上水箱液位与进水流量串级控制系统设计

上水箱液位与进水流量串级控制系统设计
上水箱液位与进水流量串级控制系统设计

课程设计任务书

摘要

设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。流量控制是内环,液位控制是外环。

用WinCC组件制作相对应的控制画面,让画面的个按钮与变量相对应,对系统的个参数进行整定,通过不断的调试,使系统尽可能的保持在要求的位置。

系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。

关键词:串级控制;PLC控制;PID控制;WinCC组件

目录

一、概述 (1)

1.1 串级控制系统简介 (1)

1.2 串级控制系统的特点 (1)

1.3 主、副调节器控制规律的选择 (1)

1.4 串级控制系统的整定方法 (2)

二、课程设计使用的实验设备 (2)

2.1 高级过程控制系统实验装置 (3)

2.1.1 电源控制台 (3)

2.1.2 总线控制柜 (3)

2.2 计算机及相关软件 (3)

2.2.1 STEP 7简介 (3)

2.2.2 WINCC简介 (4)

三、基本原理 (5)

3.1 系统组成 (5)

3.1.1 被控对象 (5)

3.1.2 检测装置 (5)

3.1.3 执行机构 (6)

3.1.4 控制器 (6)

3.2 系统工作原理 (6)

3.3 控制系统流程图 (7)

3.4 系统投入运行步骤 (8)

四、串级控制系统PID参数整定 (11)

4.1 调节器参数整定过程 (11)

4.1.1 主调节器为PID (11)

4.1.2 主调节器为PI (13)

4.2 系统在阶跃扰动作用下的静、动态性能 (15)

4.3 主、副调节器采用不同PID参数时对系统动态性能的影响 (16)

结束语 (17)

参考文献 (18)

一、概述

1.1 串级控制系统简介

图2.1是串级控制系统的方框图。该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

图1.1 串级控制系统方框图

1.2 串级控制系统的特点

(1) 改善了过程的动态特性;

(2) 能及时克服进入副回路的各种二次扰动,提高了系统抗扰动能力;

(3) 提高了系统的鲁棒性;

(4) 具有一定的自适应能力。

1.3 主、副调节器控制规律的选择

在串级控制系统中,主、副调节器所起的作用是不同的。主调节器起定值控制作用,它的控制任务是使主参数等于给定值(无余差),故一般宜采用PI或PID调节器。由于副回路是一个随动系统,它的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P或PI调节器。

1.4 串级控制系统的整定方法

在工程实践中,串级控制系统常用的整定方法有以下三种:

1、逐步逼近法:在主回路断开的情况下,按照单回路的整定方法求取副调节器的整定参数,把副调节器的参数设置在所求的数值上,然后使主回路闭合,仍按单回路整定方法求取主调节器的整定参数。尔后,将主调节器参数设置在所求得的数值上,再进行整定,求取第二次副调节器的整定参数值,然后再整定主调节器。依此类推,逐步逼近,直至满足动态品质指标要求为止。

2、两步整定法:两步整定法就是第一步整定副调节器参数,第二步整定主调节器参数。整定的具体步骤为:

(1) 在工况稳定,主回路闭合,主、副调节器都在纯比例作用条件下,主调节器的比例度置于100%,然后用单回路控制系统的衰减(如4:1)曲线法来整定副回路。记下相应的比例度δ2S和振荡周期T2S。

(2) 将副调节器的比例度置于所求得的δ2S值上,且把副回路作为主回路中的一个环节,用同样方法整定主回路,求取主回路的比例度δ1S和振荡周期T1S。

(3) 根据求取的δ1S、T1S和δ2S、T2S值,按单回路系统衰减曲线法的整定公式,计算主、副调节器的比例度δ、积分时间TI和微分时间Td的数值。

(4) 按“先副后主”,“先比例后积分最后微分”的整定程序,设置主、副调节器的参数,再观察过渡过程曲线,必要时进行适当地调整,直到过程的动态品质达到满意为止。

3、一步整定法:一步整定法,就是根据经验先确定副调节器的参数,然后将副回路作为主回路的一个环节,按单回路反馈控制系统的整定方法整定主调节器的参数。具体的整定步骤为:

(1) 在工况稳定,系统为纯比例作用的情况下,根据K02/δ2=0.5这一关系式,通过副回路的放大系数K02,求取副调节器的比例放大系数δ2或按经验选取,并将其设置在副调节器上。

(2) 按照单回路控制系统的任一种参数整定方法来整定主调节器的参数。

(3) 改变给定值,观察被控制量的响应曲线。根据主调节器放大系数K1 和副调节器放大系数K2的匹配原理,适当调整调节器的参数,使主参数的动态品质指标最佳。(4) 如果出现较大的振荡现象,只要加大主调节器的比例度δ或增大积分时间常数TI,即可得到改善。

二、课程设计使用的实验设备

2.1 高级过程控制系统实验装置

2.1.1 电源控制台

电源控制屏面板:充分考虑人身安全保护,带有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。

仪表综合控制台包含了原有的常规控制系统,由于它预留了升级接口,因此它在总线控制系统中的作用就是为上位控制系统提供信号。

2.1.2 总线控制柜

总线控制柜有以下几部分构成:

(1) 控制系统供电板:该板的主要作用是把工频AC220V转换为DC24V,给主控单元和DP从站供电。

(2) 控制站:控制站主要包含CPU、以太网通讯模块、DP链路、分布式I/O DP 从站和变频器DP从站构成。

(3) 温度变送器: PA温度变送器把PT100的检测信号转化为数字量后传送给DP链路。

2.2 计算机及相关软件

2.2.1 STEP 7简介

STEP 7是用于SIMATIC S7-300/400站创建可编程逻辑控制程序的标准软件,可使用梯形逻辑图、功能块图和语句表。它是SIEMENS SIMATIC工业软件的组成部分。STEP 7以其强大的功能和灵活的编程方式广泛应用于工业控制系统,总体说来,它有如下功能特性:

1.可通过选择SIMATIC工业软件中的软件产品进行扩展

2.为功能摸板和通讯处理器赋参数值

3.强制和多处理器模式

4.全局数据通讯

5.使用通讯功能块的事件驱动数据传送

6.组态连接

2.2.2 WINCC简介

WINCC指的是Windows Control Center,它是在生产和过程自动化中解决可视化和控制任务的监控系统,它提供了适用于工业的图形显示、消息、归档以及报表的功能模板。高性能的功能耦合、快速的画面更新以及可靠的数据交换使其具有高度的实用性。

WINCC 是基于Windows NT 32位操作系统的,在Windows NT或Windows 2000标准环境中,WINCC具有控制自动化过程的强大功能,它是基于个人计算机,同时具有极高性价比的操作监视系统。WINCC的显著特性就是全面开放,它很容易结合用户的下位机程序建立人机界面,精确的满足控制系统的要求。不仅如此,WINCC还建立了像DDE、OLE等在Windonws程序间交换数据的标准接口,因此能毫无困难的集成ActiveX控制和OPC服务器、客户端功能。

三、基本原理

3.1 系统组成

本实验装置由被控对象和上位控制系统两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、气动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。

3.1.1 被控对象

水箱:包括上水箱、中水箱、下水箱和储水箱。储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。

模拟锅炉:此锅炉采用不锈钢制成,由加热层(内胆)和冷却层(夹套)组成。做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。冷却层和加热层都装有温度传感器检测其温度。

盘管:长37米(43圈),可做温度纯滞后实验,在盘管上有两个不同的温度检测点,因而有两个不同的滞后时间。

管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。

3.1.2 检测装置

压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS带PROFIBUS-PA 通讯接口的检测和变送一体的电磁式流量计。

3.1.3 执行机构

调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等优点。

变频器:本装置采用SIEMENS带PROFIBUS-DP通讯接口模块的变频器,其输入电压为单相AC220V,输出为三相AC220V。

水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W。

可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号。输出电压用来控制加热器加热,从而控制锅炉的温度。

电磁阀:在本装置中作为气动调节阀的旁路,起到阶跃干扰的作用。电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝2 ;工作温度:-5~80℃。

3.1.4 控制器

控制器采用SIEMENS公司的S7300 CPU,型号为315-2DP,本CPU既具有能进行多点通讯功能的MPI接口,又具有PROFIBUS-DP通讯功能的DP通讯接口。

3.2 系统工作原理

本系统的主控量为上水箱的液位高度H,副控量为气动调节阀支路流量Q,它是一个辅助的控制变量。系统由主、副两个回路所组成。主回路是一个定值控制系统,要求系统的主控制量H等于给定值,因而系统的主调节器应为PI或PID控制。副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量H的控制目的,因而副调节器可采用P控制。但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI控制规律。引入积分作用的目的不是消除静差,而是增强控制作用。显然,由于副对象管道的时间常数小于主对象上水箱的时间常数,

因而当主扰动(二次扰动)作用于副回路时,通过副回路快速的调节作用消除了扰动的影响。本实验系统结构图和方框图如图3.1所示。

图3.1 上水箱液位与进水流量串级控制系统

(a)结构图(b)方框图

3.3 控制系统流程图

控制系统流程图如图3.2所示。

图3.2 控制系统流程图

本设计主要涉及三路信号,其中两路是现场测量信号上水箱液位和管道流量,另外一路是控制阀门定位器的控制信号。

本设计中的上水箱液位信号是标准的模拟信号,与SIEMENS的模拟量输入模块SM331相连, SM331和分布式I/O模块ET200M直接相连,ET200M挂接到PROFIBUS-DP 总线上,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP(CPU315-2 DP为PROFIBUS-DP 总线上的DP主站),这样就完成了现场测量信号向控制器CPU315-2 DP的传送。

本设计中的流量检测装置(电磁流量计)和执行机构(阀门定位器)均为带PROFIBUS-PA通讯接口的部件,挂接在PROFIBUS-PA总线上,PROFIBUS-PA总线通过LINK和COUPLER组成的DP链路与PROFIBUS-DP总线交换数据,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP。由于PROFIBUS-PA总线和PROFIBUS-DP总线中信号传输是双向的,这样既完成了现场检测信号向CPU的传送,又使得控制器CPU315-2 DP 发出的控制信号经PROFIBUS-DP总线到达PROFIBUS-PA总线,以控制执行机构阀门定位器。

3.4 系统投入运行步骤

本实验选择上水箱和气动调节阀支路组成串级控制系统(也可采用变频器支路)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9开至适当开度,其余阀门均关闭。

1、接通控制系统电源,打开用作上位监控的的PC机,进入的实验主界面如本实验指导书第二章第一节中的图2-5所示。

2、在监控主界面中选择本实验项即“上水箱液位与进水口流量串级控制实验”,系统进入正常的测试状态,呈现的监控界面如图3.3所示。

3、在上位机监控界面中,将副调节器设置为“手动”,并将输出值设置为一个合适的值。

4、合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少副调节器的输出量,使上水箱的液位稳定于设定值。

5、按本章第一节中任一种整定方法整定调节器的参数,并按整定得到的参数对

调节器进行设定。

图3.3 实验界面

6、待上水箱进水流量相对稳定,且其液位稳定于给定值时,将调节器切换到“自动”状态,待液位平衡后,通过以下几种方式加干扰:

(1)突增(或突减)设定值的大小,使其有一个正(或负)阶跃增量的变化;

(2)将气动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;

(3)将阀F1-5、F1-13开至适当开度;

以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定于新的设定值(后面两种干扰方法仍稳定在原设定值)。通过实验界面下边的切换按钮,观察计算机记录的设定值、输出值和参数,上水箱液位的响应过程曲线将如图3.4所示。

图3.4 上水箱液位阶跃响应曲线

适量改变调节器的PID参数,重复步骤6,观察计算机记录不同参数时系统的响应曲线。

四、串级控制系统PID参数整定

4.1 调节器参数整定过程

4.1.1 主调节器为PID

在工况稳定情况下,主回路闭合,主调节器采用PID调节器、副调节器采用PI 调节器,设定值(SV)设为70mm。

主调节器的比例增益设为7.0,积分时间和微分时间分别为40000、20000。

副调节器的比例增益设为2,积分时间为30000。

响应曲线如图4.1所示。

图4.1

系统震荡较为严重,超调量大,此时应减小比例增益K,同时应注意根据Z-N 公式,积分时间与微分时间应成4倍关系。

于是将主调节器比例增益减小为1,微分时间调整为10000,其他设定值不变。

响应曲线如图4.2所示。

图4.2

系统超调量约为

10070

70

120?-%≈71.4%依然较大,继续减小比例增益K 。 于是将主调节器比例增益减小为1,积分时间调整为60000,微分时间调整为15000,其他设定值不变。

响应曲线如图4.3所示。

图4.3

系统衰减比接近于6:1,在4:1~10:1范围内,但超调量依然较大,若继续减小比例增益K 则衰减比会继续减小,故不能继续减小K 。由于积分作用会降低系统稳定性,所以此时将副调节器改为P 调节器。

响应曲线如图4.4所示。

图4.4

系统超调量约为

10050

50

70?-=40%,衰减比接近于4:1,曲线较为理想。 4.1.2 主调节器为PI

主调节器采用PI 调节器、副调节器采用P 调节器,设定值(SV )设为50mm 。 主调节器的比例增益设为7.0,积分时间为20000。 副调节器的比例增益设为2,积分时间为30000。 响应曲线如图4.5所示。

图4.5

系统震荡较为严重,超调量大,此时应减小比例增益K。于是将主调节器比例增益减小为1,其他设定值不变。响应曲线如图4.6所示。

图4.6

系统趋于衰减震荡,衰减比大于10:1,超调量约为

10050

50

90?-%=80%。 于是将主调节器积分时间调整为80000,其他设定值不变。 响应曲线如图4.7所示。

图4.7

衰减比在4:1~10:1范围内,超调量约为1007070

90?-%≈28.6%,曲线较为理想。

对比主调节器为PID 所确定的最终理想曲线,最终选定调节器的参数为: 主调节器:PI 控制,K=1,I=80000; 副调节器:P 控制,K=2。

4.2 系统在阶跃扰动作用下的静、动态性能

选定最终确定的调节器,待上水箱进水流量相对稳定,且其液位稳定于给定值时,将调节器切换到“自动”状态,待液位平衡后, 突增液位设定值的大小,使其有一个正阶跃增量的变化,得到如图4.8所示的响应过程曲线。

图4.8

由于主调节器采用的是PI调节,I的作用使得系统为无差调节。改变液位设定值后,系统经过1.5min后重新进入稳定状态。

4.3 主、副调节器采用不同PID参数时对系统动态性能的影响

1、P特点是控制作用简单,调整方便,且负荷变化时,克服扰动能力强,控制作用及时,过渡过程时间短,稳态时,存在余差。控制规律控制及时但不能消除余差;I控制特点是能于消除余差,但作用缓慢,不能及时有效的克服扰动的影响。D 控制规律能消除余差但控制不及时且一般不单独使用。

2、比例系数越小,过渡过程越平缓,稳态误差越大;反之,过渡过程振荡越激烈,稳态误差越小;若K过大,则可能导致发散振荡。

I越大,积分作用越弱,过渡过程越平缓,消除稳态误差越慢;反之,过渡过程振荡越激烈,消除稳态误差越快。

D越大,微分作用越强,过渡过程趋于稳定,最大偏差越小;但D过大,则会增加过渡过程的波动程度。

3、PID控制器校正后系统响应速度最快,但超调量最大,若PI控制器能满足控制要求,则可采用PI控制器。

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

基于组态软件的液位流量串级控制系统(精)

过程控制系统 课程设计 题目: 基于组态软件的液位—流量串级控制系统设计 院系名称:电气工程学院 专业班级:自动化1105 学生姓名:金星宇 学号:201123910807 指导教师:马利冯肖亮 设计地点: 31520 设计时间: 2014.7 设计成绩:指导教师: 本栏由指导教师根据大纲要求审核后,填报成绩并签名。 工业过程控制课程设计任务书之 学生姓名金星宇专业班级自动化1105 学号201123910807 题目基于组态软件的液位—流量串级控制系统设计

课题性质课题来源自拟题目 指导教师马利冯肖亮 主要内容 通过某种组态软件,结合实验室已有设备,按照定值系统的控制要求,根据较快较稳的性能要求,采用双闭环控制结构和PID控制规律,设计一个具有较美观组态画面和较完善组态控制程序的液位—流量串级过程控制系统。 任务要求1. 根据液位-流量串级过程控制系统的具体对象和控制要求,独立设计控制方案,正确选用过程仪表。 2. 根据液位-流量串级过程控制系统A/D、D/A和开关I/O的需要,正确选用过程模块。 3. 根据与计算机串行通讯的需要,正确选用RS485/RS232转换与通讯模块。 4. 运用组态软件,正确设计液位-流量串级过程控制系统的组态图、组态画面和组态控制程序。 5. 提交包括上述内容的课程设计报告。 主要参考资料[1] 组态王软件及其说明文件 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 [4] 辅导资料 审查意见 指导教师签字:

年月日 摘要 随着现代工业生产过程向着大型、连续和强化方向发展,对控制系统的控制品质提出了越来越高的要求。在这种情况下,简单的单回路控制系统已经难以满足一些复杂的控制要求,因此就提出了串级控制方案。串级控制具有单回路控制系统的全部功能,而且还具有很多单回路控制系统所没有的优点。因此,串级控制系统的控制质量一般都比单回路控制系统好,而且串级控制系统利用一般常规仪表就能够实现,所以,串级控制是一种易于实现且效果又极好的控制方法。 。 关键词:控制系统单回路串级控制 目录 1引言 (1 2 系统结构设计 (1 2.1控制方案 (1 2.2 控制规律 (2 3 过程控制仪表的选择 (2 3.1 液位传感器 (2 3.2 电磁流量传感器电磁流量转换器 (3 3.3 电动调节阀 (3 3.4 变频器 (4

串级控制系统

习题六 1.什么叫串级控制系统?画出一般串级控制系统的典型方块图。 答:串级控制系统是由其结构上的特征而得名的。它是由主、副两个控制器串接工作的。 主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。 2.串级控制系统有哪些特点?主要使用在哪些场合? 答串级控制系统的主要特点为: (1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统; (2)系统的目的在于通过设置副变量来提高对主变量的控制质量} (3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响; (4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。 3.串级控制系统中主、剧变量应如何选择? 答主变量的选择原则与简单控制系统中被控变量的选择原则是一样的。 副变量的选择原则是:. (1)主、副变量间应有一定的内在联系,副变量的变化应在很大程度上能影响主变量的变化; (2)通过对副变量的选择,使所构成的副回路能包含系统的主要干扰; (3)在可能的情况下,应使副回路包含更多的主要干扰,但副变量又不能离主变量太近; (4)副变量的选择应考虑到主、副对象时间常数的匹配,以防“共振”的发生 4.为什么说串级控制系统中的主回路是定值控制系统,而副回路是随动控制系统? 答串级控制系统的目的是为了更好地稳定主变量,使之等于给定值,而

主变量就是主回路的输出,所以说主回路是定值控制系统。副回路的输出是副变量,副回路的给定值是主控制器的输出,所以在串级控制系统中,副变量不是要求不变的,而是要求随主控制器的输出变化而变化,因此是一个随动控制系统。5.怎样选择串级控制系统中主、副控制器的控制规律? 答串级控制系统的目的是为了高精度地稳定主变量,对主变量要求较高,一般不允许有余差,所以主控制器一般选择比例积分控制规律,当对象滞后较大时,也可引入适当的微分作用。 串级控制系统中对副变量的要求不严。在控制过程中,副变量是不断跟随主控制器的输出变化而变化的,所以副控制器一般采用比例控制规律就行了,必要时引入适当的积分作用,而微分作用一般是不需要的。 6.如何选择串级控制系统中主、副控制器的正、反作用? 答副控制器的作用方向与副对象特性、控制阀的气开、气关型式有关,其选择方法与简单控制系统中控制器正、反作用的选择方法相同,是按照使副回路成为—个负反馈系统的原则来确定的。 主控制器作用方向的选择可按下述方法进行:当主、副变量在增加(或减小时),如果要求控制阀的动作方向是一致的,则主控制器应选“反”作用的;反之,则应选“正”作用的。 从上述方法可以看出,串级控制系统中主控制器作用方向的选择完全由工艺情况确定,或者说,只取决于主对象的特性,而与执行器的气开、气关型式及副控制器的作用方向完全无关。这种情况可以这样来理解:如果将整个副回路看作是构成主回路的一个环节时,副回路这个环节的输入就是主控制器的输出(即副回路的给定),而其输出就是副变量。由于副回路的作用总是使副变量跟随主控制器的输出变化而变化,不管副回路中副对象的特性及执行器的特性如何,当主控制器输出增加时,副变量总是增加的,所以在主回路中,副回路这个环节的特性总是“正”作用方向的。由图可见,在主回路中,由于副回路、主测量变送这两个环节的特性始终为“正”,所以为了使整个主回路构成负反馈,主控制器的作用方向仅取决于主对象的特性。主对象具有“正”作用特性(即副变量增加时,主变量亦增加)时,主控制器应选“反”作用方向,反之,当主对象具有“反”作用特性时,主控制器应选“正”作用方向。

上水箱液位与进水流量串级控制系统

摘要 随着现代工业生产过程向着大型、连续方向发展,对控制系统的控制品质提出了日益增长的要求。在这种情况下,传统的单回路液位控制已经难以满足一些复杂的控制要求,水箱液位控制系统由于控制过程特性呈现大滞后、外界环境的扰动较大,要保持水箱液位最后都保持设定值,用简单的单闭环反馈控制不能实现很好的控制效果,所以采用串级闭环反馈系统。 本设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。流量控制是内环,液位控制是外环。 系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。 关键词:PLC控制;变频器;PID控制;Wincc组件;上位机

目录 1 过程控制系统简介 (1) 1.1 过程控制介绍 (1) 1.2 串级控制系统的组成 (1) 1.2.1 硬件介绍 (1) 1.3 电源控制台 (3) 1.4 总线控制柜 (3) 1.5 软件介绍 (4) 1.6 系统总貌图 (4) 2 串级控制系统简介 (5) 2.1 液位串级控制系统介绍 (5) 2.2 串级控制系统的概述 (5) 2.3 串级控制系统的工作过程 (5) 2.4 系统特点及分析 (6) 2.5 串级控制系统的整定方法 (6) 2.6 主、副回路中包含的扰动数量、时间常数的匹配 (7) 2.7 PID控制工作原理 (7) 3 上水箱液位与进水流量串级控制系统 (9) 3.1 实验设备 (9) 3.2 液位-流量串级控制系统的结构框图 (9) 3.3 系统工作原理 (9) 3.4 控制系统流程图 (10) 3.5 实验过程 (11) 3.6 实验结果分析 (13)

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

水箱水位控制系统

2.水箱水位控制系统 系统有3个贮水箱,每个水箱有2个液位传感器,UH1,UH2,UH3为高液位传感器,“1”有效;UL1,UL2,UL3为低液位传感器,“0”有效。Y1、Y3、Y5分别为3个贮水水箱进水电磁阀;Y2、Y4、Y6分别为3个贮水水箱放水电磁阀。SB1、SB3、SB5分别为3个贮水水箱放水电磁阀手动开启按钮;SB2、SB4、SB6分别为3个贮水箱放水电磁阀手动关闭按钮。 (二)控制要求 1.上电运行时系统处于停止状态。 2.SB1、SB3、SB5在PLC外部操作设定,通过人为的方式,按随机的顺序将水箱放空。 3.只要检测到水箱“空”的信号,系统就自动地向水箱注水,直到检测到水箱“满”信号为止。水箱注水的顺序要与水箱放空的顺序相同,每次只能对一个水箱进行注水操作。 4.为减少外部控制器件,现将每个水箱的放水控制按钮改为一个(即只有SB1、SB3、SB5),分别控制每个水箱的放水开启和关闭。也即,按一下SB1,水箱1放水,再按一下SB1,水箱1停止放水;按一下SB2,水箱2放水,再按一下SB2,水箱2停止放水;按一下SB3,水箱3放水,再按一下SB3,水箱3停止放水。系统其它控制要求保持不变。 (三)I/O配置表

(四)PLC控制系统原理图(硬件电路图) (五)调试指南 1.上电时候系统处于停止状态,所有灯不亮。 2.按动SB1、SB3、SB5按钮,可随机将三个水箱放空,对应Y2、Y4、Y6的亮。 3.只要检测到水箱“空”(即低液位传感器UL1-UL3亮),系统能自动地向水箱注水,对应Y1、Y3、Y5亮,直到检测到水箱“满”信号为止(即高液位传感器UH1-UH3亮)。 4.4.水箱注水的顺序与水箱放空的顺序相同,每次只对一个水箱进行注水操作(Y1、Y3、Y5互锁)。 5.5.按一下SB1,水箱1放水(Y2亮),再按一下SB1,水箱1停止放水(Y2灭); 6.6.按一下SB2,水箱2放水(Y4亮),再按一下SB2,水箱2停止放水(Y4灭); 7.7.按一下SB3,水箱3放水(Y6亮),再按一下SB3,水箱3停止放水(Y6灭)。 8.8.先放空的水箱先进水,已通过梯形图实现。(参见梯形图步骤8)

实验3 液位流量串级控制实验

实验3 液位流量串级控制实验 一、实验目的 通过实验掌握串级控制系统的基本概念,掌握串级控制系统的组成结构,即主被控参数、副被控参数、主调节器、副调节器、主回路、副回路。 通过实验掌握串级控制系统的特点、串级控制系统的设计,掌握串级控制主、副控制回路的选择。掌握串级控制系统参数整定方法,并将串级控制系统参数投运到实验中。 二、实验设备 过程控制实验系统,计算机 三、实验原理 单回路控制系统解决了工艺生产过程自动化中大量的参数定值问题。但是,随着现代工业生产的迅速发展,工艺操作条件的要求更加严格,对安全运行和经济性及对控制质量的要求也更高。但回路控制系统往往不能满足生产工艺的要求,在这样的情况下,串级控制系统就应运而生。 1、串级控制系统的结构 串级控制系统是改善控制质量的有效方法之一,在过程控制中得到广泛地应用,串级控制系统是指不止采用一个控制器,而是将两个或几个控制器相串级,是将一个控制器的输入作为下一个控制器设定值的控制系统。 2、串级控制系统的名词术语 主被控参数:在串级控制系统中起主导作用的那个被控参数。 副被控参数:在串级控制系统中为了稳定主被控参数而引入的中间辅助变量。 主被控过程:由主参数表征其特性的生产过程,主回路所包含的过程,是整个过程的一部分,其输入为副被控参数,输出为主控参数。 副被控过程:由副被控参数为输出的生产过程,副回路所包含的过程,是整个过程的一部分,其输入为控制参数。

主调节器:按主参数的测量值与给定值的偏差进行工作的调节器,其输出作为副调节器的给定值。 副调节器:按副参数的测量值与主调节器输出的偏差进行工作的调节器,其输出直接控制调节阀动作。 副回路:由副调节器、副被控过程、副测量变送器等组成的闭合回路。 主回路:由主调节器、副回路、主被控过程及主测量变送器等组成的闭合回路。 一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。 二次扰动:作用在副被控过程上,即包括在副回路范围内的扰动。 当生产过程处于稳定状态时,它的控制量与被控量都稳定在某一定值。当扰动破坏了平衡工况时,串级控制系统便开始了其控制过程。根据不同扰动,分为三种情况: (1)在副对象上的扰动 副对象加上扰动后,副调节就立即发出校正信号,控制执行对象(工程上一般是调节阀的开度,而本实验装置中是泵电机的转速)动作,以克服扰动对主被控参数的影响。如果扰动量不大,经过副回路的及时控制一般不影响被控量,如果扰动的幅值较大,虽然经过副回路的及时校正,但还将影响被控量;此时再有主回路的进一步调节,从而使被控量回到平衡时的值。 (2)主对象上的扰动 主对象加上扰动后,主回路产生校正作用,由于副回路的存在加快了校正作用,使扰动对被控量的影响比单回路系统时要小。 (3)一次扰动和二次扰动同时存在 如果一、二次扰动的作用使主,副被控参数同时增大或减少时,主、副调节器对调节阀(或泵电机转速)的控制方向一致的,即大幅度关小或开大阀门(或大幅度地使泵电机加速或减速),加强控制作用,使主被控量很快地回到给定值上。如果一、二次扰动的作用使主、副被控参数一个增大,另一个减少,此时主、副调节器控制调节阀的方向是相反的,调节阀的开度只要作较小变动即满足控制要求。 3、串级控制系统的特点

双容水箱液位串级控制系统设计(精)教学总结

双容水箱液位流量串级控制系统设计 ◆设计题目 双容水箱液位流量串级控制系统设计 ◆设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱1 水箱2 图1 系统示意图◆设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1,针对该水箱工作过程设计单回路PID 调节器,要求画出控制系统方框图及实施方案图,并给出PID 参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1,针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID 控制与串级控制进行仿真试验结果比较,并说明原因。 ◆设计任务分析

一、系统建模 系统建模基本方法有机理法建模和测试法建模两种建模方法。 机理法建模就是根据生产过程中实际发生的变化机理,写出各种有关的平衡方程,从中获得所需的数学模型 测试法一般只用于建立输入—输出模型。它是根据工业过程的输入和输出的实测数据进行某种数学处理后得到的模型。它的特点是把研究的工业过程视为一个黑匣子,完全从外特性上测试和描述它的动态性质。 对于本设计而言,由于双容水箱的各个环节的数学模型已知,故采用机理法建模。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:水箱2液位; 主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 控制对象特性: Gm1(S )=1/(0.1S+1)(水箱1传递函数); Gm2(S )=1/(0.1S+1)(水箱2传递函数)。 控制器:PID ; 执行器:流量控制阀门;

基于组态软件的串级液位流量控制系统方案

基于组态软件的串级液位流量控制系统 1概述 1.1本课程设计课题研究的意义 随着现代工业生产过程向着大型、连续和强化方向发展,对控制系统的控制品质提出了日益增长的要求。在这种情况下,简单的单回路控制已经难以满足一些复杂的控制要求。在单回路控制方案基础上提出的串级控制方案,则对提高过程控制的品质有极为明显的效果。串级控制系统具有单回路控制系统的全部功能,而且还具有许多单回路控制系统所没有的优点。因此,串级控制系统的控制质量一般都比单回路控制系统好,而且串级控制系统利用一般常规仪表就能够实现,所以,串级控制是一种易于实现且效果又较好的控制方法。 本课程设计课题讨论了一个简单的液位流量串级控制系统的设计方法及步骤。液位和流量是工业生产过程中最常用的两个测控参数,因此本课程设计课题具有较大的现实意义。 1.2 设计的目的 通过课程设计,加深对所学传感器技术、自动控制原理、转换技术以及过程控制的基本原理等基本原理、基本知识的理解和应用,掌握串级控制系统的设计步骤和方法,掌握工程整定参数方法,培养运用组态软件和计算机设计过程控制系统的实际能力,培养创新意识,增强动手能力,为今后工作打下一定的理论和实践基础。 1.3 设计要求 (1)根据液位-流量串级过程控制系统的具体对象和控制要求,独立设计控制方案,正确选用过程仪表。 (2)根据液位-流量串级过程控制系统A/D、D/A和开关I/O的需要,正确选用过程模块。 (3)根据与计算机串行通讯的需要,正确选用RS485/RS232转换与通讯模块。(4)运用组态软件,正确设计液位-流量串级过程控制系统的组态图、组态画面和组态控制程序。 2 系统控制方案 2.1 控制系统在实际应用中的重要意义

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

过程控制―上水箱液位与进水流量串级控制系统.

目录 1 过程控制系统简介 (2) 1.1 系统组成 (2) 1.2 电源控制台 (3) 1.3 总线控制柜 (3) 2 实验原理 (4) 2.1 单容水箱设备工作原理 (4) 2.2 双容水箱设备工作原理 (7) 2.3 系统工作原理 (9) 2.4 控制系统流程图 (9) 3实验结果分析 (11) 3.1 实验过程 (11) 3.2实验分析 (12) 3.2.1单容水箱实验结果分析 . (12) 3.2.2双容水箱实验结果分析 . (14) 3.2.3单容双容水箱比较 . (16) 3.3实验结论 (17) 总结 . (18) 参考文献 (19)

1 过程控制系统简介 1.1 系统组成 本实验装置由被控对象和上位控制系统两部分组成。系统动力支路分两路:一路由三相(380V 交流)磁力驱动泵、电动调节阀、直流电磁阀、PA 电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V 变频)、涡轮流量计及手动调节阀组成。 1、被控对象 水箱:包括上水箱、中水箱、下水箱和储水箱。储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。 管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。 2、检测装置 压力传感器、变送器:采用SIEMENS 带PROFIBUS-PA 通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS 带PROFIBUS-PA 通讯接口的检测和变送一体的电磁式流量计。 3、执行机构 调节阀:采用SIEMENS 带PROFIBUS-PA 通讯协议的电动调节阀,用来进行控制回路流量的调节。它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等优点。

基于组态王6.5的串级PID液位控制系统设计(双容水箱)

本科毕业论文(设计) 题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院 专业:自动化 姓名: ### 指导教师: ### 2011年 6 月 5 日

Cascade level PID control system based on Kingview 6.5

摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。 就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 Abstract It is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such as

过程控制之液位流量串级控制系统

过程控制之液位流量串级控制系统 1.1控制系统在实际应用中的重要意义 单回路控制系统是过程控制中结构最简单的一种形式,它只用一个调节器,调节器也只有一个输入信号,从系统方框图看,只有一个闭环。在大多数情况下,这种简单系统已经能够满足工艺生产的要求。但在复杂的控制系统中,则需在单回路的基础上,采取其它措施,组成复杂控制系统,而串级控制系统就是其中一种改善和提高控制品质的极为有效的控制系统。 液位和流量是工业生产过程中最常用的两个参数,对液位和流量进行控制的装置在工业生产中应用的十分普遍。液位的时间常数T 一般很大,因此有很大的容积迟延,如果用单回路控制系统来控制,可能无法达到较好的控制质量。而串级控制系统则可以起到十分明显的提高控制质量的效果,因此往往采用串级控制系统对液位进行控制。 1.2 系统结构设计 过程控制系统由四大部分组成,分别为控制器、调节器、被控对象、测量变送。本次为流量回路控制,即为闭环控制系统,结构组成如下图1.1所示。 图1.1液位单回路控制系统框图 当系统启动后,水泵开始抽水,通过管道分别将水送到上水箱和下水箱,由HB 返回信号,是否还需要放水到下水箱。其过程控制系统图如图1.2所示。 1.3控图 单容 所Qi 为口流加以控 扰。被调量为水箱中的水位H,它反映水的流入与流出量之间的平衡关系。现在分析水位在电磁阀开度扰动下的动态特性。显然,在任何时刻水位的变化均满足下述物料平衡方程: ()1i o dH Q Q dt F =-(1.1)

其中 i Q k μμ=(1.2) o Q = 1.3) F 为水箱的横截面积;k μ是决定于阀门特性的系数,可以假定它是常数;k 是与电磁阀开度有关的系数,在固定不变的开度下,k 可视为常数。 液位对象的传递函数: ()( )i H s Q s =2.1 控制规律的比较与选择 2.1.1 常见控制规律的类型及优缺点比较 PID 控制的各种常见的控制规律如下: 一、比例调节(P 调节) 在P 调节中,调节器的输出信号()u t 与偏差信号()e t 成比例,即 ()()C u t K e t =(2.1) 式中Kc 称为比例增益(视情况可设置为正或负),()u t 为调节器的输出,是对调节器起始值()0u 的增量,()0u 的大小可以通过调整调节器的工作点加以改变。 在过程控制中习惯用比例增益的倒数表示调节器输入与输出之间的比例关系: ()()1 u t e t δ=(2.2) 其中δ称为比例带。 比例调节的显著特点就是有差调节。 比例调节的余差随着比例带的加大而加大。从这一方面考虑,人们希望尽量减小比例带。然而,减小比例带就等于加大调节系统的开环增益,其后果是导致系统激烈振荡甚至不稳定。稳定性是任何闭环控制系统的首要要求,比例带的设置必须保证系统具有一定的稳定裕度。此时,如果余差过大,则需通过其它的途径解决。 δ很大意味着调节阀的动作幅度很小,因此被调量的变化比较平稳,甚至可以没有超调,但余差很大,调节时间也很长。减小δ就加大了调节阀的动作幅度,引起被调量来回波动,但系统仍可能是稳定的,余差相应减小。δ具有一个临界值,此时系统处于稳定边界的情况,进一步减小δ系统就不稳定了。 二、积分调节(I 调节)的特点 在I 调节中,调节器的输出信号的变化速度du (t)/d t 与偏差信号e 成正比,即: ()()I du t K e t dt =(2.3) 或 ()()0t I u t K e t dt =?(2.4) 式中K I 称为积分速度,可视情况取正值或负值。上式表明,调节器的输出与偏差信号的积分成正比。 I 调节的特点是无差调节,与P 调节的有差调节形成鲜明对比。式(2.3)表明,只有当被调量偏差e

双容水箱液位流量串级控制系统设计

题目:双容水箱液位流量串级控制系统设计1.设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱2 图1 系统示意图 2.设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1), 副被控对象(流量)传递函数W2=1/(10s+1)。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1),针对该水箱工作过程设计单回路PID调节器,要求画出控制系统方框图及实施方案图,并给出PID参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1),针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID控制与串级控制进行仿真试验结果比较,并说明原因。 3. 设计任务分析 (1)液位控制系统是以改变进水大小作为控制手段,目的是控制下水箱液位处于一个稳定值。 (2)单回路控制系统:对于此系统,若采用单回路控制系统控制液位,以液 位主控制信号反馈到控制器PID,直接去控制进水阀门开度,在无扰动情况下可以采用,但对于有扰动情况,由于控制过程的延迟,会导致控制不及时,造成超调量变大,稳定性下降,控制系统很难获得满意效果

(3)串级控制系统采用两套回路,其中内回路起粗调作用,外回路用来完成细调作用。对液位控制系统,内回路以流量作为前导信号控制进水阀开度,在有扰动情况下可以提早反应消除扰动引起的波动,从而使主控对象不受干扰,另外内回路的给定值受外回路控制器的影响,根据改变更改给定值,从而保证负荷扰动时,仍能使系统满足要求 1 ()T s G 2()T s G --主副控制器的传递函数 ()u s G --控制阀的传递函数 ()z s G --执行器的传递函数 1 2()()m m s s G G --主副变送器传递函数 01 ()s G 02()s G --主副对象的传递函数 4.单回路PID 控制的设计 (1)无干扰下的单回路PID 仿真方框图

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

实验四 下水箱液位和进口流量串级控制实验

实验四下水箱液位和进口流量串级控制实验 一、实验目的 1、学习闭环串级控制的原理。 2、了解闭环串级控制的特点。 3、掌握闭环串级控制的设计。 4、初步掌握闭环串级控制器参数调整。 二、实验设备 A3000-FBS现场系统,百特控制系统。 三、实验要求 1、设计串级控制器。 2、经过参数调整,获得最佳的控制效果,并通过干扰来验证。 四、实验内容与步骤 1、在现场系统A3000-FBS,将回路2手动调节阀JV201、JV206完全打开,使下水箱闸板具有一定开度,其余阀门关闭。 2、在控制系统A3000-CS上,将百特内给定仪表4~20mA输出端连到百特外给定仪表4~20mA外给定端,百特外给定仪表4~20mA输出端连到调节阀输入端,下水箱液位输出端连到百特内给定仪表4~20mA输入端,支路2流量计输出端连到百特外给定仪表4~20mA输入端。 3、打开A3000-CS电源,百特仪表通电。打开A3000-FBS电源,调节阀通电。 4、启动计算机组态王软件,运行百特仪表组态程序,登陆进入下水箱液位和进口流量串级控制试验。首先进行副回路比例调节。主回路设为手动,副回路设为自动。SP设为60%,主回路调节器输出设为40%,I为1800,调节P值,使调节阀控制量输出即PV1输出平衡。获得P值。 5、在A3000-FBS上,启动右边水泵2#开关,给下水箱注水。 6、切换至单主回路控制即把手动改为自动,调节主回路的P、I值待系统稳定后,对系统加扰动信号。通过反复对副调节器和主调节器参数的调节,使系统

具有较满意的动态响应和较高的控制精度。画下最终的曲线。 7、实验结束后,关闭阀门,关闭水泵。关闭全部电源设备,拆下实验连接线。 六、实验结果提交 1、画出液位流量串级控制实验系统的框图和最终获得的满意响应曲线,以 及最佳串级控制参数。 2、阐述实现液位流量串级控制的原理。

自动控制课程设计--双容水箱液位串级控制

自动控制课程设计 课程名称:双容水箱液位串级控制 学院:机电与汽车工程学院 专业:电气工程与自动化 学号: 631224060430 姓名:颜馨 指导老师:李斌、张霞 2014/12/30

0摘要 (2) 1引言 (2) 2对象分析和液位控制系统的建立 (2) 2.1水箱模型分析 (2) 2.2阶跃响应曲线法建立模型 (3) 2.3控制系统选择 (3) 2.3.1控制系统性能指标【2】 (3) 2.3.2方案设计 (4) 2.4串级控制系统设计 (4) 2.4.1被控参数的选择 (4) 2.4.2控制参数的选择 (5) 2.4.3主副回路设计 (5) 2.4.4控制器的选择 (5) 3 PID控制算法 (6) 3.1 PID算法 (6) 3.2 PID控制器各校正环节的作用 (6) 4 系统仿真 (7) 4.1.1系统结构图及阶跃响应曲线 (7) 4.2.1 PID初步调整 (10) 4.2.2 PID不同参数响应曲线 (12) 4.3.1 系统阶跃响应输出曲线 (17) 5加有干扰信号的系统参数调整 (20) 6心得体会 (22) 7参考文献 (22)

液位控制是工业生产乃至日常生活中常见的控制,比如锅炉液位,水箱液位等。针对水箱液位控制系统,建立水箱模型并设计PID控制规律,利用Matlab 仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制。 关键词:串级液位控制;PID算法;Matlab;Simulink 1引言 面液位控制可用于生产生活的各方面。如锅炉液位的控制,如果液位过低,可能造成干烧,容易发生事故;炼油过程中精馏塔液位的控制,关系到产品的质量,是保障生产效果和安全的重要问题。因而,液位的控制具有重要的现实意义和广泛的应用前景。本文针对双容水箱,以下水箱液位为主控制对象,上水箱为副控制对象。选择进水阀门为执行机构,基于Matlab建模仿真,采用PID控制算法,整定PID参数,得出合理控制参数。 2对象分析和液位控制系统的建立 2.1水箱模型分析 现以下水箱液位为主调节参数,上水箱液位为副调节参数,构成传统液位串级控制系统,其结构原理图如图1所示。 图1 双容水箱液位控制示意图

上水箱液位与进水流量串级控制系统

上水箱液位与进水流量串级控制系统 摘要 随着现代工业生产过程向着大型、连续方向发展,对控制系统的控制品质提出了日益增长的要求。在这种情况下,传统的单回路液位控制已经难以满足一些复杂的控制要求,水箱液位控制系统由于控制过程特性呈现大滞后、外界环境的扰动较大,要保持水箱液位最后都保持设定值,用简单的单闭环反馈控制不能实现很好的控制效果,所以采用串级闭环反馈系统。 本设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。流量控制是内环,液位控制是外环。 系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。 关键词:PLC控制;变频器;PID控制;Wincc组件;上位机

目录 上水箱液位与进水流量串级控制系统 (1) 摘要 (1) 1.过程控制系统简介 (4) 1.1过程控制介绍 (4) 1.2 串级控制系统的组成 (4) 1.2.1 硬件介绍 (4) 1.2 电源控制台 (6) 1.3 总线控制柜 (6) 1.4 软件介绍 (7) 1.6系统总貌图 (7) 2.串级控制系统简介 (8) 2.1液位串级控制系统介绍 (8) 2.2 串级控制系统的概述 (8) 2.3串级控制系统的工作过程 (8) 2.4 系统特点及分析 (9) 2.5 串级控制系统的整定方法 (9) 2.6主、副回路中包含的扰动数量、时间常数的匹配 (10) 2.7 PID控制工作原理 (10) 3 上水箱液位与进水流量串级控制系统 (11) 3.1 实验设备: (11) 3.2 液位-流量串级控制系统的结构框图 (11) 3.3 系统工作原理 (11) 3.4 控制系统流程图 (12) 3.5 实验过程 (13) 3.6 实验结果分析 (15) 3.6.1 整定过程分析 (15) 3.6.2 扰动下的响应分析 (16) 3.6.3 主、副调节器采用不同调节器时对系统动态性能的影响 (16) 3.6.4 主、副调节器采用不同PID参数时对系统动态性能的影响 (19)

相关文档
最新文档