一道数学例题引发的思考

一道数学例题引发的思考
一道数学例题引发的思考

一道数学例题引发的思考

-------《平行四边形(1)》教学反思

北师大数学九年级上册第三章第一节有这样一道例题:

例题:

证明:等腰梯形在同一底上的两个底角相等。

在和学生共同探讨这道题目时,我们首先是共同完成了证明文字命题的一些必要步骤,(如:画出图形、根据题设和结论写出已知和求证)完成对这道题目的数学化,运用准确的数学语言完成翻译。即:

已知:如图,梯形ABCD ,AB=CD.

求证:∠A=∠D ∠B=∠C

课本上给出的证明方法是解决梯形问题的最常见的方法。我在解决这个问题时,要求学生不看书,独立自主的想出尽可能多的解题方式。

学生们在很短的时间内就探索出了几种不同的做法,当然也包括和教材相吻合的解题方式。课本解题方法如下:

过点D 做D E ∥AB,交BC 于点E.不难证出四边形ABED 是平行四边形,进而得出AB=DE,而AB=CD,∴DE=DC, ∴∠DEC=∠C,而AB ∥DE,则∠B=∠DEC,进而得出∠B=∠C, ∠A=∠ADC.

A B

E C D

在这里我想要谈的是,其中一个学生用了以下方式来解决问题:

将线段AB 沿着BC 方向平移至CF 交AD 的延长线于点F,不难证出四边形ABCF 是平行四边形,仿照例题的证法,进而解决了问题。

A C

D E

我问她是如何想到了用平移思想解决这道题。她说,她发现课本上的辅助线可以理解为一种平移,将复杂图形分解为简单图形,因而想到了:如果继续平移会产生什么效果,从而找到了这样的解决办法。她的想法让大家耳目一新。平移、旋转的数学思想的运用容易被老师和学生忽视,在这里巧妙运用让这道题“活”了起来,毕竟课本上的解题方式是一种静态的。学生的思维也“活”了起来。此时,我也特别的兴奋,不禁想到在这之前学校崔老师的爱女曾经问到我的一道数学题,我立即把这道题目拿出来和同学们一起分享,让学生们更深入地了解平移、旋转等思想对于解决数学问题的便捷与巧妙。

题目如下:

已知:如图,点P 在正方形ABCD 的内部,且AP:BP:CP:=1:2:3.

求:∠APB 的度数。

A B C

D

P

我们将△PBC 绕着点B 逆时针方向旋转90°后,点C 将落在A 点位置(因为四边形ABCD 是正方形),点P 落在E 的位置,连接PE ,AE.不难证出△PBE 是等腰直角三角形,得出∠BPE=45°.设AP=1,则PB=EB=2,PC=AE=3,则PE=22;在△APE 中。AP=1,AE=3,PE=22,根据勾股定理的逆定理可判定出△APE 是直角三角形,则∠APE=90°; ∴∠APB=45°+90°=135°.

A B C D

P

E

本来这道题于本节课没有多大的联系,而且它的难度很大,但是我们的课堂不是一成不变的,预设和生成总会有一定的距离。我只不过是想借这道题让学生更加明白平移、旋转这些容易被我们忽视的数学思想必须重视起来。我们要善于抓住教育时机,对学生适时引导,让我们的课堂真正成为师生思维传递和情感交流的舞台。

一道习题引发的思考

一道习题引发的思考 ——如何提高学生解决应用题的能力二年级在学生学习了用除法解决问题后,试卷中出现了这样一道题:“一张邮票8角,小明有4元钱,能买几张这样的邮票?”这道题正确的做法是先把4元换算成40角,再用40÷8=5(张),而大多数学生是这样做的:8÷4=2(张)。学生的错误率如此之高,所犯错误又是如此雷同,为什么会出现这种现象呢?我是这样分析的:这道题的前两题都是用除法解决问题,而且都是大数除以小数,学生做到这题时思维定势,以为还是用题目中的大数除以小数。作为一名数学教师,“如何提高学生解决应用题的能力”成了我思考最多的问题。 一、仔细审题 做一道题目之前首先要读题,所以我认为要提高学生解决问题的能力,培养学生仔细审题的习惯尤为重要。让学生学会读懂题目,明确题目中究竟讲了怎样的一回事,要我们解决的是什么问题。 在平时的教学中,我要求学生读题时放慢速度,用铅笔指着所读的内容,做到“手眼合一”,避免“一目十行”。读到题目中重点的词语作上记号,比如有的题目中提到的“从大到小”、“由高到矮”等比较容易忽视或容易混淆的字词加上着重号,有些题目条件中是“厘米”作单位的,问题是“米”作单位,要求学生圈出“厘米”、“米”。读完题目,可以让学生合上书本,复述刚才读到的条件和问题。这些都可为正确解题打下良好的基础。 二、分析数量关系 解决应用题的核心是分析数量关系。突出数量关系分析,找到解题思路,是解决实际问题教学的重点。 我发现有些数学能力较强的学生,当他们读完一道题后,就能立即看到题目的“骨架”,这个“骨架”就是数量关系。例如,“红花有5朵,黄花的朵数是红花的2倍,两种花一共有多少朵?”这一问题的数量关系是:红花朵数+黄花朵数=总朵数。根据这一数量关系式,发现必须先求出黄花的朵数,该题便迎刃而解。又如,“单价×数量=总价”、“速度×时间=路程”、“工作效率×工作时间=工作总量”等,这些人们在工作和学习中概括出的一些常见数量关系都是学生解题

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

从一道数学习题引发的思考

从一道数学习题引发的思考 我曾听过某小学四年级的一节数学课,内容是讲乘、除法各部分间关系的应用。新课前的教学效果较好,为了让学生将这一知识得以巩固、延伸,该任课教师呈现了56×(□-145)=3080,让学生填上方框里的数。意图是让学生用乘、除法各部分间的关系来解答此题,但学生对这道题似乎没多大兴趣,有个同学用了3080÷56+145=200求出了方框里的数。教师兴奋地追问算理,可这名学生一时答不上来。接下来就是教师细致的讲解……从学生的表情上不难看出,少部分学生听懂了。但许多小朋友脸上露出不解之情,可以归结为:一是实在难懂,二是不知道学了有什么用处。学与用的结合没有找到切入点。 当我也要开始上这一知识时,以前的那一幕又出现在我眼前,有了前车之鉴,可不能重蹈覆辙,.怎样引领学生呢?我陷入了深思。最终我在课前用课件创设了这样一个情景:老师在家里做一本四年级的数学资料,突然,淘气的小花猫跳上书桌,一只脚踩进墨水瓶里,又跳到了资料书上,把一道题中的一个数字踩着了,变成了墨黑的梅花印,看不清了,这下可糟糕了,我只能看见56×(?葚-45)=3080,同学们,你能帮助教师算出看不清的是什么数字吗?听了老师的讲解,学生先是哈哈大笑,接着便是“热心”的小朋友们几个一组讨论开来。根据学生的回答,大致探索出了以下三种方法,并说明了理由。 从学生的讲解可以看出,他们运用了乘除法各部分间的关系,想出了这些可圈可点的解决方法。他们非常自信,也真正学会了本节知识,并使学的知识得以拓展、延伸,得以整合。更令我惊讶的是第三种解法,居然用上了初中的“换元法”。从这节课的学习,我更加相信学生的能力,相信自己的教学能力,同时更引发了我对教学的思考。 思考之一:计算数学需要有价值的情景吗?在数学的计算教学中,对于是否需要创设情景,我们许多教师感到困惑,《新课程标准》关于计算教学明确指出:“计算应使学生经历从现实生活中抽象数和简单的数量关系,在具体的情景中理解,并应用到所学知识解决问题的过程,应该避免一味繁杂的运算,避免将运算与应用割裂开来。”在教学中,我们应清楚地看到计算教学同样担负起数学教学所承担的所有任务。要实现《数学新课程标准》的要求,无疑,创设有价值的情景是解决传统计算式题的好方法。有了情景,计算式题就有了生命活力,有了情景学生就能“触景生情”、“触景生需”、“触景生思”,就有了解决问题的动力。只有在比较现实的情景中学生才会感到计算的价值和现实意义,才会把计算当作解决问题的手段;只有在情景中,才能有效地引发学生的数学思考,提出数学问题,从而更加深刻地解决数学问题。 思考二:正确处理算法多样化和优化的关系。在教学中,由于学生的生活背景和思考角度不同,所使用的方法必然存在多样化。我们要多关注学生的想法,鼓励学生独立思考,提倡计算方法多样化。但算法多样化,并不意味着只讲数量而不追求质量。作为一名优秀教师,既是算法多样化的倡导者,也是优化算法的促进者,我们要鼓励学生采用自己觉得喜欢、容易接受的方法。只有正确处理好

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

一道数学题引发的思考

龙源期刊网 https://www.360docs.net/doc/988345759.html, 一道数学题引发的思考 作者:罗会琴 来源:《读与写·上旬刊》2019年第01期 摘要:作为一名农村小学教师,我们不仅要认真学习,深刻领会,准确把握新的义务教育课程标准,提高自己的专业化知识素养,在不断的总结与反思的过程中,丰富自己的教育教学经验;与此同时我们还应真正的去落实新的义务教育课程标准,开展有效的数学活动,让学生在真正的经历中积累数学活动经验,因为经验是不可传递的,只能靠亲身经历,只有让学生亲自参与才能获得经验。 关键词:低年级;数学教学 中图分类号:G623.5文献标识码:B文章编号:1672-1578(2019)01-0131-02 前几天带同学们复习时遇到了这样一道题,题目的内容是这样的:小明买了一架28元玩具飞机,售货员找回22元,他给了售货员多少元? 批改时我发现有些同学是这样解决的: 28-22=6(元) 答:他给了售货员6元。 当时我就纳闷,埋怨学生怎么这么笨啦?把答案带到题目里想想也会知道不对呀,飞机就要28元,6元哪够买呢?刹那间,我又想到他们会不会是受我前几天讲解的一道题目的影 响,因为题型很相似,内容是这样的:小明买一个书包,他给了售货员50元,找回10元,书包多少元?当时也有部分同学不会做,选择了加法,看到后我就及时纠正了他们的错误,并在全班做了分析讲解,明确了要用减法,所以他们在解此题时也用减法。 现在回过头来想想,我觉得还是学生缺少基本的数学活动经验。他们对生活的方方面面接触的太少,甚至可以说是匮乏。 为什么会这样呢? 我想不外乎这两个原因:其一,源自家庭。如今的孩子娇生惯养,很多事情都由父母或爷爷奶奶代替,上学放学接到校门口,书包爷爷奶奶背。就拿我们一年级的王阳来说吧。在一次课间操上,我发现他的鞋带散了,便叫他把鞋带系上,可他却两眼眨巴眨巴的瞅着我,我问他怎么啦还不快点把鞋带系上,他却说我不会。自理能力都这么差,何况让他们去接触与体验生活呀?又何来生活经验之谈。再者,农村的孩子家长在如何有意识的教育培养孩子这方面还是

由一道课本例题带来的日常教学思考

由一道课本例题带来的日常教学思考 发表时间:2013-06-13T09:29:21.560Z 来源:《少年智力开发报》2013学年36期供稿作者:张进辉 [导读] 从学生能力发展的要求来看,形成数学概念(或定义),提示其内涵与外延,比数学概念(或定义)本身更重要。 江西省抚州市东乡二中张进辉 对数学问题多种解法的不懈追求,体现了数学思维的深刻性、发散性、变通性、灵活性、流畅性和开放性.本文介绍一道课本习题的多解、推广、反思. 一、课本上的一道例题: 浙教版八上《3.2直棱柱的表面展开图》P58 书本例题:如图,有一长方体形的房间,地面为边长4米的正方形,房间高3米.一只蜘蛛在A处,一只苍蝇在B处. ⑴试问,蜘蛛去抓苍蝇需要爬行的最短路程是多少? ⑵若苍蝇在C处,则最短路程是多少? 问题解决——谜底: 二、例题教学后的反思: 对于立方体表面展开图这个概念的形成,由于很难下一个简洁明了的定义,所以课本先安排了一个合作学习的栏目,让学生把一个立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,得到一些平面图形,然后再通过体例、练习和作业题来理解概念,进一步迁移到其他直棱柱的表面展开图。 从学生能力发展的要求来看,形成数学概念(或定义),提示其内涵与外延,比数学概念(或定义)本身更重要。当学生对于概念、定义有了初步理解(或了解),但这种理解还不十分稳定、清晰的时候,可以在变式中辨别是非。在复习概念(或定义)的教学过程中,利用问题变式可加速加深学生对概念的理解,巩固所学知识,提高学习的兴趣和积极性,从而培养学生阅读理解、观察与分析、抽象与概括等能力。 三、题目变式教学 题目变式包括条件的探究(增加、减少或变更条件)、结论的探究(结论是否唯一)、数与形的探究、引申探究(命题是否可以推广)等。在解题复习课或试卷讲评课的教学中,利用问题变式可使学生掌握姊妹题甚至一类题的解法,从而使学生运用数学思想方法去分析问题和解决问题的能力得到提高,探究创新的能力得到发展。. 变式1:如图1,有一个圆锥粮仓,其正视图为边长是 6em的正三角形。粮仓的母线AC的中点P处有一老鼠正在偷吃粮食。此时,小猫正在B处,它要沿粮仓侧面到达 P处捕捉老鼠,求小猫所经过的最短路程的长。 变式2:如图2所示的圆柱体中,底面圆的半径是 1,高为2。若一只蚂蚁从A点出发沿着圆柱体的侧面爬行到C点,则蚂蚁爬行的最短

排列组合典型例题

排列组合典型例题 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

一道数学例题引发的思考

一道数学例题引发的思考 -------《平行四边形(1)》教学反思 北师大数学九年级上册第三章第一节有这样一道例题: 例题: 证明:等腰梯形在同一底上的两个底角相等。 在和学生共同探讨这道题目时,我们首先是共同完成了证明文字命题的一些必要步骤,(如:画出图形、根据题设和结论写出已知和求证)完成对这道题目的数学化,运用准确的数学语言完成翻译。即: 已知:如图,梯形ABCD ,AB=CD. 求证:∠A=∠D ∠B=∠C 课本上给出的证明方法是解决梯形问题的最常见的方法。我在解决这个问题时,要求学生不看书,独立自主的想出尽可能多的解题方式。 学生们在很短的时间内就探索出了几种不同的做法,当然也包括和教材相吻合的解题方式。课本解题方法如下: 过点D 做D E ∥AB,交BC 于点E.不难证出四边形ABED 是平行四边形,进而得出AB=DE,而AB=CD,∴DE=DC, ∴∠DEC=∠C,而AB ∥DE,则∠B=∠DEC,进而得出∠B=∠C, ∠A=∠ADC. A B E C D 在这里我想要谈的是,其中一个学生用了以下方式来解决问题: 将线段AB 沿着BC 方向平移至CF 交AD 的延长线于点F,不难证出四边形ABCF 是平行四边形,仿照例题的证法,进而解决了问题。 A C D E

我问她是如何想到了用平移思想解决这道题。她说,她发现课本上的辅助线可以理解为一种平移,将复杂图形分解为简单图形,因而想到了:如果继续平移会产生什么效果,从而找到了这样的解决办法。她的想法让大家耳目一新。平移、旋转的数学思想的运用容易被老师和学生忽视,在这里巧妙运用让这道题“活”了起来,毕竟课本上的解题方式是一种静态的。学生的思维也“活”了起来。此时,我也特别的兴奋,不禁想到在这之前学校崔老师的爱女曾经问到我的一道数学题,我立即把这道题目拿出来和同学们一起分享,让学生们更深入地了解平移、旋转等思想对于解决数学问题的便捷与巧妙。 题目如下: 已知:如图,点P 在正方形ABCD 的内部,且AP:BP:CP:=1:2:3. 求:∠APB 的度数。 A B C D P 我们将△PBC 绕着点B 逆时针方向旋转90°后,点C 将落在A 点位置(因为四边形ABCD 是正方形),点P 落在E 的位置,连接PE ,AE.不难证出△PBE 是等腰直角三角形,得出∠BPE=45°.设AP=1,则PB=EB=2,PC=AE=3,则PE=22;在△APE 中。AP=1,AE=3,PE=22,根据勾股定理的逆定理可判定出△APE 是直角三角形,则∠APE=90°; ∴∠APB=45°+90°=135°.

高中数学排列组合题型总结与易错点提示25587汇编

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1 m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1 m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合 要求的元素占了这两个位置. 先排末位共有13 C C 1 4 A 3 4 C 1 3 然后排首位共有14 C 最后排其它位置共有34 A 由分步计数原理得113434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花

不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素, 同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5225 2 2 480A A A 种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈 节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55 A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46 A 不同的方法,由分步计数原理,节目的不同顺序共有5456 A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单, 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列 ,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

[++i_与i++]一道简单的题目引发的思考

一道简单的题目引发的思考 ++i 与i++ ——Don't believe in magic !Understand what your program do ,how they do .引言 昨晚一时兴起,我脑子就问自己下面的代码会输出什么,也不知道我脑子为什么有这个代码模型,只是模糊的有些印象: 01#include 02#include 03 04int main(int argc,char** argv) 05{ 06int i=3,j; 07j=(i++)+(i++)+(++i); 08printf("i = %d, j = %d\n",i,j); 09exit(0); 10} 您会怎样考虑这个问题呢?您不运行这个程序能准确地说出答案吗?我猜想肯定有大部分人不能肯定且准确地说出答案!如果您不能,这篇文章就是为你准备的,保证您看完之后豁然开朗!请细看下文,outline如下: 1、诸君的回答 我那这道题目问了几个人,他们的答案不尽相同。 1.1、A君的回答

因为i = 3,故依次i++=4,i++=5,++i=6,i最后输出为i = 6;但是由于前面两个++ 是后置++,最后一个++是前置++,故j = 3+4+6 = 13。 1.2、B君的回答 因为i = 3,故第一个i++后为4,第二个i++后为5,接着做i+i操作= 5+5=10,最后与(++i)相加= 10+6=16。 1.3、C君的回答 因为i = 3,故依次i++=4,i++=5,++i=6,i最后输出为i = 6;但是第一i、第二个i 的++是后置++,先进行i+i操作,然后进行两次i++后置操作,故等价于(i)+(i) = 3+3=6,i++,i++,最后与++i=6相加等于12。 1.4、D君的回答 因为i = 3,故依次i++=4,i++=5,++i=6,i最后输出为i = 6;但是前面两个++都是后置++,故先做i+i+(++i)操作,然后才在i++,i++操作,第三个++是前置++,故等价于i+i +(++i)=3+3+4=10,i++,i++。 到底哪个人说得对呢? 2、编译器的输出 首先让我们先来看看编译器会输出什么? 2.1、Visual Studio的输出 运行环境:Win7+VS2005 or VS2010,输出如下图所示:

排列组合基础知识及习题分析

排列组合基础知识及习题分析 在介绍排列组合方法之前我们先来了解一下基本的运算公式! C53=(5×4×3)/(3×2×1) C62=(6×5)/(2×1)通过这2个例子看出 n C m n公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作 为分母 p53=5×4×3 p66=6×5×4×3×2×1 通过这2个例子 p m n=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法。. ***************************************************************************** 提供10道习题供大家练习

一道错题引发的思考(周攀波)

一道错题引发的思考 宜昌金东方小学周攀波 在学习了一个多月后,我们进行了一次简单的独立作业。检验的结果, 让我十分意外。 原题如下: 3、我能把与数字同样多的部分圈起来。(12分) 3 6 9 5 4 7 按照对孩子的了解,在入学以后一个多月的时间里,每一个孩子都能正确的 数数。对同样多的理解也应该没有问题。可是我粗略的统计了学生的答案,105 班有16位孩子这题全错,106班有20位孩子答错。看着试卷上的这些答案,我 陷入了沉思。心里十分困惑和沮丧.百思不得其解为什么出错率如此之高? 为了找出错误的原因,我有意的把这道题念给身边的朋友听,让他们帮我分 析问题出在哪里?其中一位朋友说;’我拿到这道题,会不明白这题的意思.’我 愕然.继续追问她,题目的表达是不是有问题?她说:’是把哪个数字和图相对 应?”原来题目的表达也存在问题.可是我认为这不是造成学生出现大面积错误 的根本原因.如果题目改为,数学是几,就圈出几个,学生就不会出错了. 我再次把学生做错的答卷拿出来认真观察.看着看着,我知道问题出在哪里 了.原来,学生把5只小鸡和数字5圈在一起了.9个蘑菇与数字9圈在了一起.按 照学生的这种答案,确实是把数字与图形同样多的圈在了一起.为了验证的我想 法,我找来了出错的两位同学.问他们是怎么想的?他们告诉我,运用了一一对应 的思想,把同样多的数字与图形圈在了一起. 那么前段时间学习过的’一一对应”的思想在这道题中,对学生的理解造成 了知识的困扰.通过以上分析,我认识到:

错题,是学生知识和思维暴露问题的十分有价值的资源.在面对学生的错题时,教师要抱着平常心.不把把学生的意见完全丢弃不管,不去追求错误产生的原因.让它丢掉了真正的价值.对出错的孩子,不能抱怨和指责.要给学生充分的时间去分析错题的原因,并且要引导孩子正确对待错误,形成正面的差错观.让每一个孩子重视错题的价值,不要害怕自己出错,要在错误中反思,醒悟.提高. 针对普遍性的错误,教师要寻找原因,找到相应的解决办法.有针对性的设计集中讲评.比如,这道题还存在学生对题意的理解不清.把与数字同样多的部分圈起来,造成学生答题错误的还有一个重要原因,就是学生对”部分”和”整体”感知没有完全建立.当一个完整的图形出现时,学生没有认真去分析’与数字同样多的部分’那么在讲评时,也应该重点让学生体会部分与整体的关系.学生的审题与对题意的思考也应成为教师点拨,引导的方面. 艾宾浩斯的“遗忘曲线”告诉我们:在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,到了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律。根据这条遗忘曲线“先快后慢”的原则,学生学得的知识在一天后,如不抓紧复习,就只剩下原来的25%(艾宾浩斯的单词记忆实验的结论)。可见,如果反馈评价不及时,随着学生对练习题内容和解题思路记忆的消减,寻求正确答案及分析错误原因的积极性也会大大下降,“遗忘规律”就起作用了,这显然不利于对错误的纠正和缺失知识的弥补。 因此,教师必须根据小学生的心理认知规律,排除负面心理因数的影响,及时调控自己的教学,指导学生的学习,这样就可以在一定的范围内减少错题的产生。针对学生这道错题,我设计了有针对性的反馈练习. 3.看数字是几,就圈出同样多的图形. 478 65 3

高中数学排列组合中的典型例题与分析(三)

排列与组合的八大典型错误、 24种解题技巧 三大模型 一、知识点归纳 二、基本题型讲解 三、排列组合解题备忘录 1.分类讨论的思想 2.等价转化的思想 3.容斥原理与计数 4.模型构造思想 四、排列组合中的8大典型错误 1.没有理解两个基本原理出错 2.判断不出是排列还是组合出错 3.重复计算出错 4.遗漏计算出错 5.忽视题设条件出错 6.未考虑特殊情况出错 7.题意的理解偏差出错 8.解题策略的选择不当出错 五、排列组合24种解题技巧 1.排序问题 相邻问题捆绑法 相离问题插空排 定序问题缩倍法(插空法) 定位问题优先法 多排问题单排法 圆排问题单排法 可重复的排列求幂法 全错位排列问题公式法 2.分组分配问题 平均分堆问题去除重复法(平均分配问题) 相同物品分配的隔板法 全员分配问题分组法 有序分配问题逐分法 3.排列组合中的解题技巧 至多至少间接法 染色问题合并单元格法 交叉问题容斥原理法 构造递推数列法 六.排列组合中的基本模型 分组模型(分堆模型) 错排模型 染色问题

七.排列组合问题经典题型与通用方法 (一)排序问题 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有()A、60种 B、48种 C、36种 D、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4 424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种 解析:除甲乙外,其余5个排列数为5 5A 种,再用甲乙去插6个空位有2 6A 种,不同的排法种数是5 2 563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即 5 51602 A =种,选 B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。 例11.现有1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有1 3A 种,4名同学在其余4个位置上有4 4A 种方法;所以共有1 4 3472A A =种。 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。 例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种 (2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解析:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共 66720A =种,选C . (2)解析:看成一排,某2个元素在前半段四个位置中选排2个,有2 4A 种,某1个元素排在后半段的四个位置中选一个有1 4A 种,其余5个元素任排5个位置上有5 5A 种,故共有1 2 5 4455760A A A =种排法. 16.圆排问题单排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而无首位、末位之分,下列n 个普通排列:

排列组合习题_[含详细答案解析]

圆梦教育中心 排列组合专项训练 1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法? (2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配, 可将名额分给2所学校、1所学校,共两类: 213 3 C C +(种) (法2——挡板法) 相邻名额间共4个空隙,插入2个挡板,共: 246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且 每个位置至少分配一个元素的问题.(位置有差别,元素无差别) 同类题一 题面: 有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 答案:6 9C 详解: 因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有6 9C 种分法。 同类题二 题面: 求方程X+Y+Z=10的正整数解的个数。 答案:36. 详解: 将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定 由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。 2.题2 (插空法,三星) 题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48 同类题一 题面: 6男4女站成一排,任何2名女生都不相邻有多少种排法? 答案:A 66·A 4 7种. 详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 4 7种不 同排法. 同类题二 题面: 有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A .36种 B .48种 C .72种 D .96种 答案:C. 详解:恰有两个空座位相邻,相当于两个空位与第三个 空位不相邻,先排三个人,然后插空,从而共A 33A 2 4=72种排法,故选C. 3.题3 (插空法,三星) 题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

相关文档
最新文档