2分辨率与精度的区别

2分辨率与精度的区别
2分辨率与精度的区别

分辨率与精度的区别

很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。

我们搞编码器制做和销售的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。

简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。从定义上看,这两个量应该是风马牛不相及的。(是不是有朋友感到愕然^_^)。很多卖传感器的JS就是利用这一点来糊弄人的了。简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!)

很多A/D转换器和仪器厂商常拿分辩率来忽悠人, 很多人的确上套, 即使专业人士也常常逃不过. 其实这两者的区别很大, 但有联系.

1, 精度是接近真实值的程度, 即绝对误差或相对误差的大小.精度做到0.01%极其难

2, 分辩率是量化刻度的细度大小,分辩率做到0.00001%不很难(如24位A/D,0.0000056%)

3, 概念理解:

例1:一把1米的软尺,有1000个刻度,分辩率1毫米(分辩率0.1%),用标准尺量下绝对误差+5毫米,精度+0.5%。如果能把尺拉长20毫米,此时绝对误差+25毫米,精度降为2.5%, 可是尺还是1000个刻度,其分辨率还是1毫米(0.1%).

例2:两杆称来称真重1克的物体, 一杆的结果为1.03克, 另一杆的结果为

0.8333333333333333333333333克, 哪个准呢?

4, 关系

分辩率高是精度高的必要条件,不是充分条件;分辩率高不等于精度高. 认定精度才是王道.

“精度”是用来描述物理量的准确程度,其反应的是测量值与真实值之间的误差,而“分辨率”是用来描述刻度划分的,其反应的是数值读取过程中所能读取的最小变化值。简比喻:一把常见的量程为10厘米的刻度尺,上面有100个刻度,最小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,他只能1、2、3、4……100这样读值;而它的实际精度就不得而知了,因为用这把尺读出来的2毫米,我们并不知道他与真实绝对的2毫米之间的误差值。而当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有100个刻度,因而它的“分辨率”还是1毫米,跟原来一样!然而,它的精度显然已经改变了。

对于编码器来说,“分辨率”除了与刻线数有关外,还会因电气信号方面的影响而改变,它是可调的,可控的,它可以随着对信号的细分而改变,细分倍数越高,分辨率越小,但是细分倍数越高,引入加大的误差就越大。而精度,更多的偏向于机械方面,一个产品生产出来后,他的精度基本已经固定(有些高精度的产品可以对信号进行补偿等来提高精度),这个数值是通过检测出来的,它与产品的做工,材料等综合性能息息相关,我们难以通过计算来得出一个具体的数值作为精度的依据,大多只能在使用的过程当中判断出精度的好坏来。

例如,对于13bit的,其码盘上的绝对位置数为:8192,则:计算出的分辨率为158角秒,也就是说,在读取数值的时候,要求数值间的跳动是158角秒,如果要读取的第一个数值是0,则第二个读取的数值要大于158,若要小于158,则我们需要选取更小的分辨率。当要读取158这个数值的时候,由于误差的存在,并不可能得到绝对的158秒,编码器所读取出来的158秒与绝对真实158秒之间的误差,就取决于精度了。所以说,精度,是在分辨率的基础上来谈的。

而并非越细分得到小的分辨率就越好,因为细分会引入误差和扩大误差,过度的细分将无法保证精度!需要多少倍的细分,能做到多少倍的细分,前提必须是在保证精度的基础上进行的,因为精度在使用前的不可见性而高倍细分是不负责任的。码盘质量越高,刻线越好,信号质量信号越好,细分后产生的误差就越小,这受到一台编码器综合性能的影响,这也就是为什么会在相同的参数下,会有不同品牌,不同价位编码器的一个原因。

例如,我们要读取的数值为1、2、4、7、8,我至少要选择1个单位的分辨率,选择2个单位的分辨率是显然不行的,因为我们读出了1这个数值,则2是读不出来的,在选择1个单位分辨率的基础上,我们读出来的1与真实绝对的1的误差就是精度。机床上的数控系统对于直光栅是有分辨率的设定的,需要读取的数值间隔小于分辨率,机床就有可能会抖动或出错等。

对于绝对式带增量信号编码器,能够精确的保持串行传输的绝对位置值与增量值同步,绝对值确切的对应一个增量信号,位置值一定在一个增量信号的正弦周期之内。如13位绝对式,带512线的增量信号,绝对位置间隔158秒,若要读取两个码盘位置中间的一个位置是不合适的,但是,我们可以通过对其所带的1Vpp增量信号进行细分,如细分100倍,则相当于在两个绝对位置之间又引入了几个细分后的位置,我们可以在绝对位置值的基础上,通过计算细分后的增量脉冲数而读取两个绝对位置之间的一个位置值,如:512线细分100倍,绝对位置1数值是0,绝对位置2数值是158,则读取这两个位置间的位置可以在位置1:数值0的基础上多出一个脉冲则是25,两个则是

25x2=50……但是,带增量信号的绝对式编码器本身是不带细分的,这就要求用户能自行的对增量信号进行细分处理。

分辨力和分辨率的区别

1、分辨力和分辨率的区别及应用场合 分辨力是指传感器能检出被测信号的最小变化量,是有量纲的数。当被测量的变化小于分辨力时,传感器对输入量的变化无任何反应。 例如,用满量程为20kg的机械磅秤称葡萄。指示值为1kg。您再加一颗葡萄(假设每个10克),指针不会动。加两颗,还没动静。当您加第三颗时,指针动了。那么,这台机械磅秤的分辨率为30g。原因可能有:指针的转轴生锈了等等哈。 那么这台磅秤的分辨率为30g/20kg=0.15%。并不是很差的磅秤啦。原因是,不应该用20kg的磅秤来称数量较小的物体。 那么,是不是该磅秤的绝对误差就是30g呢?不是!它的绝对误差一般地说,大于分辨力。误差的来源还有刻度误差啦,读数误差啦,零点误差啦,多拉。综合起来,就大了。 对数字仪表而言,如果没有其他附加说明,一般可以认为该表的最后一位所表示的数值就是它的分辨力。一般地说,分辨力的数值小于仪表的最大绝对误差。例如,作业中的图1-9所示数字式温度计的分辨力为0.1℃,若该仪表的精度为1.0级,则最大绝对误差将

达到±2.0℃,比分辨力大得多。但是若没有其它附加说明,有时也可以认为分辨力就等于它的最大绝对误差。 又如,电子市场可以买到十几元的数字式万用表。那里头的电阻啦什么的元器件极差啦,误差有的达到10%。这样的元件能做出什么好东西啦?可能这台数字万用表是3,1/2的。也就是说,分辨率高达1/2000=0.05%。。如果用于测量电压,所选择的量程为10V,那么,它的它的最后一位可以被认为就是分辨力,等于0.01V=10mV,似乎误差只有10mV,好厉害,好好啦。但是我们学过检测技术的第一章后,就会明白,这种地摊货的绝对误差是很大嘀,准确度不会优于5%。也就是说,当所选择的量程为10V时,绝对误差可能达到0.5V,是分辨力的20倍。 当该数字表的示值为5V,误差可能达到±0.5V,也就是被测量的范围可能从4.5V~5.5V。从以上分析你就可以知道,商家所说的这个0.05%是万万相信不得的。 2、课后作业14页第6题第1问中说: “将分辨力除以仪表的满度量程就是仪表的分辨率” 光盘中提到:“仪表的最大显示值的倒数就是仪表的分辨率”,这两种说法,计算结果是一样的。但是,第一种说法比较不容易引起误会。在第二种说法中,计算

数码相片常用印尺寸和分辨率对照表

数码相片常用打印尺寸和分辨率对照表 照片规格(英寸) (厘米) (像素) 数码相机类型 1寸 2.5*3.5cm 413*295 身份证大头照 3.3*2.2 390*260 2寸 3.5*5.3cm 626*413 小2寸(护照) 4.8*3.3cm 567*390 5 寸 5x3.5 12.7*8.9 1200x840以上 100万像素 6 寸 6x4 15.2*10.2 1440x960以上 130万像素 7 寸 7x5 17.8*12.7 1680x1200以上 200万像素 8 寸 8x6 20.3*15.2 1920x1440以上 300万像素10寸 10x8 25.4*20.3 2400x1920以上 400万像素12寸 12x10 30.5*20.3 2500x2000以上 500万像素 15寸 15x10 38.1*25.4 3000x2000 600万像素 常见证件照对应尺寸 1英寸25mm×35mm 2英寸35mm×49mm 3英寸35mm×52mm

港澳通行证33mm×48mm 赴美签证50mm×50mm 日本签证45mm×45mm 大二寸35mm×45mm 护照33mm×48mm 毕业生照33mm×48mm 身份证22mm×32mm 驾照21mm×26mm 车照60mm×91mm 照片尺寸与打印尺寸之对照 (分辨率:300dpi ) 照片尺寸(英寸)打印尺寸(厘米)10x15 25.4x38.1 10x12 25.4x30.5 8x10 20.3x25.4 6x8 15.2x20.3 5x8 12.7x20.3 5x7 12.7x17.7

测量中的重要概念——精确度,准确度,敏感度和分辨率

测量中的重要概念——精确度,准确度,敏感度和分辨率 问题简述:在测量中经常会遇到测量精确度(accuracy)、准确度(precision)、敏感度(sensitivity)以及分辨率(resolution)的概念,它们的含义是什么,以及在何种程度上会影响到测量结果,是不是分辨率越高精确度就越好,本文就这些内容作一个探讨。 问题解答:对于精确度(accuracy)和准确度(precision),简单来说,精确度表征的是测量结果与真实值偏差的多少,准确度则是指多次测量结果的一致性如何。以下图为例,我们将测量比作打靶。精确度越高,多次测量结果取平均值就越接近真实值;准确度越高,多次测量结果越一致。 工程应用中,准确度(precision)也是一个十分重要的指标。由于实际现场存在许多不可预期因素,测量结果的精确度总是会随着时间、温度、湿度、光线强度等因素的变化而发生变化。但如果测量的准确度足够高,即测量结果的一致性较好,就可以通过一定的方式对测量结果进行校正,减小系统误差,提高精确度。 在测量系统中,分辨率(resolution)和敏感度(sensitivity)也是常见指标。以NI 的M 系列数据采集卡为例。下图是NI 6259 的部分技术参数: 可以看到,6259 模拟输入的分辨率是16 位,即采用的是16 位的ADC。那么在满量程下(-10,10V),ADC 的码宽为20/2^16=305μV ,通常我们也将该值称为1LSB(1LSB = V FSR/2N,其中V FSR为满量程电压,N 是ADC 的分辨率)。在满量程下,6259 的精确度为

1920μV。敏感度是采集卡所能感知到的最小电压变化值。它是噪声的函数。 数据采集卡可能在基准电压,可编程仪器放大器(PGIA),ADC 等处引入测量误差,如下图所示。 NI 的数据采集卡精确度遵循以下计算公式: 精确度= 读数×增益误差+ 量程×偏移误差+ 噪声不确定度 增益误差= 残余增益误差+ 增益温度系数×上次内部校准至今的温度改变+ 参考温度系数×上次外部校准至今的温度改变 偏移误差= 残余偏移误差+ 偏置温度系数×上次内部校准的温度改变+ INL_误差 可以在625X 的技术手册中查找公式中的各项参数,如下表所示: 其中增益误差主要由于放大器的非线性引起,而ADC 的分辨率主要影响INL(Integral nonlinearity)误差(积分非线性误差)。 DNL(Differential nonlinearity)误差定义(微分非线性误差)为实际量化台阶与对应于1LSB 的理想值之间的差异(见下图)。对于一个理想ADC,跳变值之间的间隔为精确的1LSB。若DNL误差指标≤1LSB,就意味着传输函数具有保证的单调性,没有丢码。当一个ADC 的数字量输出随着模拟输入信号的增加而增加时(或保持不变),就称其具有单调性,相应传输函数曲线的斜率没有变号。

手机屏幕尺寸和分辨率一览表

手机屏幕尺寸和分辨率一览表 屏幕尺寸 分辨率代号像素密度备注(英寸) 2.8640x480VGA286PPI 3.2480x320HVGA167PPI 3.3854x480WVGA297PPI 3.5480x320HVGA165PPI 3.5800x480WVGA267PPI 3.5854x480WVGA280PPI 3.5960x640DVGA326PPI苹果iphone4 3.7800x480WVGA252PPI 3.7960x540qHD298PPI 4.0800x480WVGA233PPI 4.0854x480WVGA245PPI 4.0960x540qHD275PPI 4.01136x640HD330PPI苹果iphone5 4.2960x540qHD262PPI 4.3 800x480WVGA217PPI 4.3 960x640qHD268PPI 4.3 960x540qHD256PPI 4.3 1280x720HD342PPI 4.5 960*540qHD245PPI 4.5 1280x720HD326PPI

4.5 1920x1080FHD490PPI 4.7 1920x1080FHD490PPI 4.81280x720HD306PPI 5.0480x800WVGA186PPI 1024x768XGA256PPI 5.0 1280*720294PPI 5.0 5.01920x1080FHD207PPI 5.31280x800 WXGA285PPI 5.3960x540qHD207PPI 6.0854×480163PPI 6.01280 X 720 245PPI 6.02560×1600498ppi 7.0800x480128PPI 7.01024*600169PPI 7.01280*800216PPI 9.71024x768XGA132ppi 9.72048x1536264PPI 101200X600170ppi 102560x1600299ppi VGA系列: VGA、QVGA、WVGA、HVGA名词解释及区别: 深圳鸿佳科技股份有限公司专注于工业类、手持设备和医疗、军工、通讯、车载等工控产品液晶显示屏(LCD)、液晶显示模组(LCM)的研发、生产和销售.......续VGA后,逐渐诞生出QVGA、WVGA、HVGA分辨率产品,这分辨率都手机参数里随处可见,下面是VGA、QVGA、WVGA、HVGA

各个尺寸照片对应大小及尺寸

各个尺寸照片对应大小及尺寸 1英寸25mm×35mm 2英寸35mm×49mm 3英寸35mm×52mm 港澳通行证33mm×48mm 赴美签证50mm×50mm 日本签证45mm×45mm 大二寸35mm×45mm 护照33mm×48mm 毕业生照33mm×48mm 身份证22mm×32mm 驾照21mm×26mm 车照60mm×91mm 数码相机和可冲印照片最大尺寸对照表 500万像素有效4915200,像素2560X1920。可冲洗照片尺寸17X13,对角线21英寸 400万像素有效3871488,像素2272X1704。可冲洗照片尺寸15X11,对角线19英寸 300万像素有效3145728,像素2048X1536。可冲洗照片尺寸14X10,对角线17英寸 200万像素有效1920000,像素1600X1200。可冲洗照片尺寸11X8,对角线13英寸

130万像素有效1228800,像素1280X960。可冲洗照片尺寸9X6,对角线11英寸 080万像素有效786432,像素1024X768。可冲洗照片尺寸7X5,对角线9英寸 050万像素有效480000,像素800X600。可冲洗照片尺寸5X4,对角线7英寸 030万像素有效307200,像素640X480。可冲洗照片尺寸4X3,对角线5英寸 5寸照片(3X5),采用800X600分辨率就可以了 6寸照片(4X6),采用1024X768分辨率 7寸照片(5X7),采用1024X768分辨率 8寸照片(6X9),采用1280X960分辨率 按照目前的通行标准,照片尺寸大小是有较严格规定的 1英寸证明照的尺寸应为3.6厘米×2.7厘米; 2英寸证明照的尺寸应是3.5厘米×5.3厘米; 5英寸(最常见的照片大小)照片的尺寸应为12.7厘米×8.9厘米;6英寸(国际上比较通用的照片大小)照片的尺寸是15.2厘米×10.2厘米; 7英寸(放大)照片的尺寸是17.8厘米×12.7厘米; 12英寸照片的尺寸是30.5厘米×25.4厘米。 正常的误差应该在1~2毫米左右,如果“差距”过大,那就说明洗印店有问题了。

最新照片像素尺寸对照表

像素、分辨率与照片尺寸对应表 小常识:通常表示照片规格会用“寸”来表示,和显示器之类的产品用对角线长度表示尺寸的方式不同,照片所说的“几寸”是指照片长的一边的英寸长度。比如6寸照片,就是指规格为6×4英寸的照片。而国际上还有一种通行的表示照片尺寸的方法,即取照片短的一边的英寸整数数值加字母R来表示。比如6寸照片,规格为6×4英寸,即4R。 表格说明:与冲印尺寸和分辨率相对应的色块代表该分辨率下冲印到相应尺寸的照片的质量。 ■最佳■较好■一般■ 较差 象素与照片尺寸分辨率对比表:绿色表示很好,黄色表示好,土黄色表示一般。

数码照片/相片尺寸对照表大全 照片尺寸大全 1英寸25mm×35mm 2英寸35mm×49mm 3英寸35mm×52mm 港澳通行证33mm×48mm 赴美签证50mm×50mm 日本签证45mm×45mm 大二寸35mm×45mm 护照33mm×48mm 毕业生照33mm×48mm 身份证22mm×32mm 驾照21mm×26mm 车照60mm×91mm 数码相机和可冲印照片最大尺寸对照表 500万像素有效4915200,像素2560X1920 可冲洗照片尺寸17X13,对角线21英寸400万像素有效3871488,像素2272X1704 可冲洗照片尺寸15X11,对角线19英寸300万像素有效3145728,像素2048X1536 可冲洗照片尺寸14X10,对角线17英寸200万像素有效1920000,像素1600X1200 可冲洗照片尺寸11X8,对角线13英寸130万像素有效1228800,像素1280X960 可冲洗照片尺寸9X6,对角线11英寸080万像素有效786432,像素1024X768 可冲洗照片尺寸7X5,对角线9英寸 050万像素有效480000,像素800X600 可冲洗照片尺寸5X4,对角线7英寸 030万像素有效307200,像素640X480 可冲洗照片尺寸4X3,对角线5英寸 5寸照片(3X5),采用800X600分辨率就可以了

分辨率与精度

分辨率与精度的区别 2010-10-07 10:28:37 很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。 我们搞编码器制做和销售的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。 简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。从定义上看,这两个量应该是风马牛不相及的。(是不是有朋友感到愕然^_^)。很多卖传感器的JS就是利用这一点来糊弄人的了。简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!) 所以在这里利用这个例子帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。呵呵,希望对大家有用!^_^ 加工精度是加工后零件表面的实际尺寸、形状、位置三种几何参数与图纸要求的理想几何参数的符合程度。理想的几何参数,对尺寸而言,就是平均尺寸;对表面几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对表面之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。零件实际几何参数与理想几何参数的偏离数值称为加工误差。加工精度与加工误差都是评价加工表面几何参数的术语。加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。加工精度高,就是加工误差小,反之亦然。 任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。 机器的质量取决于零件的加工质量和机器的装配质量,零件加工质量包含零件加工精度和表面质量两大部分。 机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。它们之间的差异称为加工误差。加工误差的大小反映了加工精度的高低。误差越大加工精度越低,误差越小加工精度越高。 加工精度包括三个方面内容: 尺寸精度指加工后零件的实际尺寸与零件尺寸的公差带中心的相符合程度。 形状精度指加工后的零件表面的实际几何形状与理想的几何形状的相符合程度。 位置精度指加工后零件有关表面之间的实际位置与理想 精度就是结果值与结果真值的差值。 精度Accuracy 观测结果、计算值或估计值与真值(或被认为是真值)之间的接近程度。每一种物理量要用数值表示时,必须先要制定一种标准,并选定一种单位(unit)。标准及单位的制定,是为了沟通人与人之间对于物理现象的认识。这种标准的制定,通常是根据人们对于所要测量的物理量的认识与了解,并且要考虑这标准是否容易复制,或测量的过程是否容易操作等实际问题。由

图像大小和分辨率解析

图像大小和分辨率 与数码照片有关的工作中一个比较复杂的话题,就是对图像大小与分辨率之间的关系的理解。作为照片处理者,你随时都会遇见ppi值(每英寸像素的数量)、像素大小以及输出大小。要想获得精确的图像效果,尤其是打印后的图像效果,把这两个概念整理清楚是非常必要的。 图像大小 图像文件的两个重要特征是它的图像大小(不要与图像文件的大小混淆了)以及它的分辨率。图像大小涉及的是图像中点的数量。以像素乘以像素来说明,第二个像素值指的是垂直方向的像素数量。例如一个图像的大小可以是4368×2912像素,也就是共有12719616或者取整为1200万个图像点,也就是1200万像素。图像文件大小则与它所需的存储空间有关,以字节为单位。 一个图像的像素越大,所含的图像信息就越多,被清楚还原的尺寸也就越大。在输出大小相同的情况下,像素越大,单个细节就显示得越清楚,就越会形成清晰的视觉效果。但这里的视觉图像大小只是一个非实体的、虚拟的值,单独这个值既不能以厘米计算纸上的图片大小,也不能说明显示器上的图像大小。为了对图像上的大小进行确切的描述,还需要另外一个值,那就是分辨率,因为只有通过介质的显示,数字的像素信息才能有一个实际的载体。 分辨率 分辨率是用来表示一定长度的线段上的图像点数量的参数,用每英寸像素(ppi)来表示。它描述的是一个特定的输出介质在一个区域内所能显示的像素数量,同时也表明了在这个介质上正确展示一张照片的最低要求。每个输出介质的分辨率都是不同的。

你可以把一个图像想象成一个大的马赛克,每个像素中都含有关于各个马赛克“小石子儿”所应有的色彩信息。输出介质决定着单颗小石子儿的大小——显示器上的单颗小石子儿较大,而打印照片时相纸上的单颗小石子儿较小。因此在平铺面积相同的情况下,相纸所能容纳的小石子儿要比显示器容纳的多。也可以说,显示器在相同面积中所需要的小石子儿较少。相应的,在小石子儿数量相同的情况下,在显示器上所铺出来的面积就更大。但是在这两种显示介质前,在与这两个马赛克保持相应距离时,你会看到同样的图像。 此外,比较难以理解的是,分辨率这个概念也被应用于其他与摄影相关的情况,但是不同情况下的所指少有不同。 ——镜头分辨率描述的是这个镜头将黑白相间的细线条分辨开来成像的能力,即解像能力 ——相机的感光元件用分辨率来描述垂直方向和水平方向上的测量像素的数量,也就是可以成像的测量像素的总量(通常用“百万像素”表示) ——与相机的感光元件非常相似的是,显示器把垂直方向和水平方向上所可能显示的像素的总量也口语化地叫做分辨率,虽然这更多地是在描述显示器的大小(在这个意义上,更接近“图像大小”的概念) 但是一张照片的分辨率并没有说出这个图像文件中真正的像素数量。在一个特定的输出介质上,一张大图和一张小图的显示分辨率是完全相同的,但是大图要比小图显得大得多。为了理解这其中的关联,请你在后面的叙述中想象一下两个不同的图片文件,它们展示的是同一个主题:照片1的图像大小是6048×4032像素,照片2只有300×200像素。这两张照片将在显示器上和相纸上被展示出来。

1寸2寸及各种证件照片标准尺寸像素

整理如下: 1寸2寸电子版照片标准尺寸 1寸打印尺寸25×35(mm) 像素295×413(px) 2寸打印尺寸35×49(mm) 像素413×626(px) 一英寸=72pt(点)=96px(像素) 身份证(驾照)照片:22*32 mm (小1寸) 小1寸: 27*38 mm 1寸:25*38 mm 普通护照照片:33*48mm(大1寸) 大1寸:40*55mm 600×800 = 48万像素=3寸照片 700×1000=约80万像素=5寸照片(3.5×5英寸,毫米规格89×127); 800×1200=约100万像素=6寸照片(4×6英寸,毫米规格102×152);1000×1400=约150万像素=7寸照片(5×7英寸,毫米规格,127×178); 1200×1600=约200万像素=8寸照片(6×8英寸,毫米规格152×203);1600×2000=约310万像素=10寸照片(8×10英寸,毫米规格203×258);1600×2400=约400万像素=标准照片(8×12英寸,毫米规格203×304);1600×2800=约400万像素=宽幅照片(8×14英寸,毫米规格203×356)。 照片规格(英寸) (厘米)(像素) 数码相机类型 2.5* 3.5cm 413*295 身份证大头照 3.3*2.2 390*260 2寸 3.5*5.3cm 626*413 小2寸(护照) 4.8*3.3cm 567*390 5 寸5×3.5 12.7*8.9 1200×840以上100万像素 6 寸6×4 15.2*10.2 1440×960以上130万像素 7 寸7×5 17.8*12.7 1680×1200以上200万像素 8 寸8×6 20.3*15.2 1920×1440以上300万像素 10寸10×8 25.4*20.3 2400×1920以上400万像素 12寸12×10 30.5*20.3 2500×2000以上500万像素 15寸15×10 38.1*25.4 3000×2000 600万像素 冲洗照片尺寸对照表: 规格(英寸)分辩率PX(文件的长、宽)/像素厘米 3.5*5(3R/4寸)1050*1500/300dpi 8.89*12.7 4*6(4R/6寸)1800*1200/300dpi 10.16*15.24 5*7(5R/7寸)1500*2100/300dpi 12.7*17.78 6*8(6R/8寸)1800*2400/300dpi 15.24*20.32 8*10(8R/10寸)2400*3000/300dpi 20.32*25.4 10*12(12寸)3000*3600/350dpi 25.4*30.48 12*16(16寸)3600*4800/350dpi 30.48*40.64 5英寸:3*5 6英寸:4*6 7英寸:5*7 8英寸:6*8 12英寸:10*12

AD精度和分辨率的区别

最近做了一块板子,当然考虑到元器件的选型了,由于指标中要求精度比较高,所以对于AD的选型很慎重。很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。我们搞电子开发的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。 简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。从定义上看,这两个量应该是风马牛不相及的。(是不是有朋友感到愕然^_^)。很多卖传感器的JS就是利用这一点来糊弄人的了。简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!) 回到电子技术上,我们考察一个常用的数字温度传感器:AD7416。供应商只是大肆宣扬它有10位的AD,分辨率是1/1024。那么,很多人就会这么欣喜:哇塞,如果测量温度0-100摄氏度,100/1024……约等于0.098摄氏度!这么高的精度,足够用了。但是我们去浏览一下AD7416的数据手册,居然发现里面赫然写着:测量精度0.25摄氏度!所以说分辨率跟精度完全是两回事,在这个温度传感器里,只要你愿意,你甚至可以用一个14位的AD, 获得1/16384的分辨率,但是测量值的精度还是0.25摄氏度^_^ AD的参考电压为VREF,则AD理论上能测到的最小电压值为分辨率*VREF。实际上还跟精度有关系。 所以很多朋友一谈到精度,马上就和分辨率联系起来了,包括有些项目负责人,只会在那里说:这个系统精度要求很高啊,你们AD的位数至少要多少多少啊…… 其实,仔细浏览一下AD的数据手册,会发现跟精度有关的有两个很重要的指标:DNL和INL。似乎知道这两个指标的朋友并不多,所以在这里很有必要解释一下。 DNL:DifferencialNonLiner——微分非线性度 INL:IntergerNonLiner——积分非线性度(精度主要用这个值来表示) 他表示了ADC器件在所有的数值点上对应的模拟值,和真实值之间误差最大的那一点的误差值。也就是,输出数值偏离线性最大的距离。单位是LSB(即最低位所表示的量)。 当然,像有的AD如△—∑系列的AD,也用Linearity error 来表示精度。 为什么有的AD很贵,就是因为INL很低。分辨率同为12bit的两个ADC,一个INL=±3LSB,而一个做到了±1.5LSB,那么他们的价格可能相差一倍。 所以在这里帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。呵呵,希望对大家有用!^_^

示波器的垂直精度与垂直分辨率

广州致远电子股份有限公司 示波器的垂直精度与垂直分辨率 示波器的垂直世界 类别 内容 关键词 垂直精度、垂直分辨率 摘 要 示波器的垂直精度与垂直分辨率解析

修订历史

目录 1. 概述 (1) 1.1垂直精度 (1) 1.2垂直分辨率解析 (1) 1.3算法提高分辨率 (1) 1.3.1几个基本概念 (1) 1.3.2平均算法 (2) 1.3.3高分辨率算法 (3) 2. 小结 (4) 3. 免责声明 (5)

1. 概述 数字存储示波器与万用表相比,测量电压到底是谁更准确呢?当然是万用表,但是为什么大家还会经常使用示波器来进行测量呢? 1.1 垂直精度 提到测量问题,就会涉及到测量精度。用数字存储示波器测量模拟波形第一步就是用ADC将连续的模拟波形信号转换成量化的数字信号,最常用的是8位ADC,也就说对于任何一个波形值都是用256个0和1来重组。 当我们用同一个示波器在不同垂直档位下测量同一信号时,一般情况下得到的测量结果是不一样的,事实上,它涉及到垂直精度的问题,假设当垂直档位为500mV/div时,示波器垂直方向有8格,则其垂直精度分别为(500mV*8)/256=15.625 mV,也就是小于15.625 mV 的电压不会准确测量出来,测量同一个信号,在垂直档位为50mV/div的情况下,即(50mV*8)/256=1.5625 mV,垂直精度就达到了1.5625 mV,小于该垂直精度的电压值是不能测量出来的,即数字测量仪器都是存在采集的量化误差的,只能说ADC的位数越高,量化误差就会越小,但它只能无限减小,并不能消除。 所以当我们在对波形进行测量时,尽量使波形占满示波器屏幕,目的就是为了提高垂直精度,使测量结果更准确。 图1.1 垂直精度示意图 1.2 垂直分辨率解析 我们通常用示波器的垂直分辨率来描述数字示波器中ADC的位数,即位数越高,垂直分辨率越高,该分辨率由硬件决定,一旦确定无法改变。而示波器整个系统的有效位数(ENOB)形成的分辨率与前者不同,它可以由8位变为12位,甚至16位! 示波器整个系统的有效位数(ENOB),它限制着测量系统区分和表示小信号的能力,该能力用噪声失真比(SINAD)表示,其值越大代表信号的噪声干扰越小,有效位数(ENOB)与噪声失真比(SINAD)之间的关系为: SINAD(噪声失真比,单位:dB)=6.02* ENOB(有效位数)+1.76 根据该数学关系式可知,SINAD(噪声失真比)大约每增加6 dB,ENOB(有效位数)就能增加1bit。所以提高信噪比,就能提高所谓的系统等效分辨率。 但是只要ADC位数不变,无论怎样提高所谓的分辨率归根结底都是对ADC采样后的数据进行数字信号处理,最终只能是在“软件”上提高了分辨率,并不能达到硬件上实现的性能,因为软件算法提高分辨率会产生副作用,影响采样率等关键指标,波形显示可能会发生失真现象等等。 1.3 改善等效分辨率 示波器都是如何通过改变算法来实现提高分辨率的呢? 1.3.1 几个基本概念 我们将ADC转换成的离散数字信号称为采样点,相邻采样点之间的时间称为采样时间

智能手机屏幕尺寸和分辨率一览表

智能手机屏幕尺寸和分辨率一览表 2.8英寸分辨率为640x480(VGA)像素密度286PPI 3.2英寸分辨率为480x320(HVGA)像素密度167PPI 3.3英寸分辨率为854x480(WVGA)像素密度297PPI 3.5英寸分辨率为480x320(HVGA)像素密度165PPI 3.5英寸分辨率为800x480(WVGA)像素密度267PPI 3.5英寸分辨率为854x480(WVGA)像素密度280PPI 3.5英寸分辨率为960x640(DVGA)像素密度326PPI(苹果iphone4)3.7英寸分辨率为800x480(WVGA)像素密度252PPI 3.7英寸分辨率为800x480(WVGA)像素密度252PPI 3.7英寸分辨率为960x540(qHD)像素密度298PPI 4.0英寸分辨率为800x480(WVGA)像素密度233PPI 4.0英寸分辨率为854x480(WVGA)像素密度245PPI 4.0英寸分辨率为960x540(qHD)像素密度275PPI 4.0英寸分辨率为1136x640(HD)像素密度330PPI(苹果iphone5)4.2英寸分辨率为960x540(qHD)像素密度262PPI 4.3英寸分辨率为800x480(WVGA)像素密度217PPI 4.3英寸分辨率为960x640(qHD)像素密度268PPI 4.3英寸分辨率为960x540(qHD)像素密度256PPI 4.3英寸分辨率为1280x720(HD)像素密度342PPI 4.5英寸分辨率为960*540(qHD)像素密度245PPI

4.5英寸分辨率为1280x720(HD)像素密度326PPI 4.5英寸分辨率为1920x1080(FHD)像素密度490PPI 4.7英寸分辨率为1280x720(HD)像素密度312PPI 4.7英寸分辨率为1280x720(HD)像素密度312PPI 4.7英寸分辨率为1280x720(HD)像素密度312PPI 4.8英寸分辨率为1280x720(HD)像素密度306PPI 5.0英寸分辨率为480x800(WVGA)像素密度186PPI 5.0英寸分辨率为1024x768(XGA)像素密度256PPI 5.0英寸分辨率为1280*720像素密度294PPI 5.0英寸分辨率为1920x1080(FHD)像素密度441PPI 5.3英寸分辨率为1280x800(WXGA)像素密度285PPI 5.3英寸分辨率为960x540(qHD)像素密度207PPI 6.0英寸分辨率为854×480像素密度163PPI 6.0英寸分辨率为1280 X 720像素密度245PPI 6.0英寸分辨率为2560×1600像素密度498ppi 7.0英寸分辨率为800x480(WVGA)像素密度128PPI 7.0英寸分辨率为1024*600像素密度169PPI 7.0英寸分辨率为1280*800像素密度216PPI 9.7英寸分辨率为1024x768(XGA),像素密度132ppi 9.7英寸分辨率为2048x1536,像素密度264PPI 10英寸分辨率为1200X600,像素密度170ppi

详解倾斜摄影中分辨率与比例尺的关系

前言 三维前沿认为要理解倾斜影像的分辨率与矢量数据比例尺之间的关系,我们首先 得明白:地理空间数据最基本的两种数据格式就是矢量和栅格,以及无人机航摄 时航高与地面分辨率的关系。当然,你说这些我都还不太清楚,那么你应该先熟 悉了解倾斜摄影测量高级技术培训指南。 01| 航高与地面分辨率的关系 据《低空数字航空摄影规范》,相对航高的计算公式如下: H=f×GSD/a 式中,H为相对航高,f为摄影镜头的焦距,GSD为影像的地面分辨率,a为像元尺寸的大小。 那么假设(可能不合理)一个相机像素为2000万,焦距为20mm,感光元件尺寸大小为6mm×4mm,分辨率为4000×3000,如果要求地面分辨率达到20cm,航高最高能到多少。 首先计算象元尺寸a:可以通过6mm/4000或4mm/3000得到为1.5um。 然后带入公式反算航高即可。 02| 什么是栅格数据和矢量数据 我们经常看到的影像图、DOM、航片卫片这些都是栅格数据。它是以二维矩阵的形式来表示空间地物或现象分布.每个矩阵单位称为一个栅格单元(cell)。因此栅格数据有属性明显,定位隐含的特点。 而矢量数据呢最常见的就是数据线画图、DLG是利用点,线,面的形式来表达现实世界,具有定位明显,属性隐含的特点。 对于矢量数据,我们通常用比例尺来描述其精度,对于影像图及模型,我们通常用分辨率来描述其精度。 03| 如何描述栅格数据和矢量数据的精度 矢量数据用比例尺来描述其精度: 要讲矢量数据比例尺之前,我们要先了解一下比例尺精度的概念:通常人眼能分辨的两点间的最小距离是0.1mm,因此,把地形图上0.1mm所能代表的实地水平距离称为比例尺精度,1:500DLG的比例尺精度就为0.1mm*500=0.05m。

AD精确度和分辨率

ADC制造商在数据手册中定义ADC性能的方式令人困惑,并且可能会在应用开发中导致错误的推断。最大的困惑也许就是“分辨率”和“精确度”了——即Resolution和Accuracy,这是两个不同的参数,却经常被混用,但事实上,分辨率并不能代表精确度,反之亦然。本文提出并解释了ADC“分辨率”和“精确度”,它们与动态范围、噪声层的关系,以及在诸如计量等应用中的含义。 ADC动态范围,精确度和分辨率 动态范围被定义为系统可测量到的最小和最大信号的比例。 最大信号可为峰间值,零到峰(Zero-to-Peak)值或均方根(RMS)满量程。其中任何一个都会给出不同值。例如,对于一个1V正弦波来说: 峰间(满量程)值=2V 零到峰值=1V RMS满量程=0.707×峰值振幅=0.707×1V=0.707V 最小信号通常为RMS噪声,这是在未应用信号时测量的信号的均方根值。测量得到的RMS 噪声级别将取决于测量时使用的带宽。每当带宽翻倍,记录的噪声将增长1.41或3dB。 因此,一定要注意动态范围数字始终与某个带宽相关,而后者通常未被指定,这使记录的值变得没有意义。 器件的信噪比(SNR)和动态范围多数时候被定义为同一个值,即: 动态范围=SNR =RMS满量程/RMS噪声 并且经常使用dB作为单位,即 动态范围(dB) =SNR(dB) =20*Log10 (RMS满量程/RMS噪声) 与使用RMS满量程相反,一些制造商为了使图表看上去更漂亮,引用零到峰或峰间值,这使得最终的动态范围或SNR增加了3dB或9dB,因此我们需要仔细研究规范以避免误解。 在讨论ADC性能时,分辨率和精确度是经常被混用的两个术语。一定要注意,分辨率并不能代表精确度,反之亦然。 ADC分辨率由数字化输入信号时所使用的比特数决定。对于16位器件,总电压范围被表示为216 (65536)个独立的数字值或输出代码。因此,系统可以测量的绝对最小电平表示为1比特,或ADC电压范围的1/65536。 A/D转换器的精确度是指对于给定模拟输入,实际数字输出与理论预期数字输出之间的接近度。换而言之,转换器的精确度决定了数字输出代码中有多少个比特表示有关输入信号的有用信息。

淘宝里图片的尺寸像素及分辨率

淘宝里图片的尺寸像素及分辨率 1 、普通店铺店标 大小:100*100px <=80k 代码:无(图片做好后直接上传) 格式:jpg、gif 设置:管理我的店铺—基本设置—店标—浏览—选择本地做好店标文件 2、旺旺名片/头像 大小:120*120px <=100k 代码:无(图片做好后直接上传) 格式:jpg、gif 3、宝贝图片 大小:500*500px <=120k 代码:无(图片做好后直接上传) 格式:jpg、gif 4、旺铺店招 大小:950*150px <=80k 代码:无(图片做好后直接上传) 格式:jpg、gif、png 5、旺铺促销区 大小:宽度<=735px,高度无限制 代码:(图片必须放置淘宝空间中即可,现在淘宝免费了,对我们小卖家来说省了不少如果你的超出没有可以先申请一个,需支持宝淘外链的) 格式:jpg、gif、html、文本

6、旺铺宝贝描述 大小:宽度<=722px(窄),宽度<=922px(宽),高度随意 代码: 格式:jpg、gif、html、文本 普通店铺的宝贝描述尺寸大小没有什么限制,但考虑到显示器的显示尺寸,应掌握在1000PX以下。 7、宝贝分类 大小:宽度<=160,高度随意 代码:(图片必须放置淘宝空间中即可,现在淘宝免费了,对我们小卖家来说省了不少如果你的超出没有可以先申请一个,需支持宝淘外链的) 格式:jpg、gif(地址不要超过40个字符) 8、背景音乐 代码: 格式:最好为WMA 设置:管理我的店铺—基本设置—公告 9、悬挂饰物 代码: 格式:同上,须放置在网络空间或网络像册中的图片 设置:管理我的店铺—基本设置—公告 10、论坛签名

PLC模拟量说明关于模拟量分辨率和精度的问题PDF.pdf

关于模拟量分辨率和精度的问题 各种plc模拟量处理: 欧姆龙PLC 模拟量 CP1H-XA40DR-A 模拟量输入4-20mA对应PLC内部读到的数值是多少?输出4-20mA对应PLC内部读到的数值又是多少? AD转换: 硬件连接好后,用编程软件设定输入方式,设定分辨率,然后,在特殊功能寄存器里读取转换数值这个数值的对应关系是: 分辨率6000 4-20mA 0-1770 HEX,十进制为0-6000. 分辨率12000 0-2EE0 HEX,十进制为0-12000 DA转换:也是同样的道理 分辨率设定在6000时,4-20mA对应值为0-1770 HEX,转换为十进制为0-6000. 分辨率设定在12000时,对应值为0-2EE0 HEX,转换为十进制为0-12000 1、欧姆龙CP1H分辨率0-6000对应最小到最大 ///////////////////////////////// 2、S7200是0-20对应0-12000 3、GE是4-20对应0-32000 分辩率只代表了最小量化的梯度,和精度无直接联系,12位是4096位,如取中点为零则为正负2048位,即数字的最小变化是量程的4096分之一。但一般情况下,考虑到非线性、重复性、温度变化、电源变化等的影响,全范围精度能做

到千分之一就不错了,计算的方法可查手册,对照你的环境计算一下就可以了。如果是双极性,却用于只有正或负的信号输入时是量程的1/2048。所以,有些精度的标注是精度值再加减一个字。这一个字就是量化误差。不过,AD的制造商是考虑到条件因素,如果稳定性差,分辨率再高也没用,只是用于调节时平滑些。所以,较好条件下的测量系统精度取分辨率的1/3较适宜。用于控制取1/10左右。 首先解释一下标度变换: 标度变换用于模拟量处理,PLC作为计算机,只能处理数字量,而我们生活中经常遇到的物理量,像压力,温度,流量,位移等先通过传感器,变送器,转换为便于处理的标准模拟量(0~10v 4-20mma -10v-10v )模拟量进入PLC 的AD转换模块后转换成数字量16进制的比如0-1770h 也就是十进制的0-6000(举例来说,不同AD模块,分辨率不一样,输入类型可以设置成别的方式)可是这些与我们要的比如温度等物理量数值上是不一样的,不过成线性关系。举个例子 用0-10v 输出的位移传感器测量位移,位移传感器的量程是0-100mm 那么对plc 的AD转换单元进行设置,设置成0-10v输入,对分辨率设置成6000 那么PLC采集进去的数字量是0v 对应数字量0 5v 对应数字量3000 10v 对应数字量6000 那么标度变换就是要把这些数字量还原为我们可以识别的物理量 0v 对应数字量0 对应0mm

证件照的尺寸规格和像素要求

附一:证件照的尺寸规格和像素要求 证件照规格一寸(一张寸上排张)小两寸(一张寸上排张)两寸(一张寸上排张) 实际尺寸* * * 要求像素 *以上*以上 *以上 附二:护照照片(小两寸)的规格要求 光面相纸、背景颜色为白色或淡蓝色,着白色服装的请用淡蓝色背景,其他颜色背景最好使用白色背景,照片要求人像清晰,层次丰富,神态自然,公职人员不着制式服装,儿童不系红领巾。尺寸为半身证件照尺寸,即×,头部宽度:-,头部长度为-。不符合上述要求及一次性快照、翻拍的照片或彩色打印机的照片不予受理。 .证件照的拍摄 一般来说,自己用数码照相机拍摄证件照片最好不要采取自拍的方式,拍摄时选择家里白色或者浅色的墙(或者利用白色或浅色的床单),光源尽量选择不偏色的光源(可打开闪光灯),可以利用家里的台灯等协助拍摄,拍摄时照相机保持与被摄人物头部处于同一水平面,拍摄距离不要太近(太近面部可能会变形)大概米左右,画面主要为人物的头部和半胸,注意头部与上下边框的间距不要过大,双眼处于水平线。 证件照的拍摄最好能够在具备影室灯的摄影室内完成,这样易于控制拍摄的整个流程,拍摄效果通常也能够达到最好,如国内外许多大公司的高层管理人员或政府首脑的证件照均是在影室内拍摄的。当然,如果不能拥有这样的条件,只要掌握以下的技巧,同样可以得到较为理想的证件照片。 拍摄前的道具准备 .证件照拍摄实际上对数码相机的要求不高,通常具备、倍的光学变焦,万像素以上的数码相机都可胜任。 .拍摄焦距最好控制在中长焦段(相当于传统相机~)的范围之内,避免广角端夸张的形变,或长焦端对脸部刻画缺乏立体感的现象。 .背景布是证件照拍摄必不可少的重要工具,拍摄前问清楚拍摄要求,以便选择合适的背景颜色(护照、身份证为白色背景,驾驶证为红色背景,一些企业、单位用于宣传或出入证的证件照的背景则比较灵活,可以为单色,也可以为渐变色甚至具备一些条纹或纹理的背景)。 .一副稳定的三脚架是证件照拍摄的关键,特别是在没有影室灯光的室内和阴天的室外拍摄尤为重要。

相关文档
最新文档