序介质中生物大分子荧光探针光谱特性的研究等方面, 发挥着极为重要的作用。但由于多维荧光光谱技术中需要处理大量的实验数据,因此在研制仪器的同时, 还要开发许多有实用价值的数学处理方法和多维光谱软件120 世纪70 年代发展起来的同步导数荧光技术在混合物的连续测定中发挥着重要作用, 这一方法的特点是同时扫描激发波长和发射波长, 并对得出的图谱进行微分处理, 使容易重叠的波峰彼此完全分开, 便于得出可靠的测量结果。有人对人血尿中temopo rt in2po lyethylene glyno l 共轭物分别用HPLC、C I 和荧光光谱分析法进行测定, 发现荧光光谱分析法是其中最简便、迅速、灵敏的分析方法, 新一代荧光指示剂如酪氨

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

纸层析法分离氨基酸实验报告

纸层析法分离氨基酸 一、前言 纸层析法 纸层析法又称纸色谱法,是目前广泛应用的一种分离技术。本世纪初俄国植物学家M.Tswett发现并使用这一技术证明了植物的叶子中不仅有叶绿素还含有其它色素。现在层析法已成为生物化学、分子生物学及其它学科领域有效的分离分析工具之一。它是一种以纸为载体的色谱法。固定相一般为纸纤维上吸附的水分,流动相为不与水相溶的有机溶剂;也可使纸吸留其他物质作为固定相,如缓冲液,甲酰胺等。将试样点在纸条的一端,然后在密闭的槽中用适宜溶剂进行展开。当组分移动一定距离后,各组分移动距离不同,最后形成互相分离的斑点。将纸取出,待溶剂挥发后,用显色剂或其他适宜方法确定斑点位置。根据组分移动距离(Rf值)与已知样比较,进行定性。用斑点扫描仪或将组分点取下,以溶剂溶出组分,用适宜方法定量(如光度法、比色法等)。 纸层析法(paper chromatography)是生物化学上分离、鉴定氨基酸混合物的常用技术,可用于蛋白质的氨基酸成分的定性鉴定和定量测定;也是定性或定量测定多肽、核酸碱基、糖、有机酸、维生素、抗菌素等物质的一种分离分析工具。纸层析法是用滤纸作为惰性支持物的分配层析法,其中滤纸纤维素上吸附的水是固定相,展层用的有机溶溶剂是流动相。

在环境分析测试中,有时用纸层析法分离试样组分,它用于一些精度不高的分析,如3,4-苯并芘。但不如GC、HPLC应用普遍。 做叶绿体色素分离时用到,将叶片碾碎,浸出绿色液体,将液体与层析液(石油醚)混合,将滤纸一段进入混合液体,四种色素在层析液中的溶解度不同,在滤纸上留下4条色素带。由此观查出各种色素的相对含量和种类。 纸层析法一般用于叶绿体中色素的分离,叶绿体中色素主要包括胡萝卜素、叶黄素、叶绿素a、叶绿素b,它们在层析液中的溶解度不同,溶解度大的随层析液在滤纸上扩散地快,反之则慢;含量较多者色素带也较宽。最后在滤纸上留下4条色素带,所以利用纸层析法能清楚地将叶绿体中的色素分离。 氨基酸 氨基酸是构成蛋白质的基本单位,广泛用于食品、医药、添加剂及化妆品行业。随着生物工程技术产业的发展逐渐成为2l世纪全球的主要产业之一,氨基酸的需求量越来越大,品种变更越来越快,工艺改革越来越新。目前全世界氨基酸每年的产量为100万吨,而需求总量是800万吨。我国自20世纪60年代起,氨基酸的应用在食品工业占61,,在饮料工业占30,,医药、日用化工、农业、冶金、环保、轻工、生物工程技术等方面占用的比例逐年增加。 氨基酸在人类生活的很多方面都有着应用: (1)在食品行业的应用 (2)在医药工业的应用

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

荧光光谱分析

第十七章荧光光谱分析 当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生和植物学家N.Monardes于1575年第一次记录了荧光现象。17世纪,Boyle和Newton等著名科学家再次观察到荧光现象。17世纪和18世纪,又陆续发现了其它一些发荧光的材料和溶液,但是在荧光现象的解释方面却没有什么进展。1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射所引起的,从而导入了荧光是光发射的概念。同时,他由发荧光的矿物“萤石”推演而提出“荧光”这一术语。1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。到19世纪末,人们已经知道了600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。 荧光分析方法的发展离不开仪器应用的发展。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West研制出第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。 荧光光谱分析法除了可以用作组分的定性检测和定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振和寿命)的变化情况来表征生物大分子在性质和构象上的变化。 很多化合物由于本身具有大的共轭体系和刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。但是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。 荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一是荧光分析法具

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

生物化学实验-氨基酸分析实验报告

【实验报告第一部分(预习报告内容) :①实验原理、②实验材料(包括实验样品、主要试剂、主要仪器与器材)、③实验步骤(包括实验流程、操作步骤和注意事项);评分(满分30分):】 一、预习报告 实验原理:

根据固定相基质的形式,层析可分为纸层析、薄层层析和柱层析。薄层层析是在玻 璃或塑料等光滑表面铺一层很薄的基质进行层析。 薄层层析( ,):是将吸附剂均匀地在玻璃板上铺成薄层(固定相),再把样品点在薄层板一端,再把板的这端浸入适当的溶剂(流动相)在薄层板上扩展。并在此过程中通过吸附——解吸附——再吸附——再解吸附的反复进行,而将样品各组份分离出来。 本次实验: ● 具体原理:当流动相在固定相上流动时,由于吸附剂对不同氨基酸的吸附力不 一样,不同氨基酸在展开溶剂中的溶解度不一样,点在薄板上的混合氨基酸样品随着展开剂的移动速率也不同,因而可以彼此分开。 ● 吸附剂(固定相):硅胶(.)。为使制成的薄层板不易松散,加入5%羟甲基纤维 素钠()作黏合剂。 ● 展开剂:正丁醇、冰醋酸和蒸馏水的混合液(80:10:10)。 ● 展层-显色剂:按照10:1比例()混匀的展开剂和0.1%茚三酮溶液。 ● 活化():在一定温度下,对吸附剂硅胶加热去除水分。可使硅胶的活性提高, 吸附能力加强。 ● 氨基酸与茚三酮的显色反应:茚三酮水化后生成的水合茚三酮在加热时被还原, 此产物与氨基酸加热分解产生的氨结合,以及另一分子水合茚三酮缩合生成紫红色化合物而使氨基酸斑点显色。 ● 值: 点的距离 对应溶剂前沿到样品原距离 斑点中心到样品原点的 Rf 由于物质在一定溶剂中的分配系数是一定的,故移动速率(值)也是恒定的,因

荧光光谱分析技术概述

荧光光谱分析技术概述....................................................................................................................... 1荧光光谱分析原理.1 ................................................................................................................................... 4荧光分析法.2 ........................................................................................................................ 4定性分析法.2.1 4 ......................................................................................................................... 2.2定量分析法 荧光光谱分析原理1光谱法是辐射能与物质组成和结构的相光学分析法 分为光谱法和非光谱法,不涉及能级跃非光谱法不包含物质内能的变化,互作用,以光谱的出来为基础,迁,而是辐射方向和物理性质的改变。 光学分析方法分类 1表分析法特征具体方法 射线荧光光谱、分子荧X光谱法原子发射光谱、原子荧光光谱、光的发射光光谱、分子磷光光谱、化学发光、电子能谱、俄歇电子能谱射线原子吸收光谱、紫外-可见分光光度法、红外光谱、X光的吸收吸收光谱、核磁共振光谱、电子自旋共振光谱、光声光谱拉曼光谱光的散射 比浊法、散射浊度法光的散射非光谱法 折射法、干涉法光的折射 X射线衍射、电子衍射光的衍射 旋光色散法、偏振法、圆二向色法光的转动 , 光波愈短荧光发光机理可按量子理论通俗解释: 光具有波动、粒子二重性, 当某些物质受到紫外线或较短波长其光子能量愈强; 反之波长愈长其能量则弱。当, , 吸收了全部或部分光能量, 使其分子的能级升高而处于亚稳定状态光照射其中一部分化为热量, , 这些分子就会立即释放多余的能量恢复到稳定的基态时因为有部分能, 向基态跃迁时是以“光”形式释放而消失。但对某些物质而言, 光波愈, 量被消耗所以重新发出的光能量总比吸收的能量要小。由于能量愈小, , 所以物质所激发的荧光总比照射它的光波要长。磷光的能量较荧光还要小长, 这就是两者的区别。寿命可达数小时之久所以它的波长比荧光要长, , 如果物质的分子吸收了紫外和可见区电磁辐射后,它的电子能跃迁至激发本身又回复到基态如果吸收辐然后以热能的形式将这一部分能量释放出来,态,再发射的波射能后处于电子激发态的分子以发射辐射的方式释放这一部分能量, 长可以同分子所吸收的波长相同,也可以不同,这一现象称为光致发光。最常见的两种光致发光现象是荧光和磷光。这两种光致发光的机理不同,荧光发光过程 -3s-10s的时间间隔。而磷光则往往能延续10因在激发光停止后10s内停止发光,此,可通过测定发光寿命的长短来区分荧光和磷光。 一些化学物质从外界吸收并储存能量而进入激发态,当其从激发态再回复到基态时,过剩的能量以电磁辐射的形式放射(即发光)称之为荧光。可产生荧光的分子

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

氨基酸分析仪实验指导

氨基酸分析仪实验 测试中心吕雪娟 一、实验目的 了解氨基酸分析仪的主要结构及工作原理,掌握氨基酸分析的过程,前处理方法。 二、原理 氨基酸分析仪的分析原理是基于各种a一氨基酸的酸碱性、极性及分子大小的差异,用阳离子交换树脂在柱上进行层析分离,用几种不同pH值和离子强度的缓冲溶液依次将它们洗脱,从柱子上分离和洗脱下来的各种氨基酸在反应柱中与茚三酮进行加热反应,反应产物用可见光分光光度计进行检测,根据检测信号的大小计算出各种氨基酸的含量。 氨基酸和茚三酮反应

氨基酸分析仪结构示意图 二、操作步骤 1.准备工作 1.1缓冲液和茚三酮溶液的配制及正确放置 1.2氮气压力调整 1.2.1打开氮气钢瓶阀,调节其压力至50-100KPa(0.5-1.0Kgf/cm2)。 1.2.2顺时针轻轻旋转氮气调节器,使压力读数为34-40KPa(0.35-0.4Kgf /cm2)。 1.2.3脱气瓶中液体的更换 1.3放置自动进样器清洗瓶,向清洗瓶(C-1,1L)中盛上蒸馏水,放置于指定的位置并拧上盖子。 2.开稳压器 3.启动L-8800ASM应用程序 3.1系统初始化,OK 3.2打开Module Operation界面

3.3泵1流速设定----缓冲液的清洗,打开泵1的排液阀;清洗完毕,关闭泵1; 3.4泵2流速设定—一缓冲液的清洗,打开泵2的排液阀;清洗完毕关闭泵2; 3.5自动进样器流路和针头清洗,除气泡,重复此过程三次。 3.6泵的压力归零 4.分析程序 4.1选择应用程序 4.2选择分析方法 4.3输入待测样品的信息,编辑样品表,保存; 4.4打开数据采集监控画面 4.5选择样品表 4.6打开泵1和泵2 4.7按样品表顺序放置样品。 4.8单击监控屏幕下方的Start Series按钮,开始样品测试。 4.9开始结束后,关闭采集监控画面 4.10关闭L-8800ASM应用程序 4.11关电源 三、实验报告要求 1.实验原理及分析条件; 2.实验结果。

荧光分析法基本概念

紫外可见吸收光谱一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱 分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的σ电子;(2)形成双键的π电子;(3)分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是: (σ)<(π)<(n)<(π*)<(σ* )σ,π是成键轨道,n 是非键轨道,σ* ,π* 是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。 横坐标表示吸收光的波长,用nm(纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、?(吸收系数) 中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。 四、紫外光谱中常用的几个术语 1.发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。一般不饱和的基团都是发色基团(C=C、C=O、N=N 、三键、苯环等)

第四章原子吸收光谱法与-原子荧光光谱法

第四章原子吸收光谱法与原子荧光光谱法 4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K 时其激发态和基态原子数之比. 解: Mg原子的电子跃迁由31S0→31P1 ,则 g i/g0=3 跃迁时共振吸收波长λ=285.21nm ΔEi=h×c/λ =(6.63×10-34)×(3×108)÷(285.31×10-9) =6.97×10-19J 激发态和基态原子数之比: Ni/N0=(g i/g0)×e-ΔEi/kT 其中: g i/g0=3 ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕 代入上式得: Ni/N0=5.0×10-9 4-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施? 答: 因为: S1 =W1/D = (251.61-251.43)/1.6 = 0.11mm S2 =W2/D =(251.92-251.61)/1.6 =0.19mm S1<S2 所以应采用0.11mm的狭缝. 4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。 答: 原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。 原子吸收光谱与原子发射光谱的不同在于: 原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。

荧光光谱分析实验讲义

实验荧光光谱分析 一、实验目的与要求: 1. 了解荧光分光光度计的构造和各组成部分的作用; 2. 掌握荧光分光光度计的工作原理; 3. 掌握激发光谱、发射光谱及余辉衰减曲线的测试方法。 二、基本概念 1. 发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。 2. 激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效率。 3. 余辉衰减曲线 是指激发停止后发光强度随时间变化的曲线。横坐标为时间,纵坐标为发光强度(或相对发光强度)。 三、测试仪器 激发光谱、发射光谱及余辉衰减曲线的测试采用日本岛津RF-5301PC型荧光分光光度计。 从150W氙灯光源发出的紫外和可见光经过激发单色器分光后,再经分束器照到样品表面,样品受到该激发光照射后发出的荧光经发射单色器分光,再经荧光端光电倍增管倍增后由探测器接收。另有一个光电倍增管位于监测端,用以倍增激发单色器分出的经分束后的激发光。 光源发出的紫外-可见光或者红外光经过激发单色器分光后,照到荧光池中的被测样品上,样品受到该激发光照射后发出的荧光经发射单色器分光,由光电倍增管转换成相应电信号,再经放大器放大反馈进入A/D转换单元,将模拟电信号转换成相应数字信号,并通过显示器或打印机显示和记录被测样品谱图。 四、样品制备 液体试样

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

荧光光谱分析讲义

荧光光谱分析 一、实验目的 1、了解荧光光谱的基本原理; 2、熟悉荧光光谱仪的基本原理和操作规程; 3、了解荧光光谱的基本分析方法。 二、荧光光谱原理 分子吸收辐射后,使其价电子处于不稳定的激发态,随后以光的形式辐射出能量、这称为“光致发光”。在二次发光的发射过程中,最常见的两种光致发光是分子荧光(fluorescence)和分子磷光(phosphorescence)。由测量分子荧光和磷光强度而建立起来的定量分析法称为分子荧光分析法和分子磷光分析法。在化学反应过程中,分子吸收反应释放出的化学能产生激发态物质,这种激发态物质发出的光辐射称为化学发光(chemiluminescence)。根据化学发光强度或发光总量来确定物质组分含量的分析方法称为化学发光分析法。化学发光分析、分子荧光分析和磷光分析统称为分子发光分析法。 2.1、荧光及磷光的产生原理 含有孤对电子n和π轨道的分子,吸收光能后产生π→π*和n→π*电子跃迁。在通常情况下,基态分子的电子自旋是配对的,净自旋S=0,光谱项的多重性2S+1=l,这种状态称为单重态。电子激发态的多重性也是2S+1。若有一个电子激发至高能轨道时,当S=0, 此时分子所处的状态就称为激发单重态;若—个电子激发至高能轨道,但S=1时,即2S+l =3,这种状态的分子就处于激发三重态。假若分子中含有奇数电子,则S=1/2时,分子处于二重态。 在图11-1电子激发能级图中,处于激发态的分子可以有多种辐射形式去激发而回到基态。首先由于与同类分子或其它分子碰撞,损失一部分能量,产生无辐射跃迁。然后,若能态的多重性不变(激发单重态向基态单重态跃迁)所产生的辐射称为荧光。而能态的多重性改变(激发三重态向基态单重态跃迁)时产生的辐射称为磷光。由图11-1可知,吸收光谱的能级高于荧光光谱能级,荧光光谱能级又高于磷光光谱能级。所以,荧光波长较磷光短;荧光的寿命约为10-9~10-6s, 而磷光的寿命约为10-3~10s; 一般荧光在常温下即可以发射,但磷光必须在极低的温度下(液氮,-196o C)才可以发射。

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除 无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁 波谱。波长在0.78?300卩m通常又把这个波段分成三个区域, 即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长入表征外,更常用波数 (wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收 谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

相关文档
最新文档