光纤纵差保护的特点

光纤纵差保护的特点
光纤纵差保护的特点

光纤作为继电保护的通道介质,具有不怕超高压与雷电电磁干扰、对电场绝缘、频带宽和衰耗低等优点。而电流差动保护原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相运行、单侧电源运行方式的影响,差动保护本身具有选相能力,保护动作速度快,最适合作为主保护。近年来,光纤技术、DSP技术、通信技术、继电保护技术的迅速发展为光纤电流差动保护的应用提供了机遇。

1 光纤保护的基本方式及其特点

光纤保护目前已在国内部分地区得到较为广泛的使用,对已投入运行的光纤保护,按原理划分,主要有光纤电流差动保护和光纤闭锁式、允许式纵联保护两种。

光纤电流差动保护

光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点,是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护优点的同时,以其可靠稳定的光纤传输通道,保证了传送电流的幅值和相位正确可靠地传送到对侧。时间同步和误码校验问题,是光纤电流差动保护面临的主要技术问题。在复用通道的光纤保护上,保护与复用装置时间同步的问题,对于光纤电流差动保护的正确运行起到关键的作用,因此目前光纤差动电流保护都采用主从方式,以保证时钟的同步;由于目前光纤均采用64Kbit/s数字通道,电流差动保护通道中既要传送

电流的幅值,又要传送时间同步信号,通道资源紧张,要求数据的误码校验位不能过长,这样就影响了误码校验的精度。目前部分厂家推出的2Mbit/s数字接口的光纤电流差动保护,能很好地解决误码校验精度的问题。

光纤闭锁式、允许式纵联保护

光纤闭锁式、允许式纵联保护是在目前高频闭锁式、允许式纵联保护的基础上演化而来,以稳定可靠的光纤通道代替高频通道,从而提高保护动作的可靠性。光纤闭锁保护的鉴频信号能很好地对光纤保护通道起到监视作用,这比目前高频闭锁保护需要值班人员定时交换信号,以鉴定通道正常可靠与否灵敏了许多,提高了闭锁式保护的动作可靠性。此外,由于光纤闭锁式、允许式纵联保护在原理上与目前大量运行的高频保护类似,在完成光纤通道的敷设后,只需更换光收发讯号机即可接入目前使用的高频保护上,因此具有改造方便的特点。与光纤电流纵差保护比较,光纤闭锁式、允许式纵联保护不受负荷电流的影响,不受线路分布电容电流的影响,不受两端TA特性是否一致的影响。如光纤网络能有效解决双重化的问题,光纤闭锁式、允许式纵联保护就将逐步代替高频保护,在超高压电网中得到广泛应用。

2 光纤电流差动保护的基本原理

光纤电流差动保护主保护由故障分量差动、稳态量电流差动及零序差动保护构成。差动保护采用每周波96点高速采样、由于采样速率高,可以进行短窗矢量算法实现快速动作,使典型动作时间小于15ms。

三种差动保护的配合使用

故障分量电流差动保护不受负荷电流的影响、灵敏度高,但存在时间短,在首次故障使用时,稳态量电流差动受负荷电流及过渡电阻的影响,灵敏度下降,可在全相及非全相全过程使用。零序电流差动仅反应接地故障,接地故障时故障分量差流和零序差流是相等。零序差动不比故障分量电流差动保护灵敏度高。可在无法使用故障分量电流差动保护的少数场合(如故障频繁发生,而且间隔很短的时候)弥补全电流差动保护灵敏度不足的缺陷,零序电流差动保护需要100ms左右延时,以躲过三相合闸不同时等因素的影响,三相门口短路测量误差和暂态分量引起的计算误差。后备保护由三段式相间距离和接地距离以及六段零序方向保护(四段零序电流及二段不灵敏零序电流保护)构成的全套后备保护,并配有自动重合闸。

保护中差动继电器的特点

故障附加网络中只有一个电源,因此在区内故障时两侧的电流变化量基本同向,其矢量和接近于两者的代数和。

不受负荷电流的影响,因此负荷电流不会产生制动电流。

受过渡电阻的影响也较小。因为电源在串联回路中,线路两侧的电流变化量的变化和过渡电阻的大小呈线性关系。

在单侧电源线路上发生短路,只要短路前有负荷电流,短路后无电源侧的工频变化量电流也会形成动作电流。

由于上述原因该继电器很灵敏,提高了重负荷线路上发生经高电阻短路时的灵敏度。

零序差动继电器的特点

由于不反应负荷电流,所以负荷电流不产生制动电流。受过渡电阻的影响较小。因此,在重负荷线路上发生经高电阻短路时灵敏度较高。

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。 但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: 1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。 差动保护 差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名 差动保护 外文名 Differential protection 目录 1.1概述 2.2原理 3.3技术参数 4.?环境条件 1.?工作电源 2.?控制电源 3.?交流电流回路 4.?交流电压回路 5.?开关量输入回路 1.?继电器输出回路 2.4功能 3.5主要措施 4.6缺点 概述编辑

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。 差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,上位机报警保护出口动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。 原理编辑 差动保护

南瑞RCS-931B光纤差动保护浅析

南瑞RCS-931B光纤差动保护浅析 一、光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在CT(电流互感器)的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。★★★但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护! RCS-931B保护装置包括以分相电流差动和零序电流差动为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护,由三段式相间和接地距离及四个延时段零序方向过流构成全套后备保护。正常和外部故障时:Im=-In,制动量≥动作量,保护可靠不动作,内部故障时:Im=In时,制动量为零,动作最灵敏。 动作判据如下式(1)、(2),两式同时满足程序规定的次数即跳闸。 | Im + In | > ICD(1)| Im + In | > k | Im - In | (2) 式(1)为基本判据,ICD 表示线路电容电流,式(2)为主判据。 式(1)、(2)的动作特性如图1 所示,制动量随两侧电流大小、相位而改变,Im = In 时,制动量为零,动作最灵敏,区外故障,Im = - In,制动量》动作量,保护可靠不动作。

二、整组动作时间:1.工频变化量距离元件:近处3~10ms 末端<20ms222 2.差动保护全线路跳闸时间:<25ms(差流>1.5 倍差动电流高定值) 3.距离保护Ⅰ段:≈20ms 三、保护程序结构及跳闸逻辑:

DMP317微机光纤纵差保护测控装置

DMP—300 变电站、发电厂综合自动化系统DMP317线路光纤纵差保护测控 装置 技术使用说明书 曲阜华能电气制造有限公司 2003年10月

目录 1 适用范围 1 2 主要功能 1 2.1保护功能 1 2.2远动功能 1 2.3录波功能 1 3 技术指标 1 3.1额定数据 1 3.2功率消耗 1 3.3过载能力 2 3.4测量误差 2 3.5温度影响 2 3.6安全与电磁兼容 2 3.7绝缘耐压 3 3.8光纤接口指标 3 4 保护逻辑原理 3 4.1线路差动保护 3 4.2差流越限告警 5 4.2 PT断线告警 5 5 整定说明 5 5.1整定清单 5 5.2整定说明 6 6 厂家设置 6 7 CT接线方式 6 8 通讯设置 6 附图1. DMP317微机线路光纤纵差保护装置背板端子图 7附图2. DMP317微机线路光纤纵差保护装置原理图 8

1 适用范围 本装置适用于110KV及以下系统的短线路,作为相间短路的快速保护,可集中组屏,也可分散于开关柜。 2 主要功能 2.1保护功能 本套装置成套使用,分为主从两台装置,可分别设置主从两机。 ①线路差动保护(带差流越限告警并闭锁差动保护) ②PT断线告警 ③通讯告警功能并闭锁比率差动保护 以上保护均有软件开关,可分别投入和退出。 2.2远动功能 遥信:四个状态遥信 2.3录波功能 装置具有故障录波功能,记忆最新8套故障波形,记录故障前10个周波,故障后10个周波,返回前10个周波,返回后5个周波,可在装置上查看、显示故障波形,进行故障分析,也可上传当地监控或调度。 3 技术指标 3.1额定数据 交流电流 5A、1A 交流电压 100V 交流频率 50HZ 直流电压 220V、110V 3.2功率消耗 交流电流回路 IN=5A 每相不大于0.5VA 交流电压回路 U=UN 每相不大于0.2VA 直流电源回路正常工作不大于10W 保护动作不大于20W

110kV光纤纵差线路保护

风电场110kV升压站 110kV光纤纵差微机保护 调试报告 变电站名:风力发电场 110kV升压站 设备名称: 110kV利风房线微机保护 装置型号: RCS-943AM 直流电压: DC220V 交流电压: 57.7V 交流电流: 1A 校验类型:整组试验 调试日期:

一、外观检查: 装置外观无破损、划伤,机箱及面板表面处理,喷涂均匀,字符清晰,紧固 件无破损,安装牢固。 各回路对地及相互间绝缘电阻≥20MΩ。 二、上电检查: 1.各插件外观焊接良好,所有芯片插接紧。 2.液晶显示正常,按键灵活,版本号: 3.00,校验码:EF51。 3.装置外形端正,无损坏和变形现象。 4.保护装置的各部件固定良好,无松动现象。 三、零漂及采样线性度检查: 1.零漂: IA IB IC I0 UA UB UC UX 0.001 0.003 0.002 0.002 0.001 0.001 0.001 0.002 2.采样线性度: IA IB IC I0 UA UB UC UX 外加量0.2A 0.2A 0.2A 0.2A 11.5V 11.5V 11.5V 11.5V 330 0 210 0 90 0 330 0 0 0 240 0 120 0 0 0 显示值0.203A 0.201A 0.199A 0.202A 11.52V 11.52V 11.51V 11.51V 330 0 210 0 90 0 330 0 0 0 240 0 120 0 0 0 外加量0.6A 0.6A 0.6A 0.6A 28.5V 28.5V 28.5V 28.5V 330 0 210 0 90 0 330 0 0 0 240 0 120 0 0 0 显示值0.599A 0.599A 0.601A 0.599A 28.49V 28.51V 28.49V 28.49V 330 0 210 0 90 0 330 0 0 0 240 0 120 0 0 0 外加量 1A 1A 1A 1A 57.7V 57.7V 57.7V 57.7V 330 0 210 0 90 0 330 0 0 0 240 0 120 0 0 0 显示 1.003A 1.004A 1.002A 1.004A 57.75V 57.73V 57.73V 57.74V

基于光纤差动保护的新型智能配电网设计

基于光纤差动保护的新型智能配电网设计 摘要:本文主要阐述了我国配网自动化建设的现状和发展趋势,并分析光纤差 动保护在10kV线路应用的优势,从而提出了一种基于光纤差动保护的新型智能 配电网设计,并分析这种配网自动化设计的应用优势。 关键词:配网自动化;光纤差动保护;新型智能电网设计 1 配网自动化建设的发展趋势 随着城市现代化建设的脚步不断向前,社会对用电可靠性的要求越来越高。传统意义上 的“集中控制型”、就地控制型”、“运行监测型”无法满足用电用户“零停电”的要求。而基于面 保护判断逻辑的“智能分布式”逻辑过于复杂,运行维护难度高,难以大范围运用。除了满足 用电用户的要求,配网自动化建设方案还要考虑到运行维护、检修、改造难度等方面的问题。 因此,寻找一种可靠性高、设计原理简单、便于运行维护检修且易于改造的配网自动化 方案,是我国配网自动化建设的发展趋势。 2光纤差动保护的优势 光纤差动保护相对比与其它类型的保护,其优势主要有: (1)光纤差动保护的原理简单,运用的是基尔霍夫电流基本定律,根据其原理本身,就可以正确判断区内故障与区外故障,具有成熟可靠的保护判断逻辑。 (2)光纤差动保护被广泛运用于220kV及以上电压等级的输电线路中,并作为主保护。因此,对于光纤差动保护,国内有着成熟的运行管理经验以及检修、维护经验。 (3)光纤差动保护中,线路两侧的保护装置不存在电联系,提高了系统运行的可靠性。 (4)光纤差动保护其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等情况,可适应各种不同的电力运行系统。 (5)光纤差动保护由于其原理简单,并且不受运行方式变化的影响,能更好地实现保护单元化,可灵活应用于线路改造、线路整改、开闭所改造。 纤差动保护技术在世界电力系统中广泛应用,其保护逻辑日益成熟、完善。并且,随着 光纤通讯技术的不断发展,使光纤差动保护的实施变得更加简单,其应用的领域将变得更加 广泛。 3一种基于光纤差动保护的新型智能配电网设计方案 3.1 新型智能配电网设计方案总述 新型智能配电网的主干线设计采用简单、可靠的单环网结构,单环网结构可以为开环系 统或者闭环系统。当为开环系统时,需要设置一个常开点作为转供电的联络开关。 智能配电网的高压开关均采用紧凑、环保型的真空断路器开关,故障发生时可实现快速 就地分闸隔离故障。 智能配电网的主保护采用光纤差动保护,并且设计后备保护。当光纤通讯异常,主保护 失效时,智能配电网主干线路的保护将自主切换为后备保护。 3.2 智能配电网保护设计 (1)主保护设计 主干线采用光纤差动保护。光纤接口采用FC型接口,采用单模双纤,发送器件为 1310nm InGaAsP/InPMQW-FP激光二极管(简称LD),光接收器件采用InGaAs光电二极管 (简称PIN),光纤传输距离可达10km。 保护装置与保护装置之间采用“专用光纤通道”传输数据,即保护装置与保护装置之间的 数据交互单独采用一组光纤,且为直接连接的方式,中间不经过任何转换。这样设计的好处 在于可保证数据传输的速度足够快,且稳定可靠。 光纤差动保护为分相电流保护,可分别检测A、B、C三相的差动电流。设计具备二次谐 波闭锁光纤差动保护功能,此功能是为了防止励磁涌流引起光纤差动保护误动。 主干线保护设计确保线路发现大电流的短路故障以及小电流的接地故障时,保护装置均 能灵敏检测并且可靠动作。光纤差动保护、光纤零序差动保护的逻辑判断及继电器出口动作 时间总和为≦40ms,开关的固有分闸时间为≦40ms,故障总处理时间为≦80ms。

(完整版)CSC-103B光纤差动保护装置检修规程

CSC-103B光纤差动保护装置检修规程 1 主题内容与适用范围 本标准规定了CSC-103B光纤差动保护装置的检验类型、周期、检验的原则性要求、检验方法及质量标准的主要技术标准 本标准适用于继电保护人员对CSC-103B光纤差动保护装置进行调试、检验 2 引用标准 《继电保护及电网安全自动装置检验条例》 《继电保护和安全自动装置基本试验方法》GB/T 7261-2016 《继电保护和安全自动装置技术规程》GB/T 14285-2006 《继电保护和电网安全自动装置检验规程》DL/T 995-2016 《继电保护及二次回路安装及验收规范》GB/T 50976-2014 《继电保护和电网安全自动装置现场工作保安规定》Q/GDW 267-2009 《继电保护和安全自动装置通用技术条件》DL/T 478-2013 《继电保护微机型试验装置技术条件》DL/T624-2010 《继电保护测试仪校准规范》DL/T 1153-2012 《防止电力生产重大事故的二十五项重点要求》【国家能源局】《电力系统继电保护及安全自动装置反事故措施要点》中华人民共和力工业部《国家电网公司十八项电网重大反事故措施》 《CSC-103B数字式超高压线路保护装置说明书》 3 主要技术参数 3.1 装置简介 CSC-103B线路保护装置包括以纵联距离和零序方向元件为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护由三段式相间和接地距离及四个延时段零序方向过流构成全套后备保护 3.2 额定参数 a) 交流电压Un:100/ 3 V ;线路抽取电压Ux:100V 或100/ 3 V b) 交流电流In :1A c) 交流频率:50Hz d) 直流电压:220V e) 开入输入直流电压:24V 3.3 交流回路精确工作范围 a) 相电压:0.25V ~70V b) 检同期电压:0.4V ~120V c) 电流:0.05In ~30In

最新DMP317微机光纤纵差保护测控装置汇总

D M P317微机光纤纵差 保护测控装置

DMP—300 变电站、发电厂综合自动化系统DMP317线路光纤纵差保护测控装置 技术使用说明书 南京力导保护控制系统有限公司 2003年10月

目录 1 适用范围 (1) 2 主要功能 (1) 2.1保护功能 (1) 2.2远动功能 (1) 2.3录波功能 (1) 3 技术指标 (1) 3.1额定数据 (1) 3.2功率消耗 (1) 3.3过载能力 (2) 3.4测量误差 (2) 3.5温度影响 (2) 3.6安全与电磁兼容 (2) 3.7绝缘耐压 (3) 3.8光纤接口指标 (3) 4 保护逻辑原理 (3) 4.1线路差动保护 (3) 4.2差流越限告警 (5) 4.2 PT断线告警 (5) 5 整定说明 (5) 5.1整定清单 (5) 5.2整定说明 (6) 6 厂家设置 (6) 7 CT接线方式 (6) 8 通讯设置 (6) 附图1. DMP317微机线路光纤纵差保护装置背板端子图 (7) 附图2. DMP317微机线路光纤纵差保护装置原理图 (8)

1 适用范围 本装置适用于110KV及以下系统的短线路,作为相间短路的快速保护,可集中组屏,也可分散于开关柜。 2 主要功能 2.1保护功能 本套装置成套使用,分为主从两台装置,可分别设置主从两机。 ①线路差动保护(带差流越限告警并闭锁差动保护) ②PT断线告警 ③通讯告警功能并闭锁比率差动保护 以上保护均有软件开关,可分别投入和退出。 2.2远动功能 遥信:四个状态遥信 2.3录波功能 装置具有故障录波功能,记忆最新8套故障波形,记录故障前10个周波,故障后10个周波,返回前10个周波,返回后5个周波,可在装置上查看、显示故障波形,进行故障分析,也可上传当地监控或调度。 3 技术指标 3.1额定数据 交流电流 5A、1A 交流电压 100V 交流频率 50HZ 直流电压 220V、110V 3.2功率消耗 交流电流回路 IN=5A 每相不大于0.5VA 交流电压回路 U=UN 每相不大于0.2VA 直流电源回路正常工作不大于10W 保护动作不大于20W

光纤差动保护

光纤差动保护 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。 当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。 2 对通信系统的要求 光纤电流差动保护借助于通信通道双向传输电流数据,供两侧保护进行实时计算。其一般采用两种通信方式:一种是保护装置以64Kbps/2Mbps速率,按

ITU-T建议G.703规定于数字通信系统复用器的64Kbps/2Mbps数据通道同向接口,即复用PCM方式;另一种是保护装置的数据通信以64Kbps/2Mbps速率采用专用光纤芯进行双向传输,即专用光纤方式。(详见图3) 光纤电流差动保护要求线路两侧的保护装置的采样同时、同步,因此时钟同步对光纤电流差动保护至关重要。当电流差动保护采用专用光纤通道时,保护装置的同步时钟一般采用"主-从"方式,即两侧保护中一侧采用内部时钟作为主时钟,另一侧保护则应设置成从时钟方式。设置为从时钟侧的保护装置,其时钟信号从对侧保护传来的信息编码中提取,从而保证与对侧的时钟同步。当采用复用PCM方式时,复用数字通信系统的数据通道作为主时钟,两侧保护装置均应设置为从时钟方式,即均从复用数字通信系统中提取同步时钟信号:否则保护装置将无法与通信系统数据通道进行复接。

纵联保护原理

纵联保护原理 线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。而普通的反应线路一侧电量的保护不能做到全线速动。纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。是属于直接比较两侧电量对纵联保护。目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。 先了解一下纵联差动保护: 为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。 输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连

接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路. 纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。 高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。安工作原理的不同可分为两大类:方向高频保护和相差高频保护。 光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。光纤通信广泛采用PCM调制方式。这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

光纤纵差保护远传远跳功能的应用分析

光纤线路保护远传远跳功能的应用分析 摘要:光纤通道具有传输速度快,抗干扰能力突出,稳定可靠的优点,越来越多地应用到线路保护中。本文分析比较了光纤线路保护中的远传、远跳功能,同时给出具体的应用范例,并结合实际工程设计中容易出现的问题,进行讨论分析,有利于技术人员深刻理解线路保护中的远传、远跳功能。 关键词:光纤、远传、远跳 引言 由于光纤通道独立于输电线路,采用纤 芯传输信号,其信号传输速度快,抗干扰能 力突出,故障概率低,并且调试成功后比较 稳定可靠,因此越来越多继电保护设备采用 光纤通道传输保护信号。目前,220kV及以 上变电站绝大多数输电线路采用了具有光 纤通道的数字式线路保护。采用数字光纤通 道,不仅可以交换两侧电流数据,同时也可 以交换开关量信息,实现一些辅助功能,其 中就包括远传、远跳功能。 目前,大多数厂家在远传、远跳信号传 输实现上采用类似的原理:保护装置在采样 得到远传、远跳开入为高电平时,经过编码, CRC校验,作为开关量,连同电流采样数据 及CRC校验码等,打包成完整的一帧信息, 通过数字通道,传送到对侧保护装置。同样, 接收到对侧数据后,经过CRC校验,解码提 取出远传、远跳信号。唯一的区别在于:保 护装置确认收到对端远跳信号后,经由可选 择的本侧装置启动判据,驱动出口继电器出 口跳闸。保护装置在收到对侧远传信号后, 并不作用于本装置的跳闸出口,而只是如实 的将对侧装置的开入节点反映到本侧装置 对应的开出接点上,其接点反映开出并 开入 开入 M N 910 914 916 918 } 909 913 915 917 }远传2(开出) 远传1 (开出) 图1 远传功能示意图不经装置启动闭锁。以RCS-900系列保护装置为例,远传功能实现方式如图1所示。一、远跳功能应用 对于如图2所示典型220kV系统接线,当母线K2 发生故障,本侧断路器失灵或者K1发生故障时,母差保护虽动作切除本侧开关,故障依然没有切除,由于故障点不在线路纵联差动保护范围之内,故障不能快速切除,只能通过线路后备保护经延时跳开对侧开关来切除故障,这将延长故障切除时间,对系统造成很大冲击。 侧 图2 典型220kV系统接线 220kV系统通常借助远跳功能,瞬时跳开对侧断路器,减小故障对系统稳定的影响。具体实现逻辑如图3所示,利用母差或失灵保护动作启动本侧断路器的TJR永跳重动继电器,当TJR触发后,在跳开本侧断路器的同时, TJR重动接点开入本侧线路保护的远跳端子,经光纤通道,对侧保护装置收远跳开入后,经可选择的本地启动判据, 远跳开入 图3 远跳功能 通过保护跳闸出口接点,瞬时跳开对侧断路

南瑞RCS-9613CS线路光纤纵差保护装置操作指

南瑞RCS-9613CS线路光纤纵差保护装置 操作指导书 一:应用范围: RCS-9613CS适用于110kV以下电压等级的非直接接地系统或小电阻接地系统中的线路光纤纵差和电流保护及测控装置。在大庆石化公司范围内6kV变电所进线普遍使用,化工区光差改造项目涉及10个二级单位的36个变电所175套综保装置。 二、使用说明: 2.1装置的正面面板布置图。

2.2指示灯说明 “运行”灯为绿色,装置正常运行时点亮。 “报警”灯为黄色,当发生报警时点亮。 “跳闸”灯为红色,当保护跳闸时点亮,在信号复归后熄灭。 “合闸”灯为红色,当保护合闸时点亮,在信号复归后熄灭。 “跳位”灯为绿色,当开关在分位时点亮。 “合位”灯为红色,当开关在合位时点亮。 2.3键盘说明: “△”光标上移一行或上翻一页 “ “”光标左移动一格,或启动装置,启动打印 “”光标右移一格,或启动装置,或启动打印 “+”修改,增加数值 “-”修改,减小数值 “确定”进入下一级菜单或确认当前修改,执行当前操作 “取消”返回上一级菜单或取消当前修改,取消当前操作 “复位”系统重新启动,正常运行时请勿随意触按 2.4液晶显示说明 2.4.1主画面液晶显示说明 装置上电后,正常运行时液晶屏幕将显示主画面,格式如下:

2.4.2保护动作时液晶显示说明 本装置能存储64次动作报告,当保护动作时,液晶屏幕自动显示最新一次保护动作报告,当一次动作报告中有多个动作元件时,所有动作元件将滚屏显示,格式如下: 2.4.3运行异常时液晶显示说明 本装置能存储64次运行报告,保护装置运行中检测到系统运行异常则立即显示运行报告,当一次运行报告中有多个异常信息时,所 小数点前三位为整组动作的序号,由装置启动到装置返回为一次整组动作。小数点后两位为在一次整组中各动作(返回)元件的排列次序,在跳闸报告显示中仅显示动作元件。 □□□·□□ □□ □□ □□ □□ □□ □□ □□□□ □□□ □□□·□□A □□□□□□ 动作元件的动作时刻年、月、日 时、分、秒、毫秒 前三个方框为故障相显示(ABC),后五个方框为最大故障相电流(以过流保护动作为例) 保护动作元件 系统频率显示 装置当前运行 的定值区号 实时保护CT 的 A 、C 相电流平均值 实时线电压平均值 保护实时时钟,年、月、日、时、分、秒 有“.”显示时,表示装置正在硬件对时 重合闸充电标记,实心时表示重合闸充电

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

一起220KV线路光纤纵差保护装置误动原因分析

摘要:文章介绍一起由于单侧电流互感器饱和引起的光纤差动保护误动事故,通过对保护误动原因的查找、分析,给出了几种防止电流互感器饱和的方法,以提高光纤差动保护的正确动作率。 关键词:光纤差动保护;电流互感器;ta饱和;保护误动 引言 光纤作为继电保护的通道介质,具有不怕超高压与雷电电磁干扰、对电场绝缘、频带宽和衰耗低等优点。电流差动保护原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相运行方式的影响。差动保护本身具有选相能力,而且动作速度快,最适合作为主保护。因此利用光纤通道构成的电流差动保护具有一系列的优点,得到了广泛的应用。 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本原理也是基于克希霍夫基本电流定律,是测量两侧电气量的保护,能快速切除被保护线路全线范围内的故障,不受过负荷及系统振荡的影响,灵敏度高。它的主要缺点是对电流互感器的要求较高,即要求线路两侧光差保护所使用电流互感器的传变特性一致,防止任一侧电流互感器饱和导致保护误动作。本文通过对光差保护误动原因的查找、分析,给出了几种防止电流互感器饱和的方法,以提高光差保护动作的正确率。 1 故障简介 线路ⅰ第一套保护(rcs-931)61ms b相电流差动保护动作、171ms 三相电流差动保护动作、208ms远方起动跳闸,第二套保护(csc103d)216ms远方跳闸出口;133ms断路器b 相跳闸、268ms断路器a、c相跳闸。线路ⅰ对侧第一套保护(rcs-931)61ms b相电流差动保护动作、173ms远方起动跳闸、188ms 三相电流差动保护动作,第二套保护(csc103d)183ms 远方跳闸出口;110ms断路器b相跳闸、223ms断路器a、c相跳闸。 2 故障分析 由于母线保护动作跳开两段母线,各断路器均三相跳开,因此未引起值班人员的重视。对线路ⅰ两侧保护动作报告提取后,发现rcs-931保护b相电流差动保护动作,断路器b相先于a、c两相跳闸,初步判断为母线故障引起的光纤差动保护误动作。 光纤电流差动保护误动作的原因主要有:保护装置误整定、保护装置电流回路采样不精确、电流互感器饱和、电流互感器二次回路接线错误、电流互感器二次回路中性线两点接地等。 首先,对线路ⅰ两侧保护装置的定值与最新的定值通知单进行了核对,均未发现问题。 其次,对线路ⅰ两侧保护装置的带负荷检验报告进行检查, a站:ta变比1200:5,二次电流1.2a,b站:ta变比2500:1,二次电流0.19a,差流只有几个毫安,这就排除了电流二次回路接线错误的原因。 然后,对现场反事故措施执行情况进行了检查,光差保护使用的电流回路中性线均在保护屏一点可靠接地,使用电缆也均为屏蔽电缆,并且屏蔽层两端接地,符合反措要求。 最后,把检查的重点放到了电流互感器饱和及传变特性不一致方面上。结合调取线路ⅰ两侧保护装置的内部录波图,发现线路ⅰ变电站a侧电流二次录波中,b相电流明显发生畸变,发生严重ta饱和。变电站b侧电流波形基本良好,但b相含有较大直流分量。 为说明变电站a侧ta饱和的严重程度,将a侧电流按ta变比折算至b侧并反向比较波形。如图4所示:变电站a侧b相电流波形用实线表示,变电站b侧b相电流波形用虚线表示。 从图4可见,在第三个周波的时候,a侧的ta快速进入饱和,而b侧仍能正确进行电流的传变,从而造成在第三个周波的时候产生较大的差流。rcs-931bm差动保护采用了较高的制动系数和自适应浮动制动门槛相结合的方法,保证在发生比较严重ta饱和情况下不会误动。

线路光纤保护联调方案

光纤差动保护联调方案 摘要:光纤电流差动保护是高压和超高压线路主保护的发展趋势。根据光纤分相电流差动保护的基本原理,详细阐述了光纤电流差动保护联调方案,其中包括检查两侧电流及差流、模拟线路空充时故障或空载时发生故障、模拟弱馈功能以及模拟远方跳闸功能。同时分析了光纤电流差动保护定检中存在的危险点,并提出了相应对策。 关键词:光纤分相电流差动:联调;充电;弱馈;远方跳闸 0 引言 近年来,随着通信技术的发展和光缆的使用,光纤分相电流差动保护作为线路的主保护之一得到了越来越广泛的应用。而且这种保护在超高压线路的各种保护中,具有原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相、单侧电源等方式的影响,动作速度快,选择性好,能可靠地反应线路上各种类型故障等突出优点。目前由于时问、地域、通信等条件限制,继电人员常常无法密切配合进行两侧纵联差动保护功能联调,造成联调项目简化,甚至省略的现象时有发生,这样极为不利于继电人员对保护功能的细致了解,因此本文将结合南瑞RCS一931和四方CSC一103型光纤差动保护装置简要说明两侧差动保护联调的试验步骤。 数字电流差动保护系统的构成见图1。 M N 图1电流差动保护构成示意图 上图中M、N为两端均装设CSC-103高压线路保护装置,保护与通信终端设备间采用光缆连接。保护侧光端机装在保护装置的背板上。通信终端设备侧由本公司配套提供光接口盒CSC-186A/CSC-186B。 1 光纤分相电流差动保护基本原理光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,各侧保护利用本侧和对侧电流数据按相进行差动电流计算。 动作电流(差动电流)为: I D=│(ìM-ìMC)+( ìN-ìNC)│ 制动电流为:I B=│(ìM-ìMC)-( ìN-ìNC)│ 比例制动特性动作方程为: ID﹥ICD ID﹥K*IB 式中:IM、IN分别为线路两侧同名相相电流,IMC、INC为实测电容电流,并以由母线流向线路为正方向;ICD为差动保护动作门槛;K为比例制动系数,一般K<1。线路内部故障时,两侧电流相位相同,动作电流远大于制动电流,保护动作;线路正常运行或区外故障时,两侧电流相位反向,动作电流为零,远小于制动电流,保护不动作。南瑞公司的RCS

110KV短线路光纤纵差保护

110KV短线路光纤纵差保护 【摘要】本文介绍了某污水处理厂110KV主变电站由于与电源侧220KV 变电站相距过近,其110KV进线属于超短联络线,而导致的相应的继电保护配置方面与常规线路保护的一些不同之处。 【关键词】继电保护;超短线路;光纤;保护配置 引言 随着电力系统的发展和对城市电网的优化和改造工程的进行,几公里及十几公里的中低压线路和短线路群的出现,这些短线路若选用传统的电流保护或距离保护,在整定值与动作时间上都难以配合,因此选择光纤纵差保护成为一种必然,其原理简单、运行可靠、动作快速准确且不需要与相邻线路的保护进行配合等诸多优点,使其在线路保护中得到广泛应用。 1 保护配置方案 2000年重庆市第一大污水处理厂开始建设,其承担电源任务的两个110KV 主变电所有两回电源进线,其中一回电源进线来自重庆市电力公司下属城区供电局220KV某变电站。该线路长度不超过1KM,属于超短线路,根据《继电保护和安全自动装置技术规程》(DL400-91)规定:“如电力网的某些主要线路采用全线速动保护后,不仅改善本线路保护性能,而且能够改善整个电网的保护性能,应装设一套全线速动保护”。 在为该线路配置保护时不宜选用高频闭锁式纵联保护。110KV超短线路采用高频闭锁式纵联保护,开设电力线载波通信时,高频信号可能产生差拍,导致收信不正确而误动作。虽然在理论上可采用人为接入固定衰耗的方法来消除频拍,但目前这种设备尚无成熟产品。参照《规程》的2.6.5节,该线路也可考虑采用短引线差动保护或导引线为通道的纵联差动保护,但是短引线差动保护二次回路由于引线较长,TA的二次负载较大,从而引起线路两侧的TA特性不匹配,并且TA的二次回路接线也较复杂,这些都将直接影响差动保护的动作特性和安全性。而以导引线为通道的纵联差动保护,其导引线通道易受外界干扰,抗干扰能力差,易受线路故障影响,影响差动保护的安全可靠运行。目前,光纤通道技术已逐渐成熟,由于光纤传输不受电磁干扰的影响,通信误码率低,工作稳定,在安全性和可靠性方面与导引线通道相比有显著优势。同时,光纤通道频带宽,容量大,可以缓解电力系统的通道拥挤问题。因此,利用光纤传输的微机线路纵联差动保护得到了越来越广泛的研究和应用。 与此同时,由重庆电力调度通信中心在对相关电力系统网络进行周密细致的分析计算后得出的结论是在两变电站之间线路:在电源侧装一套带失灵启动微机线路保护和光纤线路纵差保护。”综合以上意见,本工程的110KV线路保护采用了由国家电力自动化研究院南瑞继保所开发生产的RCS-943A型高压输电线路成套保护装置。 2 保护装置及保护通道 RCS-943A型保护装置包括以分相电流差动和零序电流差动为主体的快速主保护,由三段相间和接地距离保护、四段零序方向过流保护构成的全套后备保护;装置配有三相一次重合闸功能、过负荷告警功能;装置还带有跳合闸操作回路和交流电压切换回路,具有全线速跳功能。数字差动保护的关键是线路两侧差动保护之间电流数据的交换,本装置中的数据采用64Kb/s高速数据通道、同步通信

光纤差动保护原理分析

光纤差动保护原理分析 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。

当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。

对于光纤分相电流差动保护而言,其差动保护一般采用如图2所示的双斜率制动特性,以保证发生穿越故障时的稳定性。图中,Id 表示差动电流,Ir表示制动电流,K1、K2分别表示不同的制动斜率。 采用这样的制动特性曲线,可以保证在小电流时有较高的灵敏度,而在电流大时具有较高的可靠性,即当线路末端发生区外故障时,因电流互感器发生饱和产生传变误差,此时采用较高斜率的制动特性更为可靠。 由于线路两侧电流互感器的测量误差和超高压线路运行时产生 的充电电容电流等因素,差动保护在利用本地和对侧电流数据按相进行实时差电流计算时,其值并不为零,也即存在一定的不平衡电流。光差动保护必须按躲过此电流值进行整定,这也是在上面所示的图2中最小差电流整定值Isl不为零的原因所在。如何躲过该不平衡电流对差动保护的影响,不同类型的保护装置其采用的整定方法也不尽相同,一般采用固定门坎法进行整定,即将在正常运行中保护装置测量到的差电流作为被保护线路的纯电容电流,并将该电流值乘以一系数(一般为2-3)作为差动电流的动作门坎。 当差动元件判为区内故障发出跳闸命令时,除跳开线路本侧断路器外,还借助于光纤通道向线路对侧发出联跳信号,使得对侧断路器快速跳闸。 2 对通信系统的要求

浅谈光纤差动保护

浅谈光纤差动保护 发表时间:2016-08-29T10:27:38.213Z 来源:《电力设备》2016年第12期作者:杜易霏徐晓玥李泽方 [导读] 由于只能反应两侧TA 之间的线路全长,在原理上讲光纤差动保护并不是完整的保护。 杜易霏徐晓玥李泽方 (山东核电有限公司山东烟台 265116) 摘要:随着我国经济以及科技的快速发展,超高压输电线路也得到了一定的发展。近年来,光纤通信技术发展迅速,光纤差动保护因其保护原理简单、动作快速、能可靠地反映线路上各种类型故障等优点,在220kV 及以上电压等级的输电线路中作为主保护被广泛应用。本文主要从光纤差动保护原理入手,结合实际经验,对其功能的应用和实现做了相应的介绍。 关键词:光纤差动、原理、注意事项 光纤差动保护基本原理 由于只能反应两侧TA 之间的线路全长,在原理上讲光纤差动保护并不是完整的保护,通常还需附带其他后备保护以弥补不足。如RCS-931保护以分相电流差动和零序电流差动为主体的快速主保护,还配有工频变化量距离元件构成快速的Ⅰ断保护,由三段式相间和接地距离及多个零序方向过流保护构成后备保护,保护有分相出口。 光纤差动保护需注意的问题 TA饱和 TA 的饱和使得电流二次值与一次值的误差超出规定值范围,在区外故障时,会影响差动保护的正确动作。克服TA 饱和可选用合适的电流互感器,宜尽量选用有剩磁限值的互感器如TPY 型;此外,保护装置本身也应采取措施减缓互感器暂态饱和影响,如采用变制动特性比率差动原理等。 在RCS-931保护中,由于采用了较高的制动系数和自适应浮动制动门槛,从而保证了在较严重的饱和情况下不会误动。 通道数据同步性 光纤差动线路保护装置对两侧数据的实时性、同步性要求较高,若两侧采样不同步,会使不平衡电流加大,产生差流。通道两侧采用一主一从方式,用于测量通道延时,主机侧为参照侧,从机侧为调整侧,若两侧不同步,参与计算的交流采样值不是同一时刻的,就会出现差流。解决该问题必须统一时钟,改变时钟方式。RCS931 系列保护通过控制字“主机方式”和“专用光纤”进行整定,可防止因数据传输中产生周期性滑码,出现差流。 若差动保护装置的通信时钟方式控制字设置错误,保护装置也会报通道异常,使光纤差动保护退出运行。因此现场调试及运行中要特别注意正确设置装置的通信时钟方式。 CT极性 母差保护用CT一般为反极性接入;测量用CT为0.5 级,极性应指向母线;计量用CT极性端应指向母线;保护用CT按保护装置的工作原理,严格按照定值单执行。所有的CT 次级除母差保护应在母差保护屏一点接地,其余均应在端子箱内经过击穿保险接地,保护屏内一点接地。 现象:送电带负荷试验时,发现母差保护总差回路中有差流,且值为两倍新安装间隔的电流。 原因分析:母差用CT 副边极性接反,从而导致二次电流在总差回路中不能被平衡掉,总差电流不能平衡,其值为两倍该间隔电流。 处理方法:在CT 接线前,应先进行运行间隔的带负荷试验,测出母差保护的极性及其他组副边的实际使用极性,多测几组,结合各变比的不同,从而得出本间隔得接线图。 光纤通道检查 由于光纤熔接点的质量、尾纤接头,法兰盘的表面不够清洁、光纤接头的缺口未完全卡入缺口、光缆或尾纤的弯曲半径太小(弯曲半径小于3cm)等原因,造成光纤通道的总衰耗增大,使保护装置频繁发通道告警。在日常的现场维护工作中应利用保护装置检修的机会,

相关文档
最新文档