24脉波整流原理

24脉波整流原理
24脉波整流原理

等效24脉波整流机组原理分析

整流机组就是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器与与之匹配的整流器共同组成。理论上只要满足12相24脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l/d0一Dyl/d2等。

12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器,变压器阀侧绕组采用d、Y接法;与之相匹配的单台整流器由2个三相6脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y”型绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。

单台12脉波整流机组输出波形如图1所示。

图1 单台12脉波整流机组输出波形图两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只有当两套机组的整流变压器网侧绕组分别移相+7、5°与﹣7、5°,并联工

作时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台整流变压器的基本联结组别可采用Dyll/Dd0与Dyl/Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+7、5°与一7、5°,目前为了实现两台整流变压器在网侧实现±7、5°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2与图3所示。

一次侧三角绕组联结(延边三角形) 二次侧y结构向量关系图二次侧D结构向量关系图

图2 +7、5°变压器向量关系图

一次侧三角绕组联结(延边三角形) 二次侧y结构向量关系图二次侧D结构向量关系图

图3 ﹣7、5°变压器向量关系图

由于变压器网侧实现±7、5°的移相,使2台整流变压器次边电压相位差45°,经整流器实际输出的直流波形有l5°的相位差,并联运行就构成了等效24脉波整流。整流机组的接线原理如图4,图4中整流变压器副边输出电压T。超前T:相位角15°。

T1联结组别:Dyl l/d0 T2联结组别:Dyl /d2

图4 24脉波整流机组原理

二十四脉波整流资料全

3.24脉波整流机组 整流机组是地铁直流牵引供电系统中的重要设备之一。整流机组的设计、结构特点和保护方式关系到整个直流牵引供电系统的正常运行。目前,为了提高直流电的供电质量,降低直流电源的脉动量,城市轨道交通多数采用等效24脉波整流机组,一般都由两台相同容量l2脉波的整流变压器[9]和与之匹配的整流器共同组成。 3.124脉波整流机组的作用及要求 在地铁供电系统中,牵引变电所高压侧的电压多为35kV AC(或33kV AC),而接触网的电压为1500V DC(或750V DC),所以需要降压和整流。整流机组包括整流变压器和整流器,其作用是将35kV AC(或33kV AC)降压、整流,输出1500V DC(或750V DC)电压供给地铁接触网,实现直流牵引。地铁牵引变电所一般设于地下,所以整流机组也安装在地下室。 整流变压器宜采用干式、户、自冷、环氧树脂浇注变压器,其线圈绝缘等级为F 级,线圈温升限值为70K/90K(高压,低压),其承受极限温度为155℃,铁心温升在任何情况下不应产生损坏铁心金属部件及其附近材料的温度。在高湿期可能产生凝露,应采取措施防止凝露对设备的危害。 整流器采用自然风冷式,适用于户安装。整流器柜宜采用独立式金属柜,二极管及其它元件的布置应考虑通风流畅、接线方便,同时便于维护、维修。整流器与外部连接的跳闸信号采用接点方式,报警信号采用数字方式。柜的上部及底部开口,采取措施防止小动物进入,正面和后面有门,各部件与柜应绝缘。整流变压器应从结构上进行优化设计,以抑制谐波的产生,减少电磁波干扰。整流机组产生的谐波电流应满足国家标准的规定,并满足我国电磁兼容相应的标准[10]。 根据IEC164规定,地铁作为重型牵引负荷,其负荷等级为VI级,整流机组设备的负荷特性满足如下要求:100%额定负荷时可连续运行;150%额定负荷时可持续运行2h;300%额定负荷时可持续运行1min。整流器的设计应满足当任一臂并联的整流管有1个损坏时,能全负荷正常运行。整流器每个臂并联整流管的电流不平衡度小于10%。直流侧空载情况下,整流变压器施加35×(1+0.05)kV的交流电压时,直流侧

并联多重12脉可控整流电路

. . 辽宁工业大学电力电子技术课程设计(论文) 题目:并联多重12脉可控整流电路(220V/200A) 院(系):电气工程学院 专业班级: 学号: 学生: 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 近些年来随着电力电子技术的快速发展,电力电子技术已广泛应用于各个领域。直流整流器是以电力电子技术为基础发展起来的。它是利用电力电子技术的基本特点以小信号输入控制很大的功率输出,放大倍数极高,这就是电力电子设备成为强、弱电之间接口的基础。利用这一特点能获得节能、环保、高效、高可靠性、安全良好的经济效益。 整流电路是将交流电能变为直流电能的一种装置,整流电路是电力电子电路中出现最早的一种。它的发展还与其他许多基础学科有着紧密的联系,如微电子技术、计算机技术、拓扑学、仿真技术、信息处理与通信技术等等。每一门学科或专业技术的重大发展和突破都为电力电子技术的发展带来了巨大的推动力。 关键词:整流电路;触发电路;保护电路;MATLAB仿真

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计容 (1) 第2章并联多重12脉整流电路设计 (3) 2.1并联多重12脉整流电路总体设计方案 (3) 2.2具体电路设计 (4) 2.2.1主电路设计 (4) 2.2.1触发电路设计 (5) 2.2.2保护电路设计 (6) 2.3元器件型号选择 (7) 2.3.1主电路参数选择 (7) 2.3.2晶闸管参数选择 (8) 2.4系统调试或仿真、数据分析 (9) 2.4.1 MATLAB仿真软件简介 (9) 2.4.2并联12脉波整流电路建模 (9) 2.4.3并联12脉波整流电路仿真波形及数据分析 (10) 第3章课程设计总结 (12) 参考文献 (13)

12脉波整流

https://www.360docs.net/doc/9913886019.html,/view/f05a78d850e2524de5187e4 2.html 串联型12脉波二极管整流器 摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。该类型整流器一般用作中压传动系统的变频器的前端。但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。 关键词:串联型、二极管、整流器 变频调速是当今理想的调速方法之一,也是重要的节能措施。交—直—交变频方式因其优势受到越来越广泛的应用。大多数的交—直—交变流装置的前置输入部分都采用二极管整流。随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。 1.理论分析 假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。 在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。 输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。变压器二次侧三角形连接的绕组中的电流~ a i 和a i 的波形形状相同,只是在相位上相差 30 。 由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流' a i 和折 合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。而二次侧三角形绕组中折合前的电流~ a i 和折合后的电流' ~ a i 波形会不 同。且一次侧电流与二次侧电流之间存在如下关系: ' ' ~ a a A i i i += 2. 仿真结果

12脉波整流电路谐波治理方案研究

12脉波整流电路谐波治理方案研究 Study on12-pulse rectifier circuit harmonic control plan 吴畏文冲刘超 WU Wei,WEN Chong,LIU Chao (广西电力职业技术学院,广西南宁市530007) (广西崇左市供电局,广西崇左市532200) (Guangxi Electric Power Institue Of V ocational Training,Nanning530007,China)(Guangxi Chongzuo Power Supply Bureau,Chongzuo532200,China) 摘要:广西崇左网区,存在着许多电解锰一类的企业,其非线性负荷在运行过程中会产生谐波,对整个网区都造成污染。通过对这类污染源的运行环境的了解,谐波的测试和分析以及仿真研究,针对电解锰行业用电特点,在各种谐波治理方式中,找出了一种性价比较高,而且企业也易于接受的治理方式,以点带面,逐步推广。 关键词谐波污染;Matlab仿真;谐波治理 [课题项目]本文是广西壮族自治区教育厅科研项目课题“电网谐波治理”的研究报告之一。 Abstract:Guangxi Chongzuo power grid area,there are many electrolytic manganese kind of enterprise,the nonlinear load in the operation process will generate harmonic wave,the power grid area are cause pollution.Through this kind of pollution sources to the operating conditions of understanding,harmonic of testing and analysis and simulation,in view of the electrolysis manganese industry consumption characteristics,in all kinds of harmonic governance mode,find out a low cost and high performance,and enterprise also easy to accept the governance mode, from point to area,and gradually promotion.

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

24脉波整流原理

等效24脉波整流机组原理分析 整流机组是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。理论上只要满足12相24 脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l /d0一Dyl /d2等。 12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器, 变压器阀侧绕组采用d 、Y 接法;与之相匹配的单台整流器由2个三相6 脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y ”型 绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。 单台12脉波整流机组输出波形如图1 所示。 图1 单台12脉波整流机组输出波形图 两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只 有当两套机组的整流变压器网侧绕组分别移相+7.5°和﹣7.5°,并联

t i m e a n d 工作时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台 整流变压器的基本联结组别可采用Dyll /Dd0和Dyl /Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+7.5°和一7.5°,目前为了实现两台整流变压器在网侧实现±7.5°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。 一次侧三角绕组联结(延边三角形) 二次侧y 结构向量关系图 二次侧D 结构向量关系图 图2 +7.5°变压器向量关系图 一次侧三角绕组联结(延边三角形) 二次侧y 结构向量关系图 二次侧D 结构向量关系图 图3 ﹣7.5°变压器向量关系图

12脉波整流变压器结构型式的选择

12脉波整流变压器结构型式的选择 在大型的电化学或电冶金用直流电源系统中,同相逆并联12脉波整流机组是组成24相、36相、48相整流系统的基本组成单元。12脉波整流机组主电路的连接型式有两种方案:一种是由一台整流变压器与两台整流装置整流装置组成的单机组12脉波整流电路整流电路(简称“单机组12脉波整流电路”);另一种是由置于同一油箱内的两台完全独立的整流变压器与两台整流装置组成的双机组等值12脉波整流电路(简称“等值12脉波整流电路”)。二者的连接方式。 上述两种连接方式的整流电路,对12脉波整流输出电压(电流)波形的对称性以及对网侧谐波电流谐波电流的影响是不同的,应引起设计人员和用户的注意。 1两种连接方式对谐波电流的影响 理想情况下,12脉波整流电路运行过程中,不会在网侧产生5次和7次谐波电流。但单机组12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗不容易做到很一致,使得运行时存在着严重的负荷分配不均的问题。需要通过晶闸管相控或饱和电抗器的励磁调节来纠正这种偏差,从而导致二个三相桥晶闸管导通的相位差不能严格地保持为30°,使得网侧仍然存在5次和7次谐波电流。 对于等值12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗容易做到一致,而不会破坏12脉波的对称性。 图1单机组12脉波整流电路 图2等值12脉波整流电路 2阀侧绕组之间负荷电流分配不均的问题 2.1单机组12脉波整流电路单机组12脉波整流电路,其整流变压器网侧只有一组绕组,导致两组阀侧绕组间负荷分配不均的原因是Y接和△接这两组绕组间匝比NY/N△偏离1/,彼此理想空载直流电压Udio不相等,因此,负荷分配不可能平均。整流变压器阀侧两组绕组间的匝比NY/N△值接近1/的可取整数比为4/7(偏差1.04%)、7/12(偏差1.02%)、11/19(偏差0.27%)。由此可见,将NY/N△做成11/19,可使△Udio偏差减到最小,改善电流分配不均问题。但由于变压器结构上的合理性和制造方面(变压器变比越大尤其如此)的原因,这样的匝比实际上是不容易做到的。 对于三相桥式整流电路,整流变压器阀侧绕组间匝比NY/N△=4/7时,理想空载直流电压之差△Udio=1.04%。但两组整流器的负载电流负载电流分配却相差很大。因为变压器网侧绕组的电抗X1*为各整流桥整流桥公有,对整流桥间的负载电流分配没有调节作用。负载电流分配完全取决于各组阀侧绕组电抗值X2*=XY*+X△*和阀侧连接母线的电抗XM*。(其中XY*为Y形连接绕组的电抗值,X△*为△形连接绕组的电抗值)。根据有关资料计算结果表明:当变压器二次电抗X△*=XY*=5%时, IdY=0.2928IdnId△=0.7072Idn 当变压器二次电抗X△*=XY*=10%时, IdY=0.3964IdnId△=0.6036Idn 由此可见,变压器二次电抗数值愈小,负载分配相差就愈大。有实际例子可以证明这一点。兰州有一用户采用这种单机组12脉波二极管整流电路,投运后发现,其中一整流桥直流电流达到12000A(额定值)时,另一整流桥的直流电流只有4500A。导致设备无法正常运行,后来被迫重新改造。 理论计算表明:增大整流变压器二次电抗X2*=X△*+XY*,可以部分减小负载电流分配

脉波整流原理

脉波整流原理 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

等效24脉波整流机组原理分析 整流机组是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。理论上只要满足12相24脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l/d0一Dyl/d2等。 12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器,变压器阀侧绕组采用d、Y接法;与之相匹配的单台整流器由2个三相6脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y”型绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。 单台12脉波整流机组输出波形如图1所示。 图1 单台12脉波整流机组输出波形图 两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只有当两套机组的整流变压器网侧绕组分别移相+7.5°和﹣7.5°,并联工作

时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台整流变压器的基本联结组别可采用Dyll/Dd0和Dyl/Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+7.5°和一7.5°,目前为了实现两台整流变压器在网侧实现±7.5°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。 一次侧三角绕组联结(延边三角形)二次侧y结构向量关系图二次侧D结构向量关系图 图2 +7.5°变压器向量关系图

12脉波整流并(575v)

西安龙海电气有限公司

12 脉波 KGPS 中频电源控制原理
KGPS 系列感应加热晶闸管变频装置是利用晶闸管将三相工频交流电能转 换为几百或几千赫的单相交流电能。具有控制方便、运行可靠、 效率高等特 点,有利于提高产品的产量和质量。本装置采用全数字控制,扫频启动方式, 无须同步变压器等,线路简单,调试方便,负载适应能力强,启动可靠。应用 于铸钢、不锈钢、合金钢的冶炼,真空冶炼,感应加热等不同场合。 1.主电路原理 1.1 整流电路原理 整流电路主要是将 50HZ 的交流电整流成直流。由 12 个晶闸管组成的 12 脉 波串联全控整流电路,输入工频电网电压 575V,控制可控硅的导通,实现输出 0~750V 连续可调的直流电压。(如图)
六相 12 脉波全控整流桥工作原理 当触发脉冲在任意控制角时,其输出直流电压为: Ud = 1.35UaCosaX2

式中:Ua = 三相进线电压 a-控制角
1.2 逆变电路原理:
该产品采用了并联逆变器,这种逆变器对负载变化适应能力强,见图(4) 所示。它的主要作用是将三相整流电压 Ud 逆变成单相 400-10KC 的中频交流电。 一般,由于功率大小、进线电压等原因,逆变可控硅的数量有,四只、八只、 十六只三种,即采用单管、串管、并管等技术。但为了分析方便,将其等效为 图(4)电路。 下面分析一下逆变器的工作过程,假设图(4)中,先是①②导通③④截止, 则直流电流 Id 经电抗器 Ld,可控硅①②流向 Lc 谐振回路,Lc 产生谐振,振荡 电压正弦波。此时电容器两端的电压极性为左正右负,如果在电容器两端电压 尚未过零时之前的某一时刻产生脉冲去触发可控硅③④,此时形成可控硅 ①②③④同时导通状态,由于可控硅③④的导通,电容器两端的电压通过可控 硅③④加在可控硅①②上使可控硅①②两端承受反压而关断,也就是说可控硅 ①②将电流换给了③④。换流以后,直流电流 Id 经电抗器 Ld、可控硅③④反向 流向 LC 谐振回路。电容器两端的电压继续按正弦规律变化,而电容器两端电压

多脉波整流电路在直驱式风力发电中的应用

基金项目:中国博士后基金(20060390092)定稿日期:2008-02-29 作者简介:温春雪(1980-),男,内蒙古呼和浩特人,博士 生。研究方向为变速恒频风力发电控制技术。 1引言在直驱式风力发电系统中,由于发电机出口电压的幅值和频率总在变化,所以需要先通过整流电路将该交流信号变换成直流电,然后再经过逆变器变换为恒频恒压的交流电连接到电网。但是在整流过程中,由于电力电子器件的作用使得电机侧功率因数变低,并且电流谐波增大,给发电机正常运行带来了不利影响。 为满足电机侧电能质量的要求,研究人员和生产 商在前端变换器中采用了多脉波整流拓扑结构[1-2]。 该拓扑采用的相移整流谐波消去法是一种简单无源可靠的消谐方法。 抑制多脉波整流器中电流不平衡的可选方法是将独立的两个六脉波电路串联。该方法考虑的另一方面是在整流电路直流侧注入一个电流,以平衡交流侧电流,例如将一个12脉波系统变换为24脉波电路,而无需更复杂的相移设备和额外的整流器[3]。 2多脉波整流电路运行工况 采用在多脉波串联型整流器中注入无源电压这 一新技术,可以提高整流器输入电流的质量,使输出波形具有24脉波特性[4]。 在图1变换器中,两个三相整流器在交流侧串联,一个由与变压器初级同相的角形变压器供电,另一个由与变压器初级移相的星形绕组供电。由于是串联结构,所以每个整流器中流过的电流大小相同,又因初级绕组电感的作用,故可视整流器为电流反馈型。选择变压器初、次级匝比为1/3!,整流器流过的电流大小相同, 但相位偏移30°。 谐波注入电路由一个单相变压器和一个单相整流器构成。该电路的功率仅为整个电路功率的2%。 多脉波整流电路在直驱式风力发电中的应用 温春雪1,2,李建林1,许洪华1 (1.中国科学院电工研究所,北京 100080;2.中国科学院研究生院,北京 100049) 摘要:直驱式风力发电系统的应用越来越广泛,为此有必要对其整流变换部分的实用电路之一,即多脉波整流电路 进行研究。该电路拓扑采用两个六脉波整流器串联,并通过移相变压器实现多脉波输出。通过相位补偿,其交流侧可以得到THD<3%的正弦电流。由于电路中只使用无源器件, 并且在达到同样性能的前提下,比其他整流电路所用器件少很多,因此降低了整个系统的成本。此外,与其他多脉波整流器相比,可以附加一个额外的低功率谐波注入电路,以进一步提高该拓扑结构抑制谐波的性能。仿真和实验证明,多脉波整流电路具有高功率因数、低谐波特性,非常适合用于直驱式风力发电系统。 关键词:风力发电;整流;变压器;移相电路/谐波注入中图分类号:TM310 文献标识码:A 文章编号:1000-100X(2008)05-0059-02 ResearchonMulti-pulseRectifiersuitableforDirect-drivedWindPowerSystem WENChun-xue1, 2 ,LIJian-lin1,XUHong-hua1(1.InstituteofElectricalEngineeringChineseAcademicSciences,Beijing,100080; 2.GraduateUniversityofChineseAcademyofSciences,Beijing,100049) Abstract:Multi-pulserectifiercircuit,oneofpracticalrectifiertopologiesisdescribed,whichisespeciallysuitablefordirect-drivedwindpowersystem.Twosix-pulserectifierbridgesfedbyaphase-shiftingtransformerareconnectedinseries toformmulti-pulsesystem.Fromphasecompensation, thisconverterdrawsalmostsinusoidalcurrentsfromtheACsystemwithverylowharmoniccontent, typicallylessthan3%totalharmonicdistortion.Thetopologyusesonlypassivecomponentsandhasfewercomponentthanotherrectifiercircuitswithsimilarperformance.Anadditionallowpowerharmonicinjectioncircuitenhancestheperformanceofthecircuittoobtainlowharmoniccurrentpollutionlevelsbeingcomparablewiththoseachievedfromothermulti-pulserectifier.Finally, highpowerfactorandlowharmonicfeaturesofmulti-pulserectifierareverifiedbysimulationandexperiment.Thisrectifierisverysuitablefordirect-drivewindpowersystem. Keywords:windpowersystem;rectify;transformer;phase-shiftingcircuit/harmonicinjectionFoundationProject:SupportedbyPost-doctoralFundofChina(No.20060390092) 图124脉波电压注入式整流器 59

脉波整流原理

等效24脉波整流机组原理分析整流机组是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。理论上只要满足12相24脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyll /d0一Dyl/d2等。 12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器,变压器阀侧绕组采用d、Y接法;与之相匹配的单台整流器由2个三相6脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y”型绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。 单台12脉波整流机组输出波形如图1所示。 图1单台12脉波整流机组输出波形图 两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只有当两套机组的整流变压器网侧绕组分别移相+°和﹣°,并联工作时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台整流变压器的基本联结组别可采用Dyll/Dd0和Dyl/Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+°和一°,目前为了实现两台整流变压器在网侧实现±°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。一次侧三角绕组联结(延边三角形)二次侧y结构向量关系图二次侧D结构向量关系图 图2+°变压器向量关系图

一次侧三角绕组联结(延边三角形)二次侧y结构向量关系图二次侧D结构向量关系图 图3﹣°变压器向量关系图 由于变压器网侧实现±°的移相,使2台整流变压器次边电压相位差45°,经整流器实际输出的直流波形有l5°的相位差,并联运行就构成了等效24脉波整流。整流机组的接线原理如图4,图4中整流变压器副边输出电压T。超前T:相位角15°。 T1联结组别:Dyll/d0T2联结组别:Dyl/d2 图424脉波整流机组原理

24脉波移相整流变压器设计

24脉波移相整流变压器设计 摘要:为了减少整流装置对电网产生的谐波污染,设计一种新型共轭式24脉波移相整流变压器,从而达到消除低次谐波的目的,同时采用该结构可大大降低变压器的材料成本。本文结合设计实例以供参考。 关键词:整流变压器;设计;24脉波;共轭式 一、前言 随着社会的发展,各种用电设备的不断增加,交流电网中谐波污染问题也日益突出。为了建造绿色电网的目标,国家制定了专门的标准GB/T14549-93《电能质量公用电网谐波》,供电部门正按照这一标准对各用电客户的谐波限制措施提出了严格的要求。特别是高能耗用电企业如氯碱化工、铝镁电解、电解铜等更是重中之重,其整流装置是主要的谐波污染源。当前对谐波的抑制措施主要有两种方式,一种是增加整流所的等效相数;另一种是安装滤波装置。本文只探讨与前者密切相关的单机组24脉波(两机组构成等效48脉波)移相整流变压器设计问题。 二、整流变压器设计实例 我公司2012年初接得山东某化工公司的食盐电解整流变压器合同,有两个系列,每个系列有两台ZHSFPT-21500/110整流变压器,单台24脉波,两台构成等效48脉波。整流方式为三相桥式整流,同相逆并联,冷却方式为强油风冷,变压器为主调合一免吊心结构。 (一)基本参数: 网侧电压:U1=110kV±10%,50Hz±1% 单机额定直流输出电压:Udn=550V 单机额定直流输出电流:Idn=4×8.1kA 调压范围:65~105%Udn 27级等差调压,M型开关 短路阻抗:10%,变压器效率:98.7% 高压中性点绝缘水平按60kV级考虑 补偿绕组容量:4000kV AR, 电压10kV

12脉波整流

12脉波整流变压器结构型式的选择 摘要:介绍了12脉波整流机组中整流变压器两种结构型式的特点和在方案选择中需要注意的问题。 在大型的电化学或电冶金用直流电源系统中,同相逆并联12脉波整流机组是组成24相、36相、48相整流系统的基本组成单元。12脉波整流机组主电路的连接型式有两种方案:一种是由一台整流变压器与两台整流装置组成的单机组12脉波整流电路(简称“单机组12脉波整流电路”);另一种是由置于同一油箱内的两台完全独立的整流变压器与两台整流装置组成的双机组等值12脉波整流电路(简称“等值12脉波整流电路”)。 上述两种连接方式的整流电路,对12脉波整流输出电压(电流)波形的对称性以及对网侧谐波电流的影响是不同的,应引起设计人员和用户的注意。 1两种连接方式对谐波电流的影响 理想情况下,12脉波整流电路运行过程中,不会在网侧产生5次和7次谐波电流。但单机组12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗不容易做到很一致,使得运行时存在着严重的负荷分配不均的问题。需要通过晶闸管相控或饱和电抗器的励磁调节来纠正这种偏差,从而导致二个三相桥晶闸管导通的相位差不能严格地保持为30°,使得网侧仍然存在5次和7次谐波电流。 对于等值12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗容易做到一致,而不会破坏1 2脉波的对称性。 2阀侧绕组之间负荷电流分配不均的问题 2.1单机组12脉波整流电路 单机组12脉波整流电路,其整流变压器网侧只有一组绕组,导致两组阀侧绕组间负荷分配不均的原因是Y接和△接这两组绕组间匝比NY/N△偏离,彼此理想空载直流电压Udio不相等,因此,负荷分配不可能平均。 整流变压器阀侧两组绕组间的匝比NY/N△值接近的可取整数比为4/7(偏差1.04%)、7/12(偏差1.02%)、11/19(偏差0.27%)。由此可见,将NY/N△做成11/19,可使△Udio偏差减到最小,改善电流分配不均问题。但由于变压器结构上的合理性和制造方面(变压器变比越大尤其如此)的原因,这样的匝比实际上是不容易做到的。 对于三相桥式整流电路,整流变压器阀侧绕组间匝比NY/N△=4/7时,理想空载直流电压之差△Udi o=1.04%。但两组整流器的负载电流分配却相差很大。因为变压器网侧绕组的电抗X1*为各整流桥公有,对整流桥间的负载电流分配没有调节作用。负载电流分配完全取决于各组阀侧绕组电抗值X2*=XY*+X △*和阀侧连接母线的电抗XM*。(其中XY*为Y形连接绕组的电抗值,X△*为△形连接绕组的电抗值)。根据有关资料计算结果表明: 当变压器二次电抗X△*=XY*=5%时, IdY=0.2928Idn Id△=0.7072Idn

二十四脉波整流资料全

3. 24脉波整流机组 整流机组是地铁直流牵引供电系统中的重要设备之一。整流机组的设计、结构特点和保护方式关系到整个直流牵引供电系统的正常运行。目前,为了提高直流电的供电质量,降低直流电源的脉动量,城市轨道交通多数采用等效24脉波整流机组,一般都由两台相同容量12脉波的整流变压器[9]和与之匹配的整流器共同组成。 3.1 24脉波整流机组的作用及要求 在地铁供电系统中,牵引变电所高压侧的电压多为35kV AC(或33kV AC),而 接触网的电压为1500V DC(或750V DC),所以需要降压和整流。整流机组包括整流 变压器和整流器,其作用是将35kV AC(或33kV AC)降压、整流,输出1500V DC(或750V DC)电压供给地铁接触网,实现直流牵引。地铁牵引变电所一般设于地下,所以 整流机组也安装在地下室。 整流变压器宜采用干式、户、自冷、环氧树脂浇注变压器,其线圈绝缘等级为F 级,线圈温升限值为70K/90K(高压,低压),其承受极限温度为155C,铁心温升在任何情况下不应产生损坏铁心金属部件及其附近材料的温度。在高湿期可能产生凝露,应采取措施防止凝露对设备的危害。 整流器采用自然风冷式,适用于户安装。整流器柜宜采用独立式金属柜,二极管及 其它元件的布置应考虑通风流畅、接线方便,同时便于维护、维修。整流器与外部连接的跳闸信号采用接点方式,报警信号采用数字方式。柜的上部及底部开口,采取措施防止小动物进入,正面和后面有门,各部件与柜应绝缘。整流变压器应从结构上进行优化设计,以抑制谐波的产生,减少电磁波干扰。整流机组产生的谐波电流应满足国家标准的规定,并满足我国电磁兼容相应的标准[10]。 根据IEC164规定,地铁作为重型牵引负荷,其负荷等级为VI级,整流机组设备的负荷特性满足如下要求:100%额定负荷时可连续运行;150%额定负荷时可持续运行2h; 300%额定负荷时可持续运行1min。整流器的设计应满足当任一臂并联的整流管有1个损坏时,能全负荷正常运行。整流器每个臂并联整流管的电流不平衡度小于10%。直流侧 空载情况下,整流变压器施加35^1+0.05)kV的交流电压时,直流侧

24脉波整流原理

等效24脉波整流机组原理分析 整流机组就是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器与与之匹配的整流器共同组成。理论上只要满足12相24脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l/d0一Dyl/d2等。 12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器,变压器阀侧绕组采用d、Y接法;与之相匹配的单台整流器由2个三相6脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y”型绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。 单台12脉波整流机组输出波形如图1所示。 图1 单台12脉波整流机组输出波形图两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只有当两套机组的整流变压器网侧绕组分别移相+7、5°与﹣7、5°,并联工

作时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台整流变压器的基本联结组别可采用Dyll/Dd0与Dyl/Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+7、5°与一7、5°,目前为了实现两台整流变压器在网侧实现±7、5°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2与图3所示。 一次侧三角绕组联结(延边三角形) 二次侧y结构向量关系图二次侧D结构向量关系图 图2 +7、5°变压器向量关系图 一次侧三角绕组联结(延边三角形) 二次侧y结构向量关系图二次侧D结构向量关系图 图3 ﹣7、5°变压器向量关系图

脉波整流原理

脉波整流原理 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

等效24脉波整流机组原理分析整流机组是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。理论上只要满足12相24脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l/d0一Dyl/d2等。 12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器,变压器阀侧绕组采用d、Y接法;与之相匹配的单台整流器由2个三相6脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y”型绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。 单台12脉波整流机组输出波形如图1所示。 图1 单台12脉波整流机组输出波形图 两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只有当两套机组的整流变压器网侧绕组分别移相+°和﹣°,并联工作时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台整流变压器的基本联结组别可采用Dyll/Dd0和Dyl/Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+°和一°,目前为了实现两台整流变压器在网侧实现±°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。 一次侧三角绕组联结(延边三角形)二次侧y结构向量关系图二次侧D结构向量关系图

图2 +°变压器向量关系图 一次侧三角绕组联结(延边三角形)二次侧y结构向量关系图二次侧D结构向量关 系图 图3 ﹣°变压器向量关系图 由于变压器网侧实现±°的移相,使2台整流变压器次边电压相位差45°,经整流器实际输出的直流波形有l5°的相位差,并联运行就构成了等效24脉波整流。整流机组的接线原理如图4,图4中整流变压器副边输出电压T。超前T:相位角15°。

串联多重12脉整流电路课程设计

电力电子技术课程设计 班级电气1002班 学号 姓名 扬州大学能源与动力工程学院 电气及自动化工程 二零一四年一月

目录 摘要 (1) 第1章绪论 (2) 1.1 电力电子技术的发展 (2) 1.2电力电子技术在直流整流器上的应用 (3) 1.3 整流器的发展 (3) 1.4 本设计研究的主要内容及方法 (3) 第2章总体设计方案 (5) 2.1最优方案选取 (5) 2.2系统原理简述及方框图 (5) 2.3主电路设计: (6) 2.3.1晶闸管的选择及型号的确定 (8) 2.3.2变压器的设计 (10) 2.3.3触发电路的设计 (11) 2. 4保护电路设计 (13) 2.4.1过电压保护 (13) 2.4.2过电流保护 (15) 2. 5系统调试或仿真 (16) 2.5.1串联12脉波整流电路建模 (17) 2.5.2仿真结果与谐波分析 (21) 结论 (27) 课程设计总结 (28) 参考文献 (29)

摘要 近些年来随着电力电子技术的快速发展,电力电子技术已广泛应用于各个领域。直流整流器是以电力电子技术为基础发展起来的。它是利用电力电子技术的基本特点以小信号输入控制很大的功率输出,放大倍数极高,这就是电力电子设备成为强、弱电之间接口的基础。利用这一特点能获得节能、环保、高效、高可靠性、安全良好的经济效益。 整流电路是将交流电能变为直流电能的一种装置,整流电路是电力电子电路中出现最早的一种。它的发展还与其他许多基础学科有着紧密的联系,如微电子技术、计算机技术、拓扑学、仿真技术、信息处理与通信技术等等。每一门学科或专业技术的重大发展和突破都为电力电子技术的发展带来了巨大的推动力。 关键词:整流电路;控制电路;触发电路;保护电路;

24脉波整流相角差说明

24脉波整流相角差说明 要实现等效二十四相整流,就必须使两变压器T1和T2的低压输出之间移相15°(或45°)角,经过分析,我们在高压侧采用延边三角形移相方法。下面以Dy11d0联结组别为例,说明移相15°和移相45°的不同点。 1.移相15° 为了满足T1和T2低压输出之间相角差为15°的要求,若T1联结组别为D(-7.5°)y11d0,即在Dy11d0的基础上右移7.5°。根据高压侧延边三角形的移相原理,变压器T2联结组别为D(+7.5°)y1d0或D(-22.5°)y11d0便可达到两变压器相角差15°的目的。 方案一:联结组别为D(-7.5°)y11d0和D(+7.5°)y1d0的两台变压器组成24脉波整流时,此两台变压器的不同之处在于高压线圈外部连接杆连接以及低压的d接线圈的外部连接,因此,若两变压器进行互换时,需改变高压连接杆的外部连接和d接的低压线圈外部连接,但由于低压出线为焊接连接,其外部连接的更改是比较麻烦的,在变压器运行现场不能实现。因此,采用此方案,两台变压器的互相兼容性差,其备品备件要2台以上(各需要1台)。 方案二:联结组别为D(-7.5°)y11d0和D(-22.5°)y11d0的两台变压器组成24脉波整流时,此两台变压器的不同之处在于高压移相角度不同,高压线圈的设计不一样,此方案的缺点除了互换性差(需更换高压线圈才可达到互换的目的)以外,还存在两台变压器的移相角度偏差大,整流精度低等缺点。 2.移相45° 为满足T1和T2低压输出之间相角差为45°的要求,T1和T2的联结组别可分别为D(-7.5°)y11d0和D(+7.5°)y1d2,此两台变压器不同之处只在于高压线圈的外部连接不同,因此两台变压器的线圈在设计和工艺上完全相同的,它们只需改变外部连接杆连接位置便可满足各移相-7.5?和+7.5?的要求,使两台变压器具有很好的互换性,在变压器运行现场也可以实现互换,备品备件只需要1台便可,减少了设备的投资。另外,由于两台变压器是使用同一工艺和设计,相互间角度偏差小,提高了整流精度,达到更好的整流效果。 在各地铁项目中,我厂均采取相角差45°的方案进行24脉波整流变压器的设计,其互换性好,整流精度高,整流效果更优于相角差15°的方案,该方案已在广州地铁、上海地铁、北京地铁、大连轻轨、长春轻轨等项目中得到广泛的应用。

24脉波整流的直流电机供电与控制系统研究_马西庚

图1基于自耦变压器的24脉波整流电路 图 定稿日期:2011-05-30 作者简介:马西庚(1957-),男,山东桓台人,教授,研究方向为电力电子技术及其应用。 1引言随着电力电子技术飞速发展,三相大功率整流技术已广泛应用于直流电机调速系统[1]。在该系统采用的各种整流电路中,6脉波三相桥式全控整流电路应用最为广泛。但大多数整流电路如带电容滤波的三相不可控整流和晶闸管相控整流装置均为典型的非线性负载,引起了网侧电流、电压波形畸变,导致较严重的电网谐波污染[2]。文献[3-5]提出了多种改善整流电路输入电流波形的方法,其中24脉波整流电路能消除传统三相桥式全控6脉波整流电路中所含有的5,7,11,13,17,19等次谐波,降低了输入电流的谐波含量,减少了所串平波电抗器的电感量,提高输出电流的连续性。在此提出了一种24脉波整流直流电机供电与控制系统,分析了对整流环节输入电流特性、输出电压特性,以及系统结构、工作原理,实验证明该系统具有较好的谐波抑制能力,能提高电机运行平稳度。 2 系统整流电路结构及特性分析 2.1 系统整流电路结构与网侧电流特性 直流电机供电与控制系统基于自耦变压器的 24脉波整流电路如图1所示。自耦变压器初级绕 组与三相主电源三角形联接,次级绕组产生4组幅值相等,相位依次相差15°的三相电压(u a1,u b1,u c1),(u a2,u b2,u c2),(u a3,u b3,u c3),(u a4,u b4,u c4),分别与整流桥相连,再通过3组平衡电抗器并联4组整流桥组成24脉波整流电路。 自耦变压器每相次级有6个绕组,设初级绕组匝数为n 1,次级绕组匝数为n 2~n 7,则有:n 1∶n 2∶n 3∶ n 4∶n 5∶n 6∶n 7=1.71723∶0.13053∶0.13053∶0.34713∶0.34713∶0.07802∶0.07802。由此设置变压器初、次级绕线 参数比。网侧电流最终表达式为: 24脉波整流的直流电机供电与控制系统研究 马西庚,徐峻涛,路茂增,张 昊 (中国石油大学(华东),山东东营 257061) 摘要:提出了一种基于自耦变压器的24脉波整流直流电机供电与控制系统。该系统利用自耦变压器移相输出 24脉波动的直流电压为直流电机供电,采用PI 调节的转速、电流双闭环方式控制直流电机。给出了直流电机 供电与控制系统结构,分析了系统整流单元的输出特性,并将所设计系统在不同转速下网侧电压、电流谐波含量与传统直流电机调速系统谐波含量进行了对比。实验证明,所提出的直流供电与控制系统能够有效降低对网侧的谐波污染,提高直流电机运行的平稳度。关键词:直流电机;直流调速系统;双闭环;谐波中图分类号:TP202 文献标识码:A 文章编号:1000-100X (2011)11-0101-04 Research on DC Motor Power Supply and Control System with 24-pulse Rectification MA Xi -geng ,XU Jun -tao ,LU Mao -zeng ,ZHANG Hao (China University of Petroleum ,Dongying 257061,China ) Abstract :This paper presents a 24-pulse rectifying DC power supply and control system based on autotransformer.Phase -shifting autotransformer is conducted to generate DC voltage with 24-pulse waves for the power supply of DC motor.PI controller is adopted in speed loop and current loop of DC motor regulating system.Voltage and current harmonic components are analyzed and compared with traditional double -loop DC speed regulating system.The experimental results prove that the proposed system can reduce the harmonic pollution and smooth the operation of DC motor effectively. Keywords :direct current motor ;direct current speed -regulating system ;double -closed loop ;harmonic 101

相关文档
最新文档