机械零件的失效及分析

机械零件的失效及分析

第一章机械零件的失效及分析

第一节基本概念

一、失效的概念

机械设备中各种零件或构件都具有一定的功能,如传递运动、力或能量,实现规定的动作,保持一定的几何形状等等。当机件在载荷(包括机械载荷、热载荷、腐蚀及综合载荷等)作用下丧失最初规定的功能时,即称为失效。

一个机件处于下列三种状态之一就认为是失效:①完全不能工作;②不能按确定的规范完成规定功能;③不能可靠和安全地继续使用。这三个条件可以作为机件失效与否的判断原则。

二、失效的危害

机械零件与构件的失效最终必将导致机械设备的故障。关键机件的失效会造成设备事故,人身伤亡事故,甚至大范围内灾难性后果。在生产线上一个小小的零件失效,可以是整个生产线瘫痪。因此有效的预防、控制、监测零件的失效是一项意义重大的工作。

三、机械零件失效的基本形式

一般机械零件的失效形式是按失效件的外部形态特征来分类的,大体包括:磨损失效、断裂失效、变形失效和腐蚀与气蚀失效。在生产实践中,最主要的失效形式是零件工作表面的磨损失效;而最危险的失效形式是瞬间出现裂纹和破断,统称为断裂失效。

四、失效分析

失效分析是指分析研究机件磨损、断裂、变形、腐蚀等现象的机理或过程的特征及规律,从中找出产生失效的主要原因,以便采用适当的控制方法。

失效分析的直接的、技术上的目的是为制订维修技术方案提供可靠依据,并对引起失效的某些因素进行控制,以降低设备故障率,延长设备使用寿命。此外,失效形式分析也能为设备的设计、制造反馈信息;为设备事故的仲裁提供客观依据。

第二节零件的磨损失效

摩擦与磨损是自然界的一种普遍现象。当零件之间或零件与其他物质之间相互接触,并产生相对运动时,就称为摩擦。零件的摩擦表面上出现材料耗损的现象称为零件的磨损。材料磨损包括两个方面:一是材料组织结构的损坏;二是尺寸、形状及表面质量(粗糙度)的变化。

如果零件的磨损超过了某一限度,就会丧失其规定的功能,引起设备性能下降或不能工作,这种情形即称为磨损失效。根据摩擦学理论,零件磨损按其性质可以分为磨料磨损、粘着磨损、微动磨损、冲蚀磨损和腐蚀磨损。

一、磨损的一般规律

零件磨损的外在表现形态是表层材料的磨耗。在一般情况下,总是用磨损量来度量磨损程度。一般可以分为三个阶段:

(1)初期磨损阶段

对机械设备中的传动副而言是磨合过程。这一阶段的特点是在短时间内磨损量增长较快。如果表面粗糙、润滑不良或载荷较大,都会加速磨损。经过这一阶段后,零件的磨损速度逐步过渡到稳定状态。机械设备的磨合阶段结束后,应清除摩擦副中的磨屑,更换润滑油,才能进入满负荷正常使用阶段。

(2)正常磨损阶段

机械零部件FMEA的常见失效

机械零部件FMEA的常见失效& 应对措施 机械设备中各种零件或构件都具有一定的功能,如传递运动、力或能量,实现规定的动作,保持一定的几何形状等等。当机件在载荷(包括机械载荷、热载荷、腐蚀及综合载荷等)作用下丧失最初规定的功能时,即称为失效。一般机械零件的失效形式是按失效件的外部形态特征来分类的,大体包括:磨损失效、断裂失效、变形失效和腐蚀与气蚀失效。 一、磨损失效摩擦与磨损是自然界的一种普遍现象。当零件之间或零件与其他物质之间相互接触,并产生相对运动时,就称为摩擦。零件的摩擦表面上出现材料耗损的现象称为零件的磨损。材料磨损包括两个方面:一是材料组织结构的损坏;二是尺寸、形状及表面质量(粗糙度)的变化。1、磨料(粒)磨损零件表面与磨料相互摩擦,而引起表层材料损失的现象称为磨料磨损或磨粒磨损。磨料也包括对零件表面上硬的微凸体。在磨损失效中,磨料磨损失效是最常见、危害最为严重的一种。磨料磨损分为三种情况:第一种是直接与磨料接触的机件所发生的磨损,称为两体磨损;第二种是硬颗料进入摩擦副两对摩表面之间所造成的磨损,称为三体磨损;第三种是坚硬、粗糙的表面微凸体在较软的零件表面上滑动所造成的损伤,称为微凸体磨损。减少磨料磨损的应对措施对工程机械、农业机械、矿山机械中的许多遭受二体

磨损机件,主要是选择合适的耐磨材料,优化结构与参数设计。对所有机械设备中可能遭受三体磨损的摩擦副,如轴颈与轴瓦,滚动轴承,缸套与活塞,机械传动装置等,应设法阻止外界磨料进入摩擦副,并及时清除摩擦副磨合过程中产生的磨屑及硬微凸体磨损产生的磨屑。具体措施是对空气、油料过滤;注意关键部分的密封;经常维护、清洗换油;提高摩擦副表面的制造精度;进行适当的表面处理等。2、粘着磨损粘着磨损是指两个作相对滑动的表面,在局部发生相互焊合,使一个表面的材料转移到另一个表面所引起的磨损。由于摩擦表面粗糙不平,两摩擦表面实际上只是在一些微观点上接触。在法向载荷作用下,接触点的压力很大,使金属表面膜破裂,两表面的裸露金属直接接触,在接触点上发生焊合,即粘着。当两表面进一步相对滑动时,粘着点便发生剪切及材料转移现象。在邻近区域,凸出的材料又可能发生新的粘着,直至最后在表面上脱落下来,形成磨屑。减少粘着磨损的应对措施(1)合理润滑建立可靠的润滑保护膜,隔离相互摩擦的金属表面,是最有效、最经济的措施。(2)选择互溶性小的材料配对铅、锡、银等在铁的溶解度小,用这些金属的合金做轴瓦材料,抗粘着性能极好(如巴氏合金、铝青铜、高锡铝合金等),钢与铸铁配对抗粘着性能也不错。(3)金属与非金属配对钢与石墨、塑料等非金属摩擦时,粘着倾向小,用优质塑料作耐磨层是很有效的。(4)

失效分析思路_张峥

理化检验-物理分册PTCA(PART:A PH YS.T EST.)2005年第41卷3专题讲座 失效分析思路 FAILURE ANA LYSIS M ETH ODOLOGY 张峥 (北京航空航天大学材料学院,北京100083) 中图分类号:T B303文献标识码:E文章编号:1001-4012(2005)03-0158-04 失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措施要切实可行。导致零部件或系统失效的因素往往很多,加之零部件相互间的受力情况很复杂,如果再考虑外界条件的影响,这就使失效分析的任务更加繁重。此外,大多数失效分析的关键性试样十分有限,只容许一次取样、一次观察和测量。在分析程序上走错一步,可能导致整个分析的失败。由此可见,如果分析之前没有一条正确的分析思路,要能如期得出正确的结论几乎是不可能的。 有了正确的分析思路,才能制定正确的分析程序。大的事故需要很多分析人员按照分工同时进行,做到有条不紊,不走弯路,不浪费测试费用。所以从经济角度也要求有正确的分析思路。 1失效分析思路的内涵 世界上任何事物都是可以被认识的,没有不可以认识的东西,只存在尚未能够认识的东西,机械失效也不例外。实际上失效总有一个或长或短的变化发展过程,机械的失效过程实质上是材料的累积损伤过程,即材料发生物理的和化学的变化。而整个过程的演变是有条件的、有规律的,也就是说有原因的。因此,机械失效的客观规律性是整个失效分析的理论基础,也是失效分析思路的理论依据。 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律(即宏观表象特征和微观过程机理)为理论依据,把通过调查、观察和实验获得的失效信息(失效对象、失效现象、失效环 收稿日期:2005-02-07 作者简介:张峥(1965-),男,教授,博士生导师。境统称为失效信息)分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序;机械的失效往往是多种原因造成的,即一果多因,常常需要正确的失效分析思路的指导;对于复杂的机械失效,涉及面广,任务艰巨,更需要正确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路,才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如/顺藤摸瓜0,即以失效过程中间状态的现象为原因,推断过程进一步发展的结果,直至过程的终点结果;/顺藤找根0,即以失效过程中间状态的现象为结果,推断该过程退一步的原因,直至过程起始状态的直接原因;/顺瓜摸藤0,即从过程中的终点结果出发,不断由过程的结果推断其原因;/顺根摸藤0,即从过程起始状态的原因出发,不断由过程的原因推断其结果。再如/顺瓜摸藤+顺藤找根0 /顺根摸藤+顺藤摸瓜0/顺藤摸瓜+顺藤找根0等。 # 158 #

机械零件的失效分析-学习领悟

机械零件的失效分析 失效:零件或部件失去应有的功效零件在工作过程中最终都要发生失效。所谓失效是指:①零件完全破坏,不能继续工作;②严重损伤,继续工作很不安全;③虽能安全工作,但已不能满意地起到预定的作用。只要发生上述三种情况中的任何一种,都认为零件已经失效。一般称呼失效大多是特指零件的早期失效,即未达到预期的效果或寿命,提前出现失效的过程。 失效分析:探讨零件失效的方式和原因,并提出相应的改进措施。根据失效分析的结果,改进对零件的设计、选材、加工和使用,提高零部件的使用寿命,避免恶性事故的发生,带来相应的经济效益和社会效益。 一、零件的失效形式 失效形式分3种基本类型:变形、断裂和表面损伤。 1、变形失效与选材(机件在正常工作过程中由于变形过大导致失效) ①弹性变形失效(由于发生过大的弹性变形而造成的零件失效) 弹性变形的大小取决于零件的几何尺寸及材料的弹性模量。金刚石与陶瓷的弹性模量最高,其次是难溶金属、钢铁,有色金属则较低,有机高分子材料的弹性模量最低。因此,作为结构件,从刚度及经济角度看,选择钢铁是比较合适。 ②塑性变形失效(零件由于发生过大的塑性变形而不能继续工作的失效) 塑性变形失效是零件中的工作应力超过材料的屈服迁都的结果。一般陶瓷材料的屈服强度很高,但脆性非常大,因此,不能用来制造高强度结构件。有机高分子材料的强度很低,最高强度的塑料也不超过铝合金。因此,目前用作高强度结构的主要材料还是钢铁。 2、断裂失效 ①塑性断裂 零件在受到外载荷作用时,某一截面上的应力超过了材料的屈服强度,产生很大的塑性变形后发生的断裂; ②脆性断裂 脆性断裂发生时,事先不产生明显的塑性变形,承受的工作应力通常远低于材料的屈服强度,所以又称为低应力脆断; ③疲劳断裂 在低于材料屈服强度的交变应力反复作用下发生的断裂称为疲劳断裂; ④蠕变断裂 在应力不变的情况下,变形量随时间的延长而增加,最后由于变形过大或断裂而导致的失效; 3、表面损伤 ①磨损失效 磨损主要是在机械力的作用下,相对运动的接触表面的材料以细屑形式逐渐磨耗,而使零件尺寸不断变小的一种失效方式。磨损可能是被硬质点切削下来,也可能是在大的压力下焊合撕开,所以材料表面的硬度愈高,抵抗磨损的能力愈强。 磨粒磨损:相对运动的零件表面间嵌入硬质颗粒而造成的磨损 粘着磨损:两个相对运动零件表面的微观凸起发生粘合而撕裂 ②表面疲劳(在交变接触应力作用下,使机件表面产生点蚀而发生磨损)

机械零件的失效形式

1.机械零件的失效形式:整体断裂、过大的残余变形、零件表面破坏(腐蚀、磨损和接触疲劳)、破坏正常工作条件引起的失效 2.设计零件应满足的要求:避免在预定寿命期内失效的要求(强度、刚度、寿命)、结构工艺性要求、经济性要求、质量小的要求、可靠性要求 3.零件的设计准则:强度准则、刚度准则、寿命准则、振动稳定性准则、可靠性准则 4.零件的设计方法:理论设计、经验设计、模型试验设计 5.机械零件常用的材料:金属材料、高分子材料、陶瓷材料、复合材料 6.零件的强度分为:静应力强度和变应力强度 7.应力比r=-1为对称循环应力;r=0为脉动循环应力 8.BC阶段为应变疲劳(低周疲劳);CD为有限寿命疲劳阶段;D点以后的线段代表了试件无限寿命疲劳阶段;D点为持久疲劳极限 9.提高零件疲劳强度的措施:尽可能降低零件上应力集中的影响(减载槽、开环槽)、选用疲劳强度高的材料和规定能提高材料疲劳强度的热处理方法及强化工艺 10.滑动摩擦:干摩擦、边界摩擦、流体摩擦及混合摩擦 11.零件的磨损过程:磨合阶段、稳定磨损阶段、剧烈磨损阶段;应该力求缩短磨合期、延长稳定磨损期、推迟剧烈磨损的到来 12.磨损的分类:粘附磨损、磨粒磨损、疲劳磨损、冲蚀磨损、腐蚀磨损、微动磨损 13.润滑剂分为:气体、液体、固体和半固体四种;润滑脂分为:钙基润滑脂、纳基润滑脂、锂基润滑脂、铝基润滑脂 14.普通连接螺纹牙型为等边三角形,自锁性较好;矩形传动螺纹的传动效率比其他螺纹高;梯形传动螺纹是最常用的传动螺纹 15.常用的连接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹 16.普通螺栓连接(被连接件上开有通孔或铰制孔)、双头螺柱连接、螺钉连接、紧定螺钉连接 17.螺纹连接预紧的目的:增强连接的可靠性和紧密性,防止受载后被连接件间出现缝隙或相对滑移。螺纹连接放松的根本问题:防止螺旋副在受载时发生相对转动。(摩擦防松、机械防松、破坏螺旋副运动关系防松) 18.提高螺纹连接强度的措施:降低影响螺栓疲劳强度的应力幅(减少螺栓刚度或增大被连接件刚度)、改善螺纹牙上载荷分布不均的现象、减小应力集中的影响、采用合理的制造工艺 19.键连接类型:平键连接(两侧面是工作面)、半圆键连接、锲键连接、切向键连接 20.带传动分为:摩擦型和啮合型 21.带的瞬间最大应力发生在带的紧边开始绕上小带轮处;带一周,应力变化四次 22.V带传动的张紧:定期张紧装置、自动张紧装置、采用张紧轮的张紧装置 23.滚子链的链节数一般为偶数(链轮的齿数取奇数),滚子链为奇数时采用过度链节 24.链传动张紧的目的:避免在链条的松边垂度过大时产生啮合不良和链条振动现象,同时为了增加链条与链轮的啮合包角 25.齿轮的失效形式:轮齿折断、齿面磨损(开式齿轮)、齿面点蚀(闭式齿轮)、齿面胶合、塑性变形(从动轮出现脊棱、主动轮出现沟槽) 26.齿轮工作面的硬度大于350HBS或38HRS的称为硬面齿;反之为软齿面齿轮 27.提高制造精度,减小齿轮直径以降低圆周速度,均可减小动载荷;为了减小动载荷,可将齿轮进行齿顶修缘;将齿轮的轮齿做成鼓形是为了改善齿向载荷分布 28.Tanr=z1:q(直径系数)导程角越大,效率越高,自锁性越差

机械零件的主要失效形式有

机械零件的主要失效形式有: 根断表面压碎表面点蚀塑性变形过量弹性形变共振过热和过量磨损等 平键按用途分为平键导键滑键 普通平键用于静联接,即轴与轴上零件之间没有先对移动。按端部形状不同分为A型(圆头) B型(平头) C型(单圆头) 3种 导键和滑键均用于动联接。导键适用于轴上零件轴向位移量不大的场合;滑键用于轴上零件轴向位移较大的场合。 平键的宽度应根据轴的直径选取 润滑剂的主要作用是减小抹茶,磨损,降低工作表面温度。 常用的润滑剂有:液体润滑剂,半固体润滑剂,固体润滑剂,气体润滑剂径向滑动轴承动压油膜的形成过程 静止时,轴与轴承孔自然形成油楔;刚启动,速度低。由于轴径与轴承之间摩擦,轴承沿轴承孔上爬。随着速度增大,被轴径带动起来的润滑油进入楔形间隙并产生东亚力将轴径推离,形成动压油膜。 提高螺纹连接强度的措施有: 1. 改善螺纹牙间的载荷分配; 2. 减小螺栓的应力幅 3. 采用合理的制造工艺(冷镦,液压,冷作硬化) 4. 避免附加弯曲应力 5. 减小应力集中的影响 6. 氰化氮化,喷丸等表面硬化处理 改善螺纹牙间的载荷分配,避免附加弯曲应力是针对静强度,其余是疲劳强度 当螺纹公称直径,牙型角,螺纹线数相同时,细牙螺纹的自锁性能比粗牙螺纹的自锁性能好螺纹联接的主要类型有 1. 螺栓联接,常用语被联接件不太厚和周边有足够装配空间的场合 2. 双头螺栓联接,用于常装拆或结构上受限制不能采用螺栓联接的场合 3. 螺钉联接,用于不经常装拆联接的场合 4. 紧定螺钉联接,多用于轴和轴上零件的联结,可传递不大的力和转矩 对于普通螺栓组联接,当被联接件受横向工作载荷作用时,其螺栓本身主要受拉应力。 带传动中的两种滑动 弹性滑动:带传动中,拉力差使带的弹性型变量变动,而引起带与带轮之间的相对滑动,称为弹性滑动。使带传动比不精确,且使带与带轮之间产生磨损; 打滑:当外界传递功率过大,所需有效拉力大于极限有效拉力时,带与带轮之间的显著滑动。使带传动失效,但起过载保护作用。 与V带传动相比,同步带传动最突出的优点是传动比准确 带传动的主要失效形式是:打滑和带的疲劳破坏。 带传动的计算准则是:保证工作时不打滑,并具有足够的疲劳强度。 带传动工作时所受的拉应力有: 拉应力(紧边拉应力,松边拉应力),离心拉应力(作用于带的全长)和弯曲应力(小带轮处的弯曲应力比大带论处的弯曲应力大。)最大应力发生在带的主动边刚绕上小带论处

失效分析的任务

失效分析的任务、方法及其展望 摘要:概述了失效与失效分析的概念,以及失效分析的意义、作用和任务;以防止失效为出发点,论述了失效分析的工作思路、程序和辩证方法;展望了失效分析的未来。 关键词:失效分析;失效分析反馈;失效预测预防 美国《金属手册》认为,机械产品的零件或部件处于下列三种状态之一时,就可定义为失效:①当它完全不能工作时;②仍然可以工作,但已不能令人满意地实现预期的功能时;③受到严重损伤不能可靠而安全地继续使用,必须立即从产品或装备拆下来进行修理或更换时。 机械产品及零部件常见的失效类型包括变形失效、损伤失效和断裂失效三大类。 机械产品及零部件的失效是一个由损伤(裂纹)萌生、扩展(积累)直至破坏的发展过程。不同失效类型其发展过程不同,过程的各个阶段发展速度也不相同。例如疲劳断裂过程一般较长,发展速度较慢,而解理断裂失效过程则很短,速度很快,等等。 机械产品及零部件在整个使用寿命期内失效发生的规律可用“寿命特性曲线”来说明,即用失效率(λ)———单位时间内发生失效的比率来描述失效的发展过程。那么在不进行预防性维修的情况下,失效率(λ)与其工作时间(t)之间具有图1所示的典型失效曲线,俗称“浴盆曲线”。按照“浴盆曲线”的形状,即按照机械产品使用的过程,可将失效分为三类。 图1 失效率浴盆曲线 (1)早期失效是在使用初期,由于设计和制造上的缺陷而诱发的失效。因为使用初期,容易暴露上述缺陷而导致失效,因此失效率往往较高,但随着使用时间的延长,其失效率则很快下降。假若在产品出厂前即进行旨在剔除这类缺陷的过程,则在产品正式使用时,便可使失效率大体保持恒定值。

(2)随机失效在理想的情况下,产品或装备发生损伤或老化之前,应是无“失效”的。但是由于环境的偶然变化、操作时的人为差错或者由于管理不善,仍可能产生随机失效或称偶然失效。偶然失效率是随机分布的,其很低而且基本上是恒定的。这一时期是产品最佳工作时间。偶然失效率(λ)的倒数即为失效的平均时间。 (3)耗损失效又称损伤累积失效。经过随机失效期后,产品中的零部件已到了寿命后期,于是失效开始急剧增加,这种失效叫做耗损失效或损伤累积失效。如果在进入耗损失效期之前进行必要的预防维修,它的失效率仍可保持在随机失效率附近,从而延长产品的随机失效期。 1 失效分析的意义与任务 1.1 失效分析及其意义 按一定的思路和方法判断失效性质、分析失效原因、研究失效事故处理方法和预防措施的技术活动及管理活动,统称失效分析。 失效分析预测预防是使失败转化为成功的科学,是产品或装备安全可靠运行的保证,是提高产品质量的重要途径,是科学技术进步的强有力杠杆,是许多重大法律、法规及技术标准制定的依据。它着眼于整个失效的系统工程分析。其意义和作用在于: (1)失效分析可减少和预防产品或装备同类失效现象重复发生,从而减少经济损失或提高产品质量。 (2)失效是产品质量控制网发生偏差的反映,失效分析是可靠性工程的重要基础技术工作,是产品全面质量管理 中的重要组成部分和关键技术环节。 (3)失效分析可为技术开发、技术改造、科学技术进步提供信息、方向、途径和方法。 (4)失效分析可为裁决事故责任、侦破犯罪案例、开展技术保险业务、修改和制订产品质量标准等提供可靠的科学技术依据。 (5)失效分析可为各级领导进行宏观经济和技术决策提供重要的科学的信息来源。 1.2 失效分析的任务 失效分析预测预防的总任务就是不断降低产品或装备的失效率,提高可靠性,防止重大失效事故的发生,促进经 济高速持续稳定发展。从系统工程的观点来看,失效分析的具体任务可归纳为:①失效性质的判断;②失效原因的分析; ③采取措施,提高材料或产品的失效抗力。 近代材料科学和工程力学对破断、腐蚀、磨损及其复合型(或混合型)的失效类型和失效机理做了相当深入的研究,积累了大量的统计资料,为失效类型的判断、失效机理及失效原因的解释奠定了基础。发展中的可靠性工程及完整性与适用性评价是预测、预防和控制失效的技术工作和管理工作的基础。可靠性工程是运用系统工程的思想和方法,权衡经济利弊,研究将设备(系统)的失效率降到可接受程度的措施。完整性和适用性评价则是研究结构或构件中原有缺欠和使用中新产生的或扩展缺陷对可靠性的影响,判断结构的完整性及是否适合于继续使用,或是按预测的剩余寿命监控使用,或是降级使用,或是返修或报废的定量评价。

机械零件失效分析

第一章 失效:产品丧失其规定功能的现象。 常见失效形式:有变形、断裂、损伤失效。 失效分析:研究机械装备的失效诊断、失效预测和失效预防的理论、技术、方法及其工程应用的一门学科。(综合性、实用性) 引起失效的因素是复杂的,归纳为两个方面: 材料因素:内因,包括材料品质及加工工艺方面的各种因素; 环境因素:外因,包括受载条件、时间、温度及环境介质等因素。 产品的失效都是在材料或零件的强度(韧性)与应力因素和环境条件不相适应的条件下发生的。失效总是从产品对服役条件最不适应的环节开始的,而且失效产品或零件的残骸上必然会保留有失效过程的信息。 产品的可靠度: 产品在规定的条件下和规定的时间内满意地完成规定功能的概率。 四个含义:即功能、时间、使用条件和满意地完成规定功能的概率。 第二章 按失效的宏观特征作为一级失效形式分类,分为变形失效、断裂失效和表面损伤失效。机械零件失效原因概述 1.服役条件---受力状况(载荷类型、载荷性质、应力状态)和环境(介质和温度) 2.材料因素 3.设计和工艺因素 4.使用和维修 α越大,应力状态越软,易引起塑性变形 硬性应力状态:α<1 α越小,应力状态越硬,易引起脆性断裂

第三章 P25+P69 常见失效形式(11种):过量弹性变形失效、屈服失效(塑性变形失效)、塑性断裂失效、脆性断裂失效、疲劳断裂失效、腐蚀失效、应力腐蚀失效、氢脆失效、腐蚀疲劳失效、磨损失效、蠕变失效。 脆性断裂失效:构件在断裂前没有发生或很少发生宏观可见的塑性变形的断裂形式。断裂应力低于材料屈服强度,因此称为低应力脆断。工作条件: 高速、高压、高温和低温导致材料的服役条件越来越苛刻。 低温脆性断裂主要发生于体心立方和密排六方金属材料中,这些材料称为低温脆性材料,低碳钢是其典型代表。 脆性断裂特征: (1)断裂部位在宏观上几乎看不出或者完全没有塑性变形,碎块断口可以拼合复原。 (2)起裂部位常在变截面处即应力集中部位,或者存在表面缺陷或内部缺陷处。 (3)形成平断口,断口平面与主应力方向垂直。 (4)断口呈细瓷状,较光亮,对着光线转动,可看到闪光刻面,无剪切唇。 (5)断裂常发生于低温条件下,或受冲击载荷作用时。 (6)断裂过程瞬间完成,无预兆。 金属机件或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。疲劳断裂特点 ⑴疲劳断裂是低应力循环延时断裂,即具有寿命的断裂。 ⑵疲劳断裂是突然断裂,即脆性断裂。断裂前没有明显的征兆,疲劳是一种潜在的突发性断裂。 ⑶对缺陷(缺口、裂纹及组织缺陷)十分敏感。 典型疲劳断口具有三个形貌不同的区域:疲劳源、疲劳裂纹扩展区、瞬时断裂区。 疲劳裂纹有贝纹线,贝纹线是以疲劳源为圆心的一簇同心圆弧;间距不同,近源者密,远源者疏。贝纹线的宽窄不同。与过载程度、材质有关,过载大、韧性差的线粗而不明显。贝纹线和疲劳辉纹的区别: ◆形成原因不同。 贝纹线是交变应力的频率、幅度变化或载荷停歇等原因造成的。 疲劳辉纹是一次交变应力循环使裂纹尖端塑性钝化形成的。 ◆二者可以同时出现,也可以不同时出现。 有时在宏观断口上看不到贝纹线; 在电子显微镜下也不一定看到疲劳辉纹。 氢脆失效的类型及特征 1.白点:又称发裂,是由于钢中存在的过量的氢造成的。

机械零件的失效及分析

第一章机械零件的失效及分析 第一节基本概念 一、失效的概念 机械设备中各种零件或构件都具有一定的功能,如传递运动、力或能量,实现规定的动作,保持一定的几何形状等等。当机件在载荷(包括机械载荷、热载荷、腐蚀及综合载荷等)作用下丧失最初规定的功能时,即称为失效。 一个机件处于下列三种状态之一就认为是失效:①完全不能工作;②不能按确定的规范完成规定功能;③不能可靠和安全地继续使用。这三个条件可以作为机件失效与否的判断原则。 二、失效的危害 机械零件与构件的失效最终必将导致机械设备的故障。关键机件的失效会造成设备事故,人身伤亡事故,甚至大范围内灾难性后果。在生产线上一个小小的零件失效,可以是整个生产线瘫痪。因此有效的预防、控制、监测零件的失效是一项意义重大的工作。 三、机械零件失效的基本形式 一般机械零件的失效形式是按失效件的外部形态特征来分类的,大体包括:磨损失效、断裂失效、变形失效和腐蚀与气蚀失效。在生产实践中,最主要的失效形式是零件工作表面的磨损失效;而最危险的失效形式是瞬间出现裂纹和破断,统称为断裂失效。

四、失效分析 失效分析是指分析研究机件磨损、断裂、变形、腐蚀等现象的机理或过程的特征及规律,从中找出产生失效的主要原因,以便采用适当的控制方法。 失效分析的直接的、技术上的目的是为制订维修技术方案提供可靠依据,并对引起失效的某些因素进行控制,以降低设备故障率,延长设备使用寿命。此外,失效形式分析也能为设备的设计、制造反馈信息;为设备事故的仲裁提供客观依据。 第二节零件的磨损失效 摩擦与磨损是自然界的一种普遍现象。当零件之间或零件与其他物质之间相互接触,并产生相对运动时,就称为摩擦。零件的摩擦表面上出现材料耗损的现象称为零件的磨损。材料磨损包括两个方面:一是材料组织结构的损坏;二是尺寸、形状及表面质量(粗糙度)的变化。 如果零件的磨损超过了某一限度,就会丧失其规定的功能,引起设备性能下降或不能工作,这种情形即称为磨损失效。根据摩擦学理论,零件磨损按其性质可以分为磨料磨损、粘着磨损、微动磨损、冲蚀磨损和腐蚀磨损。 一、磨损的一般规律 零件磨损的外在表现形态是表层材料的磨耗。在一般情况下,总是用磨损量来度量磨损程度。一般可以分为三个阶段: (1)初期磨损阶段 对机械设备中的传动副而言是磨合过程。这一阶段的特点是在短时间内磨损量增长较快。如果表面粗糙、润滑不良或载荷较大,都会加速磨损。经过这一阶段后,零件的磨损速度逐步过渡到稳定状态。机械设备的磨合阶段结束后,应清除摩擦副中的磨屑,更换润滑油,才能进入满负荷正常使用阶段。 (2)正常磨损阶段

机械构件失效的主要形式及特征

机械构件失效的主要形式及特征 一、变形失效 (一)弹性变形失效:弹性性能达不到原设计要求。(二)塑性变形失效:塑性变形逐渐增大,超过一定极限不能再用。 (三)蠕变变形失效:一定温度和压力下工作,应力小于屈服点,也会产生塑变,超过规定值失效。 (四)高温松驰:高温下零件失去弹性功能导致失效。二、断裂失效 (一)塑性断裂失效 1. 塑性断裂的特征:宏观上裂纹或断口附近有塑变,或在塑变附近有裂纹出现,微观上有韧窝,受正应力作用为等轴韧窝,受剪切力作用,韧窝被拉长,韧窝大小与形核数量、材料韧性、温度、应变速率有关。 2. 外应力大于材料的屈服强度 (二)脆性断裂失效 断裂前无塑性变形,类型有穿晶和沿晶断裂。 1. 穿晶脆性断裂

1)解理断裂:解理断裂时穿晶脆断的一种常见的主要断裂方式,指在一定的条件下,金属因受拉应力作用而沿某些特定的结晶学平面发生分离。 特征: ?断裂时所受应力较低,低于设计许用应力 ?构件破坏之前,没有或只有局部轻微塑变 ?断裂源总是发生在缺陷处,如凹槽、缺口 ?断口宏观形貌平直,断面垂直拉应力,断口上有放射状条纹,管材、板材构件有人字纹,并有闪 光小刻面,微观形貌为河流花样 ?裂纹扩展迅速后果是灾难性的。 形成解理断裂的原因: ?构件存在三向应力集中部位,如表面缺口,裂纹,几何形状突变。 ?有一定大小的应力作用,尤其是冲击应力 ?低温条件,温度低于材料脆性的转变温度。 2)准解理断裂 因找不到解理面而命名,后来找到了,与解理断裂一样断裂性态介于韧性断裂与解理断裂之间,韧性好于解理断裂而差于韧性断裂,宏观形貌有细小放射条纹或呈瓷

状,微观形貌也有河流花样,但河流短而不连续,观察到较多撕裂岭。 2. 沿晶脆性断裂 裂纹沿晶界扩展的断裂叫沿晶断裂。由晶界弱化引起。1)特征:断口呈细颗粒状,有时观察到放射状条纹,微观形貌呈冰糖状。 2)引起晶界弱化原因 ?晶界沉淀相造成(夹杂及第二相) ?杂质元素在晶界偏聚(元素周期表中的4、5、6族元素) ?环境介质侵蚀,氢脆热力腐蚀 ?高温作用,焊接热裂纹、磨削裂纹、蠕变断裂(三)疲劳断裂 1. 高周疲劳(循环次数N>104-105) 特征: 1)在疲劳断裂中,工作应力低于屈服应力,不发生宏观塑变 2)疲劳断口具有独特形貌,断口由疲劳源区、裂纹扩展区和瞬断区组成。疲劳源常位于零件的尖角、凹槽或夹杂、空

机械零件失效形式及简要分析

I断裂 脆性断裂是一种构件未经明显的变形而发生的断裂,当零件在外载荷作用下,由于某一危险截面上的应力超过零件的抗拉强度时将会发生脆性断裂,发生脆性断裂时,零件几乎没有发生过塑性变形。如杆件脆断时没有明显的伸长或弯曲,更无缩颈,容器破裂时没有直径的增大及壁厚的减薄。 图1. 脆性断裂实例 分析:传统力学把材料看成是没有缺陷的、没有裂纹的、均匀的和连续的理想固体,但是,实际工程材料在制备、加工(冶炼、铸造、锻造、焊接、热处理、冷加工等)及使用中(疲劳、冲击、环境温度等)都会产生各种缺陷(白点、气孔、渣、未焊透、热裂、冷裂、缺口等)。如上图所示的齿轮,由于其内部的缺陷和裂纹会在零件使用过程中产生应力集中,该处所受拉应力为平均应力的数倍。过分集中的拉应力如果超过该齿轮材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。 图2. 韧性断裂实例 分析:韧性断裂又称延性断裂。断裂前发生过明显的塑性变形的断裂,是塑性变形的终结。消耗较高能量,以金属撕裂为特征的一种断裂,是与脆性断裂相对应 的一种断裂模式。物体受力时其最危险截面或区域,从弹性变形逐渐转入塑性变 形状态,这时截面的某一邻域内力学参量的某一组合达到临界点,断裂口附近出现明显的宏观塑性变形, 微观断口表面呈韧窝状。

图3. 疲劳断裂实例 分析:零件在交变载荷下经过较长时间的工作而发生断裂的现象就叫作疲劳断裂。一开始,疲劳微裂纹在零件应力最高强度最低的基体上产生,之后裂纹会稳定扩展,但扩展速度较低,最后,当裂纹尺寸足够大结构有效受力截面小到不足以承受所加载荷时,零件即发生断裂,如图所示。 II磨损 磨擦副表面的材料微粒,由于机械力与化学腐蚀的作用而脱离母体,使零件尺寸和表面状态改变,最终导致功能丧失,称为磨损失效。磨损是机械的重要失效形式,它包括复杂的化学过程和物理过程,其主要形式有:粘着磨损(材料从一个磨擦表面移到另一个表面)、磨料磨损(硬磨料在摩擦表面犁出沟槽或道痕,使材料从零件表面脱落)、腐蚀磨损(化学腐蚀参与作用下的磨料磨损)和疲劳磨损(接触应力作用使材料表面疲劳剥落)等。 图4. 粘着磨损实例 分析:粘着磨损又称咬合磨损,如图所示,零件在滑动摩擦条件下,摩擦副的接触面发生金属粘着,在随后的滑动过程中粘着处被破坏,有金属屑粒被拉拽脱落或者金属表面被擦伤。

第二份《机械失效分析与防护》期末复习题答案

中国石油大学(北京)远程教育学院 机械失效分析与防护期末复习题答案 一、名词解释 1、失效:构件不能正确行使其功能。 2、偏析:金属在冷凝过程中,由于某些因素的影响形成的化学成分不均匀现象。 3、疲劳:金属构件在交变载荷作用下,虽然应力水平低于金属材料的抗拉强度,有时 甚至低于屈服极限,但经过一定的循环周期后,金属构件发生突然断裂,称为疲劳断裂。 4、内应力:构件在无外力作用下,存在于内部并保持平衡的力。 5、应力腐蚀断裂:材料在固定拉应力和特定腐蚀介质的共同作用下发生的断裂。 6、缩孔:金属在冷凝过程中由于体积的收缩而在铸锭或铸件心部形成管状(或喇叭状) 或分散孔洞。 7、断裂:金属构件在应力作用下材料分离为互不相连的两个或两个以上部分的现象。 8、应力集中:零件截面有急剧变化处,引起局部地区的应力高于零件受到的平均应力 的现象。 9、痕迹:构件失效时,由于力学、化学、热学、电学等环境因素单独或协同作用,并 在构件表面或表面层留下了某种标记,称为痕迹。 10、疲劳:金属构件在交变载荷作用下,虽然应力水平低于金属材料的抗拉强度,有时 甚至低于屈服极限,但经过一定的循环周期后,金属构件发生突然断裂的现象。 11、磨损:相互接触并作相对运动的物体由于机械、物理和化学作用,造成物体表面材 料的位移及分离,使表面形状、尺寸、组织及性能发生变化的过程。 12、蠕变:金属材料在长时间恒温、恒应力作用下,即使应力低于屈服强度,也会缓慢 地产生塑性变形的现象。 二、填空题 1、NSR越小,表示材料对缺口的敏感性越大。 2、金属构件发生脆性断裂时的微观形貌包括河流花样、扇形花样、鱼骨状花样等。 3、金属材料的断裂过程分为裂纹的萌生、裂纹的扩展和断裂三个阶段。 4、金属构件产生塑性变形失效的原因是过载。

相关文档
最新文档