射频微带滤波器基础理论

射频微带滤波器基础理论
射频微带滤波器基础理论

第2章射频微带滤波器基础理论

频率的提高意味着波长的减小,该结论应用于射频电路中,就是当波长与分立元件的集合尺寸相比拟时,电压和电流不再保持空间不变,以波的形式进行传播。经典的基尔霍夫电压和电流定律没有考虑电压和电流在空间的变化,则必须对普通的集总电路做重大的修改。

本章首先介绍了射频微带滤波器设计中所涉及的基本概念,然后介绍了二端口网络理论和谐振与耦合理论。

2.1 传输线理论

2.1.1 均匀传输线的概念和模型

频率提高后,导线中所流过的高频电流会产生趋肤效应,工程上常用趋肤深度δ来描述这种趋肤效应,δ为电磁波场强的振幅值衰减到表面值1/e所经过的距离,由于趋肤效应使得导线有效面积减小,高频电阻加大,而且沿线各处都存在损耗,这就是分布电阻效应;通高频电流的导线周围存在高频磁场,这就是分布电感效应;由于两导线之间有电压,故两线之间存在高频电场,这就是分布电容效应;由于两线间的介质并非理想介质而存在漏电流,这相当于双线间并联一个电导,这就是分布电导效应。基于上述的物理事实,便可得出双线传输线等效模型[18]如图2.1所示。

图2.1 双线传输线等效模型

图2.1中,R1为单位长度的分布电阻,L1为单位长度的分布电感,G1为单位长度的分布电导,C1为单位长度的分布电容。

2.1.2 均匀传输线相速与波长

相位速度是等相位面传播的速度,简称相速。在均匀传输线理论中等相位面是垂直于z 轴的平面,相速v p 为

β

ω==dt dz v p (2-1) 在一个周期的时间内波所行进的距离称为波长,波长λp 为

βπ

λ2===T v f v p p

p (2-2)

其中f 为电磁波频率,T 为振荡周期。

2.1.3 均匀传输线特性阻抗

入射电压与入射电流之比或反射电压与反射电流之比称为特性阻抗(即波阻抗),特性阻抗Z 0为

1

1110C j G L j R Z ωω++= (2-3) 对于微波传输线由于频率很高,11R L j ω<<、11G C j ω<<,则

1

10Z C L = (2-4) 2.1.4 均匀传输线传播常数

传播常数γ表示行波经过单位长度后振幅和相位的变化,其表示式为

βαωωγj C j G L j R +=++=))((1111 (2-5)

由于实际微波传输线的损耗R 1、G 1比ωL 1、ωC 1小得多,式(2-5)经变换后可得

22220101111111Z G Z R C L G L C R +=+=

α (2-6) 其中:0

12Z R c =α ——由导体电阻引起的损耗; 2

01Z G d =

α ——由导体间介质引起的损耗。

αc 、αd 说明传输线上的信号衰减是由导体电阻的热损耗和导体间介质极化损耗共同引起的。

11C L ωβ= (2-7)

一般情况下,传播常数为复数,其实部α为衰减常数,单位为dBm ;β为相移常数,单位为rad/m 。

2.1.5 传输线的反射系数与电压驻波比

传输线上某处反射波电压(或电流)与入射波电压(或电流)之比为反射系数,用Γ(z ′)表示

)()()()()('''''

z I z I z U z U z Γi r i r == (2-8) 考虑到负载阻抗2

2I U Z L =,故式(2-8)可写为 '20

0')(jz L L e Z Z Z Z z Γ-+-= (2-9) 在传输线的终端(负载端)z ′处,终端反射系数用Γ2表示,由式(2-9)得

02Z Z Z Z ΓL L +-= (2-10) 因此,

''2220

0')(jz jz L L e Γe Z Z Z Z z Γ--=+-= (2-11) 由式(2-11)可见,终端反射系数只与负载阻抗和传输线的特性阻抗有关。 当电磁波在终端负载不等于传输线特性阻抗的传输线上传输时,会产生反射波。反射波的大小除了用电压反射系数来描述外,还可用电压驻波系数VSWR (V oltage Standing Wave Ratio )或行波系数K 来表示。驻波系数ρ定义为沿传输线合成电压(或电流)的最大值和最小值之比,即

min max min max

I I U U

==ρ (2-12)

传输线上合成电压(或电流)振幅值的不同,是由于各处入射波和反射波的

相位不同引起的。当入射波的相位与该点反射波的相位同相时,则该处合成波电压(或电流)出现最大值;反之两者相位相反时,合成波电压(或电流)出现最小值,故有

ΓU U U U i r i +=+=1(max (2-13) )

ΓU U U U i r i -=-=1(min (2-14) 可得到驻波系数和反射系数的关系式为

ΓΓU U -+==

11min max ρ (2-15)

或者 1

1+-=ρρΓ (2-16) 因此,传输线的反射波的大小可用反射系数的模、驻波系数和行波系数来表示。反射系数的范围为0≤Γ≤1,驻波系数的范围为1≤ρ≤∞。当Γ=0、ρ=1表示传输线上没有反射波,即为匹配状态。

2.1.6 传输线的工作状态

传输线的工作状态指的是传输线上电压和电流的分布状态,传输线的工作状态取决于终端负载。

(1)当Z L =Z 0(即负载匹配)时,终端反射系数Γ2=0,反射波电压和反射波电流均为零,称为行波状态。

(2)当Z L =0(即负载短路)时,终端反射系数Γ2=-1。

(3)当Z L =∞(即负载开路)时,终端反射系数Γ2=1。

在第(2)和(3)种情况下,反射波与入射波幅度相同(负号表示反射波与入射波相位相反),称为全反射状态。

在一般情况下,0<2Γ<1,称为部分反射。

2.1.7 均匀传输线输入阻抗

终端接负载阻抗时,则从距终端为z′处向负载方向看过去的阻抗为输入阻抗,定义为该点的电压)('z U 与电流)('z I 之比,并用Z in 表示。

)(1)(111)()(''022220220''''

''''z Γz ΓZ e Γe ΓZ e Γe e Γe Z z I z U Z jz jz jz jz jz jz in -+=-+=-+==---- (2-17) 2.1.8 史密斯圆图

史密斯圆图[18][19]是以保角映射原理为基础的图解方法,通过史密斯圆图,可以让使用者迅速的得出在传输线上任意一点阻抗,电压反射系数,VSWR 等数据,简单方便,所以在电磁波研究领域一直被广泛应用。虽然随着各种微波CAD 软件的发展,已经很少进行手工计算,但在利用软件对射频电路进行设计和分析时掌握史密斯圆图的意义仍然十分重要。

2.2 微带传输线理论

微带传输线[18][20]是50年代发展起来的一种微波传输线。与金属波导相比,它具有体积小、重量轻、使用频带宽、可集成化并能构成各种用途的微波元件等优点,但损耗稍大,Q 值较低,功率容量小。微带线一般用薄膜工艺制造,介质基片选用介电常数高、微波损耗低的材料,常用的介质基片材料有氧化铝陶瓷、氧化铍、蓝宝石、铁氧体、聚四氟乙烯等。导体薄膜应具有导电率高、稳定性好、与基片的粘附性强等特点。

2.2.1 微带传输线的结构

微带传输线一般制作工艺是将基片研磨,抛光和清洗,然后将基片放在真空镀膜机中形成一层铬-金层,再利用光刻技术制作所需的电路,最后采用电镀方法使导体带和接地板达到所要求的厚度(3~5倍趋肤深度),并装上所需要的有源器件和其他元件形成微带电路。因此,微带传输线可以看作是由双导体传输线演变而来的双导体微波传输线,图2.2所示为微带传输线结构示意图。

图2.2 微带线的结构示意图

图2.2中,εr 表示介质基片的有效介电常数,H 表示介质基片的厚度,T 表

示导体薄膜的厚度。微带线为开放式双导体微波传输线,传输的主模是横电磁TEM (Transverse Electric and Magnetic )波。在微带传输线中,导体与接地板之间填充有介质基片,而其余部分为空气,导体周围的填充介质分别由媒质A (基片)和媒质B (空气)两种媒质组成。

任何模式的电磁场除了应满足介质与理想导体的边界条件外,还应满足介质与空气交界面的边界条件。单独的TEM 模式不能满足微带线边界条件的要求,因此,在微带传输线中传输的电磁波的模式含有横电TE (Transverse Electric )模和横磁TM (Transverse Magnetic )模。

一般而言,基片的介电常数大于空气的介电常数,因此电场强度E 在基片中的分布比较大,而且基片相对于外部空气媒质而言较薄,磁场强度H 在基片中的分布也大于在空气媒质中的分布,所以从电磁场的分布角度看,微带传输线中传输的电磁波可以近似认为TEM 模,或者说,在微带传输线中传输的电磁波为准TEM 模。微带中的能量大部分集中在中心导体下面的介质基片中进行传播。

2.2.2 微带传输线的特征参数

微带线的特性阻抗和有效介电常数是设计微带谐振器、滤波器、天线等微波无源器件时需要首先确定的参数。

当微带线传输TEM 波时,其特性阻抗可表示为

10110/C C Z C L Z c == (2-18) 其中L 1、C 1分别为微带线单位长度的分布电感和分布电容,C 0是空气全填充时单位长度分布电容。

求解C 0和C 1的问题是一个静态场的问题,其求解方法较多,常用的有保角变换法,谱域法,有限差分法和积分方程法。

惠勒给出了Z 0的近似计算公式[18]: 当0.1≤h

w 时 ???

????????? ??++--??? ??++=r r r r h w w h Z εεεε1028.02258.0113218ln 1212020)( (2-19) 当1.0>h

w 时

1

20758.088.1ln 11165.0883.0377-????????????+??? ??+++-++=h w h w Z r r r r r πεεεεε (2-20) 哈梅斯泰德给出的近似计算公式具有较高的精确度,并且对宽带和窄带均适应,Pucel 也给出了近似计算公式。

2.2.3 微带传输线的损耗

微带传输线损耗是在设计微波滤波器、双工器、谐振器等微波无源器件时需要特别考虑的问题。

从图2.2中可以看出,微带传输线是半开放式结构。微带传输线的损耗包括导体损耗、介质损耗、辐射损耗等。微带传输线是半开放式结构,辐射损耗是微带线向外辐射电磁波引起的能量衰减。

除硅和砷化镓等半导体基片外,大多数微带线上的导体损耗远大于介质损耗,在实际应用中,介质损耗一般可以忽略。

谐振器的无载品质因数Q u 是一个反映谐振器本身能耗情况以及选频特性的重要参量。一般情况下,谐振器的Q u 值越大,该谐振器的能耗越小,其频率选择性也越好。显然,利用MgB 2超导薄膜制成的高Q u 微带谐振器设计的带通滤波器可以有效降低通带损耗,同时通过增加谐振器的阶数可以提高微带滤波器的选频特性。

2.2.4 微带谐振器

在本论文中主要用到的是矩形微带谐振器[18],如图2.3所示。

图2.3 矩形微带谐振器修正模型

图2.3中l c是矩形谐振器的线长,w c是矩形谐振器的线宽,h是矩形谐振器的介质层厚度,εr是矩形谐振腔等效相对介电常数。

两端开路的矩形微带线,通过适当的激励可以在导带和接地板之间产生电磁振荡,形成矩形谐振腔。上下导体片看作理想电壁,谐振器四周看成理想磁壁。实际上,有部分电磁能量向外泄漏,腔内电磁场在各个方向上呈驻波分布,谐振器的纵向长度l必定是半波长的整数倍。

滤波器的中心频率以及微带线有效介电常数可以确定谐振器的谐振波长,通常用于制作微带滤波器的传输线长度为λ/2或λ/4,但是由于λ/4传输线需要在超导薄膜和基片上通孔以进行接地,一方面会引入很大的过孔损耗,另一方面在微带线上难以加工,所以在超导滤波器的设计中经常采用λ/2的传输线。

将λ/2谐振器进行各种变形可以减小超导微带滤波器的有效尺寸,几种常见的半波长谐振器结构[21][22]如图2.4所示。

图2.4 几种常用的半波长谐振器

在图2.4中,(a)为标准发夹型半波长谐振器,(b)是半波长开环谐振器,(c)、(d)、(e)为发夹型谐振器的几种变形结构,均可用于滤波器的小型化设计。

2.2.5 超导滤波器制作工艺精度引起的问题

超导滤波器的滤波特性主要由导带宽度w、导带长度l、基片厚度h和介电常数εr等参数决定。超导滤波器制作过程中所涉及到的光刻精度,腐蚀程度,介质基片的一致性都会对滤波器滤波特性产生影响。通常采取灵敏度分析法,估算出给定加工误差条件下微带线传输特性的最坏情况,以此分析器件的性能。

2.3 二端口网络理论

网络理论是一种非常普遍的处理问题的方法,它把系统用一个由若干端口对外的未知网络表示。微波网络理论是微波工程强有力的工具,主要研究微波网络各端口的物理量之间的关系,实际的微波/射频滤波器也是用网络分析仪进行测量。微波网络分为线性与非线性,有源与无源,有耗与无耗,互易与非互易。

双口元件[18][19][20]是在微波工程中应用最多的一种元件,主要有滤波器、移相器、衰减器等。与单口元件相似,双口元件一般采用网络理论进行分析,但是,值得指出的是元件的网络参数本身还是需要用场论方法求得,或者实际测量得到,从这个意义上讲,场论是问题的内部本质,而网络则是问题的外部特性。

几乎所有的微波元件都可以由一个网络来代替,并且可以用网络端口参考面上的变量来描述其特性(在传输线上端口所在的位置,与能流方向垂直的横截面通常称为“参考面”)。选择参考面的原则是在该参考面以外的传输线上只传输主模。

微波网络有不同的网络参量:阻抗参量Z 、导纳参量Y 和A 参量反映的是参考面上电压与电流的关系;散射参量S 、传输参量T 反映的是参考面上归一化入射波电压和归一化反射波电压之间的关系。在微波频率下,阻抗参量Z 、导纳参量Y 和A 参量不能直接测量,所以引入散射参量S 和传输参量T 。利用S 参数,射频电路设计者可以在避开不现实的终端条件以及避免造成待测器件损坏的前提下,用两端口网络的分析方法来确定几乎所有射频器件的特征,故S 参量是微波网络中应用最多的一种主要参量。

图2.5 二端口网络示意图

S 参量是根据某端口上接匹配负载的情况下所得到的归一化波来定义的。设a n 表示第n 个端口的归一化入射波电压,b n 表示第n 个端口的反射波归一化电压。

所谓归一化波,就是各端口的波用其对应端口的参考阻抗进行归一化后得到

U 1 U 2

的波,它们与同端口的电压的关系为

cn

n Z U a +

= (2-21a ) cn

n Z U b -

= (2-21b ) 对于线性二端口网络(如图2.5所示),归一化入射波a 和反射波b 之间存在如下关系

2121111a S a S b += (2-22a )

2221212a S a S b += (2-22b )

式(2-22)写成矩阵形式为

b =Sa (2-23)

矩阵S 称为二端口网络的散射矩阵或S 矩阵,表示为

??

????=22211211S S S S S (2-24) 式(2-24)中的矩阵元素称为网络的散射参量,各项矩阵参量的物理意义为: 011112 ==a a b S 表示端口2匹配时,端口1的反射系数;

022221 ==a a b S 表示端口1匹配时,端口2的反射系数;

021121 ==a a b S 表示端口1匹配时,端口2到端口1的传输系数;

012212 ==a a b S 表示端口2匹配时,端口1到端口2的传输系数;

a i =0表示第i 个端口接匹配负载,该端口不存在反射波。

有一点非常重要,就是所有的参量都是在对应负载匹配的情况下定义的,如果对应的负载不匹配,那么相应的反射系数和传输系数就不再等于S 参量。

二端口网络有几个重要的特性参量,它们与散射参量也有着密切的关系。 滤波器可以等效为如图2.6所示的二端口网络。

图2.6 滤波器等效二端口网络

图2.6中,P I 表示入射功率,P R 表示反射功率,P A 表示吸收功率,根据能量守恒关系,有

A R I P P P += (2-25)

通过滤波器的功率被负载吸收称为负载功率P L ,显然P L ≤P A ;如果滤波器无损耗,则P L =P A ;如果输入端又无反射,P R =0,则P L =P I 。

从源得到的最大入射功率P I 为

G

G I R V P 42= (2-26) 而反射损耗L R 为

Γ-=???? ??+--=???

? ??-=log 2011log 10log 10ρρI L R P P L (2-27) 其中ρ为驻波系数,Γ为反射系数。

2.4 谐振与耦合

谐振器是微波滤波器的重要组成部分,微波谐振器与集总参数谐振回路在结构上不同,但是它们的物理本质却完全相同。谐振回路的品质因数Q 0都可以定义为

L

P W Q 000ωω==损耗功率谐振时总的储能 (2-28) 其中ω0为谐振时的角频率,P L 为谐振时的功率损耗。

品质因数还可以表示为

f

f Q ?=00 (2-29) Q 0越高,谐振器的选择性越好。Q 0为无载品质因数,在考虑负载的情况下,

即谐振器之间进行耦合时,必然导致系统的品质因数Q 0降低。

在串联谐振电路中,负载等效为串联电阻,在并联电路中,负载等效为并联电阻。电路谐振时,损耗在该附加电阻上的功率记为P e ,外观品质因数Q e 为

e

e P W Q 0ω= (2-30) 与谐振电路的品质因数的定义相类似,微波谐振器品质因数也定义为储能与功耗的比值。仍然用Q 0表示空载品质因数,Q e 表示外观品质因数,Q L 表示有载品质因数。微波谐振器谐振时,电储能的最大值W e 和磁储能W m 的最大值相同,都等于总储能。

dV E dV E E W W V

V e 2*2121??=?==εε (2-31a ) dV H dV H H W W V V m 2*2121??=?=

=μμ (2-31b ) 其中ε为介质介电常数,μ为介质磁导率,V 为谐振腔体积。

功率损耗包括介质损耗与导体损耗,介质损耗功率P d 为

dV E P V

d d 221?=σ (2-32) 其中σd 为有损介质的电导率。

壁面导体损耗功率P c 为

dS H dS J J R P s

t s s c ??=?=σδ2121* (2-33) 其中ζ为电导率,S 为腔内壁总面积,R s 为导体表面电阻,δ为趋肤深度。

若只考虑导体损耗时,Q 0记为Q 0c

dS H dV

H P W Q s t V c c ??==2

002δω (2-34) 若只考虑介质损耗,Q 0记为Q 0d

d

V d

V

d d dV E dV H P W Q δσμωωtan 1220000===?? (2-35)

其中,tan δd 为介质的损耗角正切。

同时考虑介质损耗以及导体损耗,Q 0为:d

c d P P W Q +=00ω,由此得出 d

c Q Q Q 000111+= (2-36) 对于不同的谐振模式,场分布是不同的,Q 值和谐振波长都有所不同,谐振器的Q 值和谐振波长都是对于某一特定的振荡模式而言的。

2.5 本章小结

本章是本文工作的理论基础,介绍了射频滤波器设计涉及到的微波基础理论知识,包括微波传输线理论,微带线理论,二端口网络。在微波传输线理论中介绍了分布参数元件、特性阻抗、电压驻波比等重要概念。介绍了微带射频滤波器设计用到的微带传输线和微波谐振器。介绍了射频电路设计中重要的微波网络理论。

射频低通滤波器设计示例

射频电路设计示例 设计任务: 用两种方法设计一个输入、输出为50Ω的低通滤波器,滤波器参数为: (1) 截止频率为3Ghz (2) 在通带内,衰减小于3dB (3) 在通带外,当归一化频率为2时,损耗不小于50dB (4) 相速为光速的60% 设计要求: (1)画出滤波器的电路图。 (2)用微带线实现上述的功能,并画出微带线的结构尺寸。 (3)画出0--3.5Ghz 的衰减曲线。 (4)给出设计的源代码本,利用具体软件(如Matlab, MW- office, ADS 、HFSS 、IE3D 等)操作方法及步骤。 方法一: 切比雪夫滤波器设计: Step1: 画出滤波器的电路图。由课本(p151)知滤波器阶数应为N=5。归一化参数为:g g 514817.3==,g g 427618.0==,5381.43=g 集中参数为:4817 .35 1 == C C ,5381 .43 =C ,2296 .14 2 == L L 图1 归一化5阶低通滤波器电路原理图 Step2:将集中参数变换成分布参数(Richards 变换:电感用短路线代,电容用开路线代): g Y Y 1 51 = =,g Z Z 2 4 2 = = ,g Y 3 3 = 。

图2 (O.C =开路线,S.C=短路线) Step3:将串联线段变为并联线段—Kuroda 规则(P162表5.6)。首先在滤波器的输入、输出端口引入两个单位元件。 因为单位元件与信号源及负载的阻抗都是匹配的,所以到入它们并不 影响滤波器的特性。对第一个并联的短线和最后一个并联短线应用Kuroda 规则-1后得: 2872.12872.014817 .3112 1 =+=+ == N N , 2231.02872.14817.31 ' ' 2 1 =?= = Z Z UE UE 7769.02872 .1151=== ' ' Z Z S S

RF射频电路设计

RF电路的PCB设计技巧 如今PCB的技术主要按电子产品的特性及要求而改变,在近年来电子产品日趋多功能、精巧并符合环保条例。故此,PCB的精密度日高,其软硬板结合应用也将增加。 PCB是信息产业的基础,从计算机、便携式电子设备等,几乎所有的电子电器产品中都有电路板的存在。随着通信技术的发展,手持无线射频电路技术运用越来越广,这些设备(如手机、无线PDA等)的一个最大特点是:第一、几乎囊括了便携式的所有子系统;第二、小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。因此,要设计一个完美的射频电路与音频电路的PCB,以防止并抑制电磁干扰从而提高电磁兼容性就成为一个非常重要的课题。 因为同一电路,不同的PCB设计结构,其性能指标会相差很大。尤其是当今手持式产品的音频功能在持续增加,必须给予音频电路PCB布局更加关注.据此本文对手持式产品RF电路与音频电路的PCB的巧妙设计(即包括元件布局、元件布置、布线与接地等技巧)作分析说明。 1、元件布局 先述布局总原则:元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;由实践所知,元器件间最少要有 0.5mm的间距才能满足元器件的熔锡要求,若PCB板的空间允许,元器件的间距应尽可能宽。对于双面板一般应设计一面为SMD及SMC元件,另一面则为分立元件。 1.1 把PCB划分成数字区和模拟区 任何PCB设计的第一步当然是选择每个元件的PCB摆放位。我们把这一步称为“布板考虑“。仔细的元件布局可以减少信号互连、地线分割、噪音耦合以及占用电路板的面积。 电磁兼容性要求每个电路模块PCB设计时尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此,元器件的布局还直接影响到电路本身的干扰及抗干扰能力,这也直接关系到所设计电路的性能。

射频滤波器如何正确选取 看完全懂了

射频滤波器如何正确选取,看完全懂了 随着移动设备功能越来越强大,支持的网络频段越来越多,射频前端模块成了移动设备中不可缺少的一部分。举例来说,一款较新的手机至少需要支持2G,3G,4G以及WiFi,GPS等网络制式,而每一个制式都需要自己的射频前端模块。射频前端模块一般包括天线开关,多路器,滤波器,功率放大器与低噪声放大器等等。这些器件目前仍无法用集成度最高的CMOS工艺制造,而必须使用特殊工艺以保证性能。 根据Mobile Expert LLC的研究报告,2016年在智能手机增长萎靡(9%)的情况下,射频前端模块的增长率仍达到了17%。而在射频前端模块中,未来发展最快的,也最关键的模块就是射频滤波器模块。 滤波器到底有多重要 随着无线通讯应用的发展,人们对于数据传输速度的要求也越来越高。在2G时代,只有一小部分人会使用手机上网下载铃声或浏览wap版网页,需要的数据率大约在1KB/s。在3G时代,随着智能手机的普及,使用运营商网络上

网收发邮件,使用各种app等使得网络流量剧增,需要的数据率大约是50KB/s。到了4G时代的今天,直播等应用更是将手机通讯的带宽需求推向了一个新的高度,需要的数据率达到了1MB/s。 与数据率上升相对应的是频谱资源的高利用率以及通讯协议的复杂化。这两个问题是相辅相成:由于频谱资源有限,为了满足人们对数据率的需求,必须充分利用频谱,因此一部手机必须能够覆盖很宽的频带范围,这样在人群拥挤的情况下不同人的设备才能够分配到足够的频谱带宽。同时,为了满足数据率的需求,从4G开始还使用了载波聚合技术,使得一台设备可以同时利用不同的载波频谱传输数据。 另一方面,为了在有限的带宽内支持足够的数据传输率,通信协议变得越来越复杂,因此对于射频系统的各种性能也提出了严格的需求。 在射频前端模块中,射频滤波器起着至关重要的作用。它可以将带外干扰和噪声滤除以以满足射频系统和通讯协议对于信噪比的需求。如前所述,随着通信协议越来越复杂,对于通讯协议对于频带内外的需求也越来越高,这也

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:图1中的旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 本样本中的各种射频滤波器都是基于穿心电容制造的,并且安装方式都是馈通形式的(输入与输出被金属板隔离)。 虽然本样本中的射频滤波器品种很多,但是每一种型号在设计时都考虑了具体使用场合的要求,使设计师能够在性能、体积、成本等方面获得满意的结果。选择射频滤波器需要考虑的因素有:

截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定

微波射频滤波器归类

摘要:按微波滤波器的传输线的种类进行了分类,并按照这种分类方法对各种微波滤波器的性能指标、设计方法进行了详细的介绍。 关键词:微波滤波器;性能指标;设计方法 前言:随着现代微波通信,尤其是卫星通信和移动通信的发展,系统对通道的选择性越来越高,这对微波滤波器的设计提出了更高的要求,而微波滤波器作为通信系统中的重要部分,其性能的优劣往往决定了整个通信系统的质量。因此研究微波滤波器的性能指标和设计方法具有重要意义。 微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。本文是按照传输线的分类来对各种微波滤波器的主要特性进行详尽的分析。 一、微带滤波器 主要性能指标: 频率范围:500MHz~6GHz 带宽:10%~30% 插入损耗:5dB(随带宽不同而不同) 输入输出形式:SMA、N、L16等 输入输出驻波:1.8:1 微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。 半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大,同时,谐振器在一个方向依次摆开,

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

射频电路设计公式

射频电路设计对特性阻抗Z的经验公式做公式化处理,参见P61 波阻抗公式: E H =Z= μ/ε=377Ω? 相速公式: v=ω β = 1 εμ 电抗公式: Xc= 1 Xl=ωL 直流电阻公式: R= l σS = l πa2σ 高频电阻公式: R′=a R 高频电感公式: L=R′ω 趋肤厚度公式: δ= 1πfμσ 铜线电感实用公式: L′=R a πfμσ= 2l 2 ? 1 πδμσ= 2l μ0/πσf= 1.54 f uH 高频电容公式: C=εA d 高频电导率: G=σA = ωεA = ωC 电容引线电感经验公式: L′=Rd?a πfμ.σ= 2lμ. = 771 f nH

电容引线串联电阻公式: R′=R?a 2δ = 2l 2πaσ πfμ.σ= l a μ.f πσ =4.8 fμΩ 电容漏电阻: R=1 G = 1 2πfC?tanΔ = 33.9exp6 f MΩ TanΔ的定义: ESR=tanΔωC 空气芯螺旋管的电感公式: L= πr2μ.N2螺旋管的电容: C=ε.?2πrN?2a l N =4πε.? raN2 l 微分算符的意义: ? x= 0? ? ?z ? ?y ? 0? ?? ? ?y ? ?x 电容,电感,电导,电阻的定义: C=εw d L= d G= σw R= d σw 特性阻抗表达式:

Z=L C 若是平行板传输线: Z=μεd w 关于微带线设计的若干公式: w/h < 1时, Z= Z. 2π ε′ 8? w + w 4? 其中, Z.=376.8Ω ε′=εr+1 + εr?1 1+ 12h? 1 2 +0.041? w2 w/h>1时 Z= Z. ε′? 1.39+ w h+ 2 3ln w h+1.444 其中, ε′=εr+1 + εr?1 1+ 12h? 1 2 如何设计微带线w/h<2时: w h = 8e A e2A?2 其中, A=2πZ Z. εr+1 2 + εr?1 εr+1 0.23+ 0.11 εr w/h>2时: W =2 (B?1?ln2B?1+ εr?1 (ln B?1 +0.39? 0.61 )) 其中, B= Z.π2Zεr 反射系数的定义:

射频微波滤波器的设计仿真与测试

射频微波滤波器的设计仿真与测试

一、实验目的 1.掌握低通原型滤波器的结构 2.掌握最平坦和等波纹型低通滤波器原型频率响应特性 3.了解频率变换法设计滤波器的原理及设计步骤 4.了解利用微带线设计低通、带通滤波器的原理方法 5.掌握用ADS 进行微波滤波器优化仿真的方法与步骤。 二、实验原理 2.1.滤波器的技术指标 中心频率,通带最大衰减,阻带最小衰减,通带带宽,插入损耗,群时延,带内纹波,回波损耗,驻波比 2.2 插入衰减法设计滤波器 通常采用工作衰减来描述滤波器的衰减特性: 插损法是一种系统的综合方法,可高度地控制整个通带和阻带内的幅度和相位特性,可以计算出满足应用需求的最好响应。如要求插损小,可用二项式响应;而切比雪夫响应能满足锐截止的需要;若可牺牲衰减率的话,则能用线性相位滤波器设计法获得好的相位响应。插损法使滤波器性能提高的最为直接的方法便是增加滤波器的阶数,滤波器的阶数等于元件的个数。 2.3 集总元件低通滤波器原型 最平坦响应滤波器设计 dB P P L L in A lg 10

2.4 滤波器的实现--频率变换 变换后在对应频率点上衰减量不变,须对应的元件值在两种频率下的具有相同的阻抗 2.5 滤波器的设计步骤 (1)由衰减特性综合出低通原型 (2)再进行频率变换,变换成所设计的滤波器类型 (3)计算滤波器电路元件值(集总元件) (4)微波结构实现电路元件,并用微波微波仿真软件进行优化仿真 三.练习题 对下面结构的微带支节低通滤波器的两种设计进行原理图和版图仿真,并分析其特性。

原理图: 仿真结果:

版图 仿真结果: 实验结果分析:结果基本上达到要求。带宽2.35GHZ-2.55GHZ,袋内衰减在3dB以内,2.3GHZ一下以及在2.75GHZ以上衰减达到大于40dB,端口反射系数较小。 四.滤波器的测量--AV36580A矢量网络分析仪

2016年《射频电路设计》实验

实验三RFID标签的设计、制作及测试一、【实验目的】 在实际的生产过程中,RFID电子标签在设计并测试完成后,都是在流水线上批量制造生产的。为了让学生体会RFID标签天线设计的理念和工艺,本实验为学生提供了一个手工蚀刻制作RFID电子标签的平台,再配合微调及测试,让学生在亲自动手的过程中,不断地尝试、提炼总结,从而使学生对RFID标签天线的设计及生产工艺,有进一步深刻的理解。 二、【实验仪器及材料】 计算机一台、HFSS软件、覆铜板、Alien Higgs芯片、热转印工具、电烙铁、标签天线实物,UHF测试系统,皮尺 三、【实验内容】 第一步(设计):从UHF标签天线产品清单中,挑选出一款天线结构,或者自己设计一款标签天线结构,进行HFSS建模画图 第二步(制作):将第一步中设计好的标签模型用腐蚀法进行实物制作 第三步(测试):利用UHF读写器测试第二步中制作的标签实物性能 四、【实验要求的知识】 下图是Alien(意联)公司的两款标签天线,型号分别为ALN-9662和ALN-9640。这两款天线均采用弯折偶极子结构。弯折偶极子是从经典的半波偶极子结构发展而来,半波偶极子的总长度为波长的一半,对于工作在UHF频段的半波偶极子,其长度为160mm,为了使天线小型化,采用弯折结构将天线尺寸缩小,可以适用于更多的场合。ALN-9662的尺寸为70mm x 17mm,ALN-9640的尺寸为94.8mm x 8.1mm,之所以有不同的尺寸是考虑到标签的使用情况和应用环境,因为天线的形状和大小必须能够满足标签顺利嵌入或贴在所指定的目标上,也需要适合印制标签的使用。例如,硬纸板盒或纸板箱、航空公司行李条、身份识别卡、图书等。 ALN-9662天线版图 ALN-9640天线版图

实验一射频滤波器设计

实验一 射频滤波器设计 一、实验目的 (1)了解微波滤波电路的原理及设计方法。 (2)学习使用ADS 软件进行微波电路的设计,优化,仿真。 (3)掌握微带滤波器的制作及调试方法。 二、实验内容 (1)使用ADS 软件设计一个微带带通滤波器,并对其参数进行优化、仿真。 (2)根据软件设计的结果绘制电路版图,并加工成电路板。 (3)对加工好的电路进行调试,使其满足设计要求。 三、 设计指标 设计指标:通带3.0-3.1GHz ,带内衰减小于2dB ,起伏小于1dB ,2.8GHz 以下及3.3GHz 以上衰减大于40dB ,端口反射系数小于-20dB 。 四、实验原理 下图是一个微带带通滤波器及其等效电路,它由平行的耦合线节相连组成,并且是左右对称的,每一个耦合线节长度约为四分之一波长(对中心频率而言),构成谐振电路。 在进行设计时,主要是以滤波器的S 参数作为优化目标进行优化仿真。S21(S12)是 传输参数,滤波器通带、阻带的位置以及衰减、起伏全都表现在S21(S12)随频率变化曲线的形状上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算出输入、输出 端的电压驻波比。如果反射系数过大,就会导致反射损耗增大,并且影响系统的前后级匹配,使系统性能下降。 五、实验步骤 ( 1)启动ADS (2)创建新的工程文件 (3)生成微带滤波器的原理图,如图1 所示。 图1 微带滤波器原理图 等效电路

(4) 设置微带电路的基本参数 双击图上的控件MSUB设置微带线参数 H:基板厚度(0.8 mm) Er:基板相对介电常数(4.3) Mur:磁导率(1) Cond:金属电导率(5.88E+7) Hu:封装高度(1.0e+33 mm) T:金属层厚度(0.03 mm) TanD:损耗角正切(1e-4) Roungh:表面粗糙度(0 mm) (5) 计算微带线的线宽和长度 滤波器两边的引出线是特性阻抗为50欧姆的微带线,它的宽度W可由微带线计算工具得到,具体方法是点击菜单栏Tools -> LineCalc -> Start Linecalc,填入50 Ohm和90 deg可以算出微带线的线宽1.52 mm和长度13.63 mm(四分之一波长)。 (6) 设置微带器件的参数 双击两边的引出线TL1、TL2,分别将其宽与长设为1.52 mm和2.5 mm(其中线长只是暂定,以后制作版图时还会修改)。通过添加变量实现对五个耦合线节微带线线长L,宽W和缝隙S的尺寸进行设置。由于平行耦合线滤波器的结构是对称的,所以五个耦合线节中,第1、5及2、4节微带线长L、宽W和缝隙S的尺寸是相同的。图2是设置微带器件参数后的原理图 图2 设置微带器件参数后的原理图

射频电路设计技巧

实用资料——射频电路板设计技巧成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。 近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。 射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。 微过孔的种类 电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm至0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。 采用分区技巧 在设计RF电路板时,应尽可能把高功率RF放大器(HPA)和低噪音放

射频微带滤波器基础理论

第2章射频微带滤波器基础理论 频率的提高意味着波长的减小,该结论应用于射频电路中,就是当波长与分立元件的集合尺寸相比拟时,电压和电流不再保持空间不变,以波的形式进行传播。经典的基尔霍夫电压和电流定律没有考虑电压和电流在空间的变化,则必须对普通的集总电路做重大的修改。 本章首先介绍了射频微带滤波器设计中所涉及的基本概念,然后介绍了二端口网络理论和谐振与耦合理论。 2.1 传输线理论 2.1.1 均匀传输线的概念和模型 频率提高后,导线中所流过的高频电流会产生趋肤效应,工程上常用趋肤深度δ来描述这种趋肤效应,δ为电磁波场强的振幅值衰减到表面值1/e所经过的距离,由于趋肤效应使得导线有效面积减小,高频电阻加大,而且沿线各处都存在损耗,这就是分布电阻效应;通高频电流的导线周围存在高频磁场,这就是分布电感效应;由于两导线之间有电压,故两线之间存在高频电场,这就是分布电容效应;由于两线间的介质并非理想介质而存在漏电流,这相当于双线间并联一个电导,这就是分布电导效应。基于上述的物理事实,便可得出双线传输线等效模型[18]如图2.1所示。 图2.1 双线传输线等效模型 图2.1中,R1为单位长度的分布电阻,L1为单位长度的分布电感,G1为单位长度的分布电导,C1为单位长度的分布电容。

2.1.2 均匀传输线相速与波长 相位速度是等相位面传播的速度,简称相速。在均匀传输线理论中等相位面是垂直于z 轴的平面,相速v p 为 β ω==dt dz v p (2-1) 在一个周期的时间内波所行进的距离称为波长,波长λp 为 βπ λ2===T v f v p p p (2-2) 其中f 为电磁波频率,T 为振荡周期。 2.1.3 均匀传输线特性阻抗 入射电压与入射电流之比或反射电压与反射电流之比称为特性阻抗(即波阻抗),特性阻抗Z 0为 1 1110C j G L j R Z ωω++= (2-3) 对于微波传输线由于频率很高,11R L j ω<<、11G C j ω<<,则 1 10Z C L = (2-4) 2.1.4 均匀传输线传播常数 传播常数γ表示行波经过单位长度后振幅和相位的变化,其表示式为 βαωωγj C j G L j R +=++=))((1111 (2-5) 由于实际微波传输线的损耗R 1、G 1比ωL 1、ωC 1小得多,式(2-5)经变换后可得 22220101111111Z G Z R C L G L C R +=+= α (2-6) 其中:0 12Z R c =α ——由导体电阻引起的损耗; 2 01Z G d = α ——由导体间介质引起的损耗。

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法 随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 选择射频滤波器需要考虑的因素有: 截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定电流由滤波器的引线直径决定,线径越大,额定电流越大。对于滤波器组件,额定电流还与电感线圈的饱和特性有关,当电流超过额定电流时,滤波器的性能会下降。 工作温度范围:滤波器件能保证预定性能和正常工作时所处的环境温度,本样本中的滤波器件除了特别标出的以外,工作温度范围为有-55 - +125 C。 滤波器的体积:滤波器的体积与滤波器的额定工作电压、工作电流、截止频率、插入损耗以及制造工艺有关。电气性能基本相同的滤波器,由于不同的制造工艺而导致不同的体积,电气性能接近时,体积较大的滤波器价格较低(适合安装空间较大的场合)。 射频滤波器的安装方式对滤波器的性能有很大影响。首先射频干扰滤波器必须以金属板为隔离板,将滤波器的输入和输出隔离开。其次,滤波器要与金属板之间保持低阻抗的接触,以保证滤波电容的旁路效果。最好将滤波器安装在镀锡或锌的铝板或钢板上。为了保证可靠的连接,一般要在滤波器的安装法兰与隔离板之间安装内齿垫片,而不能使用导电胶之类的物质来达到可靠连接的目的。需要注意的问题是,不同金属的接触面之间会发生电化学腐蚀,

射频滤波器的种类、作用及原理

射频滤波器的种类、作用及原理 一、概述 1.射频滤波器定义 凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器,相当于频率“筛子”。 2.射频滤波器分类 幅频特性如下

频率通带:能通过滤波器的频率范围 频率阻带:被滤波器抑制或极大地衰减的信号频率范围。 截止频率:通带与阻带的交界点。 2)按物理原理分:机械式、电路式 按处理信号分:模拟、数字 3.射频滤波器的作用 1)将有用的信号与噪声分离,提高信号的抗干扰性及信噪比; 2)滤掉不感兴趣的频率成分,提高分析精度; 3)从复杂频率成分中分离出单一的频率分量 。 二、理想滤波器与实际滤波器 1.理想滤波器的频率特性 理想滤波器:使通带内信号的幅值和相位都不失真,阻喧内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。 如理想低通滤波器的频率响应函数为

理想滤波器实际上并不存在。 2.实际滤波器 实际滤波器的幅频特性如下图所示 实际滤波器的特性需要以下参数描述: ①信频程选择性: 与上、下截止频率处相比,频率变化一倍频程时幅频特性的衰减量,即 信频程选择性总是小于等于零,显然,计算信量的衰减量越大,选择性越好。 ②滤波器因素:-60dB处的带宽与-3dB处的带宽之比值,即 ③分辨力:即分离信号中相邻频率成分的能力,用品质因素Q描述。 3.实际带通滤波器的形式 ①恒定带宽带通滤波器:B=常量,与中心频率f0无关。

②恒定百分比带通滤波器: 在高频区恒定百分比带通滤波器的分辨率比恒定带宽带通滤波器差。 三、RC无源模拟式滤波器 1.一阶RC低通滤波器

射频工程师必读书籍

ADS,MWO,Ansoft还是CST、HFSS 频微波类书 希望对大家有点帮助: 1.《射频电路设计--理论与应用》『美』Reinhold Ludwig 著电子工业出版社 个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解. 随便提一下,关于看射频书籍看不懂的地方怎么办?我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。 2. 《射频通信电路设计》『中』刘长军著科学技术出版社 个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。值得一看,书上有很多归纳性的经验. 3.《高频电路设计与制作》『日』市川欲一著科学技术出版社 个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看. 4. 《LC滤波器设计与制作》『日』森荣二著科学技术出版社 个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般. 5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社 个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行. 6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社 个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏! 7. 《信号完整性分析》『美』Eric Bogatin 著电子工业出版社 个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口)8. 《高速数字设计》『美』Howard Johnson著电子工业出版社 个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout 的工程师一看要看下,这本书也是经典书喔! 9.《蓝牙技术原理开发与应用》『中』钱志鸿著北京航空航天大学出版社 个人书评:当时自己做蓝牙产品买的书,前2年仅有的几本,上面讲了一下蓝牙的基本理论(恰当的说翻译了蓝牙标准),软件,程序的东西占大部分内容. 10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社 个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC 测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板会很赏识你的,如果你也负责产品的EMC,这本书必读。作者写有很多实例,很有代表性,对你解决EMC问题,会有引导性(指导性)的的意义。

射频滤波器的设计与仿真设计

射频滤波器的设计与仿真 摘要 射频滤波器,主要用于电子设备、频率高工作更大的衰减高频电子设备产生的干扰信号。射频滤波器是最基本射频设备。能够由微带线组成,也能够由电阻,电容等组成。 由实践可知,很多射频系统中的元件不存在准确频率选择性,因此往往需要添加滤波器,用来极其准确地完成设定的选择特性,所以对射频滤波器的设计有重要的意义。在射频有源电路的各级之间都可以借助滤波器对射频信号进行隔离、选择或是重新组合。 在设计模拟电路时,需要对高频信号在特定频率或频段内的频率分量做放大或衰减处理。这是十分重要的任务,因此本文将重点研究如何设计和实现这个任务的射频电路——射频滤波器。 关键词:射频,微波滤波器,微带线,workbench ,Advanced Design System;

The design and simulation of radio frequency filters ABSTRACT Rf filter, mainly used in electronic devices, high frequency work greater interference signal attenuation of high frequency electronic device. Rf filter is the most basic radio frequency devices. Can consist of microstrip line, also can by resistance, capacitance, etc. The practice shows that a lot of rf components do not exist in the system accurate frequency selective, so often need to add the filter, used extremely accurately complete set of selected features, so the design of rf filter has an important significance. Between active rf circuit at all levels can use filter to segregate, choice or rearrange the rf signal. In analog circuit design, the need for high frequency signal at a particular frequency or frequency component in the spectrum for amplification or decay process. It is very important task, so this article will focus on how to design and implement the task of rf circuit, rf filter. Keywords: R f, Microwave filter, Microstrip line, The workbench; ADS;

射频滤波器的主要技术路线

1.射频滤波器:射频前端中价值量最大的细分领域 1.1 射频滤波器的产品类别 手机终端的通信模块主要由天线、射频前端模块、射频收发模块、基带信号处理等组 成。射频前端介于天线和射频收发模块之间,是移动智能终端产品的重要组成部分。 射频前端器件主要包括滤波器(Filters)、低噪声放大器(LNA)、功率放大器(PA)、射 频开关(RF Switch)、天线调谐开关(RF Antenna Switch)、双工器(duplexer)等。其 中滤波器的功能是通过电容、电感、电阻等电学元件组合来将特定频率外的信号滤除, 保留特定频段内的信号。 目前手机中常用的滤波器产品形态包括 (1)声表面波滤波器(Saw Filter,Surface Acoustic Wave Filter) (2)固贴式薄膜体声波滤波器(Baw Filter,SMR Bulk Acoustic Wave Filter) (3)薄膜腔体谐振滤波器(Fbar,Film Bulk Acoustic Resonator) (4)滤波器模组,如DiFEM(分集接受模组,集成射频开关和滤波器)、LFEM(集 成射频开关、滤波器及LNA)、FeMid(集成开关、滤波器和双工器)、PaMid(集 成多模式多频带PA和FeMid) 图1:智能手机通信系统结构示意图 资料来源:Wind,国元证券研究中心 5G驱动下,射频前端市场到2023年超过2400亿元。根据Yole数据,2017年全球 射频前端市场规模约为150亿美金,预计到2023年射频前端产值将达到350亿美金 (折合2434亿元)。其中,射频滤波器市场规模达225亿美金(折合1565亿元),PA

经典Wifi射频电路的设计与调试

一:WiFi产品的一般射频电路设计(General RF Design In WiFi Product) 2011-01-20 18:18:41 写在前面的话: 这篇文章是我结合多年的工作经验和实践编写而成的,具有一定的实用性,希望能够对大家的设计工作起到一定的帮助作用。 I. 前言 这是一篇针对性很强的技术文章。在这篇文章中,我只是分析研究了Wi-Fi产品的一般射频电路设计,而且主要分析的是Atheros 和Ralink的解决方案,对于其他厂商的解决方案并没有进行研究。 这是一篇针对性很不强的技术文章。在这篇文章中,我研究,讨论了Wi-Fi产品中的射频电路设计,包括各个组成部分,如无线收发器,功率放大器,低噪声放大器,如果把这里的某一部分深入展开讨论,都可以写成一本很厚的书。 这篇文章具有一般性。虽然说这篇文章主要分析了Atheros和Ralink的方案,但是这两家厂商的解决方案很具有代表性,而且具有很高的市场占有率,因此,大部分Wi-Fi 产品也必然是具有一致或者类似的架构。经常浏览相关网站的人一定知道,在中国市场热卖的无线路由器,无线AP很多都是这两家的解决方案。 这篇文章具有一定的实用性。这篇文章的编写是基于我们公司的二十余种参考设计电路,充分吸收了参考设计的精华,并提取其一般性,同时,本文也重在分析实际的电路结构和选择器件时应该注意的问题,并没有进行深入的理论研究,所以,本文具有一定的实用性。 这篇文章是我在自己的业余时间编写的(也可以说我用这种方式消磨时间),如果这篇文章能够为大家的工作带来一点帮助,那将是我最高兴的事。我平时喜欢关注一些业界的新技术新产品,但是内容太多,没有办法写在文章中,感兴趣的同事可以访问我的博客:https://www.360docs.net/doc/985853570.html,。研发设计千人群(电子+结构) 在这里,实现资源共享,人脉扩张! 群号229369157 229369157 由于时间有限,编写者水平更加有限,错误之处在所难免,欢迎大家批评指正。 第1章. 射频设计框图 做技术的,讲解某个设计的原理时,都会从讲解框图开始,本人也不例外,先给大家展示一下Wi-Fi产品的一般射频设计框图。

最新射频电路设计原理与应用

射频电路设计原理与 应用

【连载】射频电路设计——原理与应用 相关搜索:射频电路, 原理, 连载, 应用, 设计 随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。 下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。 作者介绍 ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。 第1章射频电路概述 本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。 第1节频谱及其应用 第2节射频电路概述 第2章射频电路理论基础 本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等 第1节品质因数 第2节无源器件特性 第3章传输线 工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。 第1节传输线的基本参数 第2节终端带负载的传输线分析 (1) 第3节终端带负载的传输线分析 (2) 第4章史密斯圆图 为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似方法的优点是有可能在同一个图中简单直观的显示传输线阻抗以及反射系数。本小节将对史密斯圆图进行系统的介绍。第1节史密斯圆图

相关文档
最新文档