60kw永磁同步电机故障状态检测试验报告

60kw永磁同步电机故障状态检测试验报告
60kw永磁同步电机故障状态检测试验报告

检测报告

电动汽车用电机及其控制器

产品名称:电动汽车用电机及其控制器

产品型号:永磁同步电机:BS100-1000/520

永磁同步控制器:KBS100-1000/520

生产厂家:*****科技有限公司

试验类别:自主检测

1、任务来源及目的:

根据整车动力系统匹配的要求,需要通过试验检测普林亿威60kw永磁同步电机电动转矩转速特性及功率曲线、馈电转矩转速特性及功率曲线、峰值转矩峰值功率运行温升、峰值转速峰值功率运行温升、电机及控制器电动系统效率、电机及控制器馈电系统效率等性能参数,考核其检测结果是否符合GB/T18488.1-2006《电动汽车用电机及其控制器第一部分:技术条件》对电动汽车电机及其控制器的技术要求,特别是判断其能否满足3吨物流车的需要。

2、检测依据:

2.1 方法依据

根据GB/T18488.2-2006《电动汽车用电机及其控制器第一部分:试验方法》的要求对样品进行检测。

2.2 判定依据

根据GB/T18488.1-2006《电动汽车用电机及其控制器第一部分:技术条件》的要求对样品进行判定。

3、样品情况及参数:

3.1、样品来源:

电机:唐山普林亿威科技有限公司

逆变器:蓝海华腾技术股份有限公司

3.2、样品数量:配套样品1套

3.3、样品参数:

4、检测时间及地点:

样件检测时间为2015年6月19日到2015年6月22日,检测地点位于民富沃能新能源汽车有限公司动力总成试验室。

5、检测结果

同步电机检测实验报告

三相同步发电机的运行特性

一、实验目的 1.掌握三相同步发电机的空载、短路及零功率因素负载特性的实验求取法 2.学会用试验方法求取三相同步发电机对称运行时的稳态参数 二、实验参数 实验在电力系统监控实验室进行,每套实验装置以直流电动机作为原动机,带动同步电动机转动,配置常规仪表进行实验参数进行测量,本次同步发电机运行试验,仅采用常规控制方式。 同步发电机的参数如下 额定功率2kw 额定电压400v 额定电流 3.6A 额定功率因素0.8 接法Y 三、实验原理 工作原理 ◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 ◆载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 ◆切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁

磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 ◆交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 ◆感应电势有效值:每相感应电势的有效值为 ◆感应电势频率:感应电势的频率决定于同步电机的转速n 和极对数p ,即 ◆交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: ◆要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。

异步电机实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相异步电动机的空载及堵转实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

三相异步电动机的空载及堵转实验 一.实验目的 1.掌握异步电动机空载和堵转实验方法及测试技术。 2.通过空载及堵转实验数据求取异步电动机的铁耗和机械损耗。 3.通过空载及堵转实验数据求取异步电动机的各参数 二.问题思考: 1.试就下列几个方面与变压器相比较,有何相同与相异之处? (1)空载运行状况及转子堵转状况。 (2)空载运行时的0cos ?,0I ,0P 。 (3)转子堵转实验时测得的12'k X X X =+。 答:变压器空载运行是指二次侧绕组开路时的变压的运行状态,此时二次侧绕组电流2i =0,空载电流的无功分量远大于有功分量,所以电流大多用于励磁。等效电路如下图: 异步电机的空载运行状况实际中并不存在,因为空载运行是指输出的机械功率为零,也就是转差率s =0,转子侧电流为0,转子转速n 与旋转磁场的转速1n 相同,这种情况下转子不受磁场力,所以不可能存在。实际中的空载是指轻载,即 0s ≈,1n n ≈,20i ≈,输出功率20P =,0m m s P p p =+≈。等效电路 可近似看为: ?m r m x m r m x ?

几乎全部用来 异步电机堵转的时候转子侧三相绕组断路,转子堵住不动,定子侧接三相交流电 源,此时因为转子不转,转子侧输出功率为零,电流较大,二次侧等效电阻, 22r r s =,最小等效电路如下图所示: 与变压器短路试验运行时等效电路类似。变压器短路运行时等效电路如下: I ? , ?

电动机实验报告doc

电动机实验报告 篇一:电机实验报告 黑龙江科技大学 综合性、设计性实验报告 实验项目名称电机维修与测试 所属课程名称电机学 实验日期 XX年5.6—5.13 班级电气11-13班 学号 姓名 成绩 电气与信息工程学院实验室 篇二:电机实验报告 实验报告本 课程名称:电机拖动基础班级:电气11-2 姓名田昊石泰旭孙思伟 指导老师:_史成平 实验一单相变压器实验 实验名称:单相变压器实验 实验目的:1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。 实验项目:1. 空载实验测取空载特性U0=f(I0), P0=f(U0)。 2. 短路实验测取短路特性Uk=f(Ik), Pk=f(I)。 3. 负载实验保持U1=U1N,cos?2?1的条件下,测取U2=f(I2)。 (一)填写实验设备表 (二)空载实验 1.填写空载实验数据表格 2. 根据上面所得数据计算得到铁损耗PFe、励磁电阻Rm、励磁电抗Xm、电压比k (三)短路实验 1. 填写短路实验数据表格 O (四)负载实验 1. 填写负载实验数据表格 表3 cos?2=1 (五)问题讨论 1. 在实验中各仪表量程的选择依据是什么? 根据实验的单相变压器额定电压、额定电流、额定容量、空载电压,单 相变压器电源电压和频率、线圈匝数、磁路材质及几何尺寸等。 2. 为什么每次实验时都要强调将调压器恢复到

起始零位时方可合上电源开关或断开电源开关? 防止误操作造成人身伤害、防止对变压器及其它仪器仪表等设备过压过 流而损坏。 3. 实验的体会和建议 1.电压和电流的区别:空载试验在低压侧施加额定电压,高压侧开路;短路 试验在高压侧进行,将低压侧短路,在高压侧施加可调的低电压。2.测量范围的不同:空载试验主要测量的是铁芯损耗和空载电流, 而短路试 验主测量的是短路损耗和短路电阻。3.测量目的不同:空载试验主要测量数据反映铁芯情况,短路试验反映的是线圈方面的问题。 4.试验时,要注意电压线圈和电流线圈的同名端,要避免接错线。选择的导 线应该是高压导线,要不漏线头要有绝缘外皮保护。5.通过负载试验可以知道变压器的阻抗越小越好。阻抗起着限制变压器的电 流的作用,在设计时我们要考虑这些。 篇三:直流电动机实验报告 电机 实验报告 课程名称:______电机实验_________指导老师:___

三相同步、鼠笼电机实验报告

重庆邮电大学 实验报告 实验名称:三相同步电机参数的测定 三相鼠笼异步电动机的工作特性 专业:自动化 班级: 0811203 小组成员:徐明霞 2012212965 陈柏果 2012212983 谢炳辉 2012213031 王骏超 2012213094 陈浩 2012212756 傅荟桥 2012213172

三相同步电机参数的测定 一、实验目的 掌握三相同步发电机参数的测定方法,并进行分析比较加深理论学习。 二、实验项目 1、用转差法测定同步发电机的同步电抗X d 、X q 。 2、用反同步旋转法测定同步发电机的负序电抗X 2及负序电阻r 2。 3、用单相电源测同步发电机的零序电抗X 0。 三、实验方法及结果 1、实验设备 序 号 型 号 名 称 数 量 1 DD03 导轨、测速发电机及转速表 1件 2 DJ23 校正直流测功机 1件 3 DJ18 三相同步电机 1件 4 D41 三相可调电阻器 1件 5 D44 可调电阻器、电容器 1件 6 D32 交流电流表 1件 7 D33 交流电压表 1件 8 D34-3 单三相智能功率、功率因数表 1件 9 D51 波形测试及开关板 1件 2、屏上挂件排列顺序 D44、D33、D32、D34-3、D51、D41 图5-6 用转差法测同步发电机的同步电抗接线图 W W U V W V 1 A *** * 同步电机励磁绕组 S X Y Z A B C 同步电机电枢绕组 I P I P II +- 220V 励磁电源MG 220V 电枢电源 + -R s t

3、用转差法测定同步发电机的同步电抗X d 、X q 。 1) 按图5-6接线。同步发电机GS定子绕组用Y 形接法。校正直流测功机MG按他励电动机方式接线,用作GS的原动机。R f 选用D44上1800Ω电阻,并调至最小。R st 选用D44上180Ω电阻,并调至最大。R 选用D41上90Ω固定电阻。开关S 合向R 端。 2) 把控制屏左侧调压器旋钮退到零位,功率表电流线圈短接。检查控制屏下方两边的电枢电源开关及励磁电源开关都须在“关”的位置。 3)接通控制屏上的电源总开关,按下“开”按钮,先接通励磁电源,后接通电枢电源,启动直流电动机MG ,观察电动机转向。 4)断开电枢电源和励磁电源,使直流电机MG 停机。再调节调压器旋钮,给三相同步电机加一电压,使其作同步电动机起动,观察同步电机转向。 5)若此时同步电机转向与直流电机转向一致。则说明同步机定子旋转磁场与转子转向一致,若不一致,将三相电源任意两相换接,使定子旋转磁场转向改变。 6)调节调压器给同步发电机加5~15%的额定电压(电压数值不宜过高,以免磁阻转矩将电机牵入同步,同时也不能太低,以免剩磁引起较大误差)。 7)调节直流电机MG 转速,使之升速到接近GS 的额定转速1500 r/min ,直至同步发电机电枢电流表指针缓慢摆动(电流表量程选用0.25A 档),在同一瞬间读取电枢电流周期性摆动的最小值与相应电压最大值,以及电流周期性摆动最大值和相应电压最小值。 8)测此两组数据记录于表5-14中。 表5-14 序号 I max (A ) U min (V ) X q (Ω) I min (A ) U max (V ) X d (Ω) 1 0.075 27 207.85 0.05 28 311.78 2 0.04 15 216.51 0.03 16 307.93 计算: 4、用反同步旋转法测定同步发电机的负序电抗X 2及负序电阻r 2。 1) 将同步发电机电枢绕组任意两相对换,以改换相序使同步发电机的定子旋转磁场和转子转向相反。 2) 开关S 闭合在短接端(图示下端),调压器旋钮退至零位,功率表处于正常测量状态(拆掉电流线圈的短接线)。 min max max min 33I U X I U X d q ==

永磁同步电机参数测量试验方法

一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2a d b c d I I I I I ===- (1) 23d s d U R I = (2)

图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如 U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中为电流上升至稳态值倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短 ,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方

电机实验报告

步进电机控制报告 目录 引言 0 一系统技术指标 (1) 二总体方案 (1) 2.1 任务分析 (1) 2.2 总体方案 (1) 三硬件电路设计 (2) 3.1 单片机控制单元 (2) 3.2 nokia5110液晶显示单元 (3) 3.3 电机的选择 (4) 3.3.1 反应式步进电机(VR) (4) 3.3.2 永磁式步进电机(PM) (4) 3.3.3 混合式步进电机(HB) (4) 3.3.4 电机确定 (5) 3.4 驱动电路方案选择 (5) 3.4.1 单电压功率驱动 (5) 3.4.2 双电压驱动功率驱动 (6) 3.4.3 高低压功率驱动 (6) 3.4.4 斩波恒流功率驱动 (7) 3.4.5 集成功率驱动 (8)

3.4.6 驱动电路方案确定 (9) 3.5 键盘电路 (9) 四软件设计 (11) 五测试结果 (13) 六误差分析 (13) 七操作规范 (13)

引言 本系统是基于MSP430的步进电机控制系统,能够实现精密工作台位移、速度(满足电机的加、减速特性)、方向、定位的控制。用MSP430F449作为控制单元,通过矩阵键盘实现对步进电机转动开始与结束、转动方向、转动速度的控制。并且将步进电机的转动方向,转动速度,以及位移动态显示在LCD液晶显示屏上。硬件主要包括单片机系统、电机驱动电路、矩阵键盘、LCD显示等。

一系统技术指标 系统为开环伺服系统,执行元件为步进电动机,传动机构为丝杠螺母副。工作台脉冲当量:δ=0.01 mm /脉冲;最大运动速度=1.2m/min;定位精度=±0.01 mm;空载启动时间=25ms。 二总体方案 2.1 任务分析 本系统要求脉冲当量为δ=0.01 mm /脉冲,而工作台丝杠螺母副导程4mm,即电机转动一周需要400个脉冲,所以电机的步距选择0.9度;最大速度要求为1.2m/min(20mm/s),所以单片机输出的脉冲频率最大为2000Hz;空载启动时间为25ms,所以电机的启动频率为40Hz。 2.2 总体方案 根据系统要求,经过分析,可对MSP430F449单片机编程,实现按键控制和nokia5110液晶屏显示。由于MSP430F449的I/O的电压是3.3V,不符合L298驱动芯片的输入电压要求,固通过光耦隔离芯片TLP521-4,将I/0的3.3V 电压提升至5V,然后接进L298来控制电机的定位,加减速,正反转来实现精确系统总体框图如图1所示:

永磁同步电机双闭环矢量控制系统仿真实验指导书.doc

题目 1:永磁同步电机双闭环矢量控制系统仿真 一.实验目的 1.加深理解永磁同步电机矢量控制系统的工作原理 2.掌握永磁同步电机驱动系统仿真分析方法 二.实验要求: 1.永磁同步电机双闭环控制系统建模 2.电流控制器设计 3.电流环动态跟随性能仿真实验 4.转速控制器设计 5.转速环抗负载扰动性能仿真实验 6.给出仿真实验结果与理论分析结果的对比及结论 三.预习内容 注:以下所有找不到的器件均可以通过搜索框搜索 Simulink的启动在MATLAB中键入>>Simulink,进入Simulink library,2014 版本的可直接点击MATLAB界面上的 Simulink library,在Simulink界面上选择 File->New->Model 。如图 1 所示: 图 1 Simulink界面 在 Simulink一级标题下点击source 将 step( 阶跃函数 ) 拖入空白文件作为

转速给定,也可用两个ramp 函数相减,使转速缓慢达到预定转速,如图2: 图2 转速给定 在 Simulink一级标题下点击Ports & Subsystems 选择Subsystem 放入空白文件并双击,删除In1 和 Out1 的连线,如图 3: 图3 子函数模块 选择 Simulink>Continuous下的integrator、Simulink>discontinuous下的 Saturation、Simulink>math operation下的gain和Add,连好线后保存并返回,作为 PI 调节器,其中 saturation可设置上下限为100和-100,如图4:

交流伺服电机试验报告

实验五交流伺服电机实验一、实验设备及仪器 被测电机铭牌参数: P N=25W, U N=220V, I N=0.55A,μN=2700rpm 使用设备规格(编号): 1.MEL系列电机系统教学实验台主控制屏(MEL-I、MEL-IIA、B);2.电机导轨及测功机、转速转矩测量(MEL-13); 3.交流伺服电动机M13; 4.三相可调电阻90Ω(MEL-04); 5.三相可调电阻900Ω(MEL-03); 6.隔离变压器和三相调压器(试验台右下角) 二.实验目的 1.掌握用实验方法配圆磁场。 2.掌握交流伺服电动机机械特性及调节特性的测量方法。

三.实验项目 1.观察伺服电动机有无“自转”现象。 2.测定交流伺服电动机采用幅值控制时的机械特性和调节特性。 三相调压器输出的线电压U uw经过开关S(MEL—05)接交流伺服电机的控制绕组。 G为测功机,通过航空插座与MEL—13相连。 1.观察交流伺服电动机有无“自转”现象 测功机和交流伺服电机暂不联接(联轴器脱开),调压器旋钮逆时针调到底,使输出位于最小位置。合上开关S。 接通交流电源,调节三相调压器,使输出电压增加,此时电机应启动运转,继续升高电压直到控制绕组U c=127V。 待电机空载运行稳定后,打开开关S,观察电机有无“自转”现象。 将控制电压相位改变180°电角度,观察电动机转向有无改变。 没有自转现象。 2.测定交流伺服电动机采用幅值控制时的机械特性和调节特性 (1)测定交流伺服电动机a=1(即U c=U N=220V)时的机械特性 把测功机和交流伺服电动机同轴联接,调节三相调压器,使U c=U cn=220V,保持U f、U c电

电机实验报告一

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A-214 实验时间 :2018年12月01日 一、实验目的 1.熟悉他励直流电动机的启动、调速和改变转向的方法。 2.用实验方法测取他励直流电动机的工作特性和机械特性。 3.学习测取他励直流电动机调速特性的方法。 二、实验内容 1.他励直流电动机的启动、调速和改变转向的方法。 2.他励直流电动机额定工作点的求取和测取他励直流电动机的工作特性n =f (P 2)、 T =f (P 2)、 =f (P 2),机械特性n =f (T )。 3.测取他励直流电动机调速特性。 4.他励直流电动机的能耗制动实验。 三、实验线路 直流机电枢电源 同步机励磁电源 接触注:LDSP 为转矩/转速测量仪表 图1-1 他励直流电动机实验线路原理图 图1-2 他励直流电动机能耗制动原理图 直流机电枢电源

说明: 1.为了测量直流电机的转矩和转速大小,转矩/转速测量仪表LDSP的I a+、I a-必须串接到直流电机的电枢回路,U a+、U a-要并接到直流电机的电枢绕组两端,并且测量仪表的接线正负极性要与使用说明书中的规定一致。 2.接线时注意选择合适量程的仪表。 3.多功能表的接线详见附录二(后续实验同此)。 四、实验说明 在通电实验之前,请仔细阅读附录中有关直流电源和转矩/转速表LDSP的使用说明。 1.他励直流电动机的启动和改变转向 实验步骤: (1)请参照实验线路图1-1正确接线。检查ZDL-565多功能表为三相四线制接线方式,具体操作见附录。 (2)合上“总电源”开关,对应总电源指示灯亮,再合上“操作电源”空开,对应操作电源指示灯亮。按下“操作电源开关”合闸按钮,对应的红色指示灯亮;检查台面上所有的按钮处于断开位置,均为绿灯亮;所有数字表显示无错误。 (3)按下实验台直流机励磁电源合闸按钮,按下ZL-Ⅱ微机型直流电机励磁电源机箱面板上的“启动”按钮,面板上的“合闸”指示灯将会亮。点击“增加电压”按钮将直流电动机的励磁电压调到电机额定励磁电压值220V; (4)按下实验台直流电机电枢电源合闸按钮,点击“增加电压”按钮将电枢电压从零逐渐升高,观察“LDSP转矩/转速表”上的直流电机转速显示值,通过调节电枢电压的大小使电机的转速逐渐上升至其额定转速(约1500r/min)。启动电机时注意使电机的转向应与标定转向相同。 如果希望改变他励直流电动机的转向,只须改变电动机的电磁转矩方向,同学们自拟改变转向的方法。 2.额定工作点求取和测取他励电动机工作特性与机械特性 实验步骤: (1)实验接线参考图1-1,启动直流电动机步骤参考实验1。 (2)按下实验台同步电机励磁电源合闸按钮,点击“增加电压”按钮将同步发电机端电压逐渐升高,因为发电机以灯泡作负载,实验时其线电压不要超过额定电压380V。 (3)合上实验台交流接触器接通发电机负荷箱回路,依次将实验负荷箱上KM1~KM7按钮按下;注意每投入一组负载,需要同时调节直流电动机的电枢电压或励磁电流以便保持电动机转速为额定转速。同样,由于负荷的变化,同步发电机机端电压也会发生变化,需要随时调节同步发电机励磁电流,以保证机端电压基本不变。直流电动机的负载为同步发电机,改变同步发电机的输出功率,即可改变电动机的负载大小,电动机负载变化影响转速变化,因此需要相

永磁同步电机研究

永磁同步电机研究 一、绪论 目前,在电动汽车电驱动系统中,永磁同步电动机(PMSM)系统以其高技、高控制精度、高转矩密度、良好的转矩平稳性及低振动噪声的特点受到国外电动汽车界的高度重视,是更具竞争力的电动汽车驱动电机系统。而且,中国拥有占世界80%储量的稀土资源,发展永磁电机作为电动汽车牵引电机具有得天独厚的优势。 PMSM:permanent magnet synchronous motor 是指根据电机的反电动势进行区分定义的电机:正弦反电势的永磁同步电机。以前采用的交流传动需要一个变速齿轮机构来将电机的转距传递到轮轴上,而采用永磁同步电机可以将电机整体地安装在轮轴上,形成整体直驱系统,即一个轮轴就是一个驱动单元,省去了一个齿轮箱 优点: (1)PMSM起动牵引力大 (2)PMSM本身的功率效率高以及功率因素高; (3)PMSM直驱系统控制性能好; (4)PMSM发热小,因此电机冷却系统结构简单、体积小、噪声小; (5)PMSM允许的过载电流大,可靠性显著提高; (6)在高速范围中电机噪声明显降低; (7)系统传动损耗明显降低,系统发热量小; (8)系统采用全封闭结构,无传动齿轮磨损、无传动齿轮噪声,免润滑油、免维护; (9)整个传动系统重量轻,簧下重量也比传统的轮轴传动的轻,单位重量的功率大; (10)由于电机采用了永磁体,省去了线圈励磁,理论可节能10%以上; (11)由于没有齿轮箱,可对装向架系统随意设计:如柔式装向架、单轴转向架,使列车动力性能大大提高。

二、电动汽车电机的性能要求: 汽车行驶的特点是频繁地启动、加速、减速、停车等。在低速或爬坡时需要高转矩,在高速行驶时需要低转矩。电动机的转速范围应能满足汽车从零到最大行驶速度的要求,即要求电动机具有高的比功率和功率密度。电动汽车电动机应满足的主要要求可归纳为如下10个方面: (1) 高电压。在允许的范围内,尽可能采用高电压,可以减小电动机的尺寸和导线等装备的尺寸,特别是可以降低逆变器的成本。工作电压由THS的274 V提高到THS B的500 V;在尺寸不变的条件下,最高功率由33 kW提高到50 kW,最大转矩由350 N"m提高到400ON"m。可见,应用高电压系统对汽车动力性能的提高极为有利。 (2)转速高。电动汽车所采用的感应电动机的转速可以达到8 000一12 000 r/min,高转速电动机的体积较小,质量较轻,有利于降低装车的装备质量。(3)质量轻,体积小。电动机可通过采用铝合金外壳等途径降低电动机的质量,各种控制装置和冷却系统的材料等也应尽可能选用轻质材料。电动汽车驱动电动机要求有高的比功率(电动机单位质量的输出功率)和在较宽的转速和转矩范围内都有较高的效率,以实现降低车重,延长续驶里程;而工业驱动电动机通常对比功率、效率及成本进行综合考虑,在额定工作点附近对效率进行优化。(4)电动机应具有较大的启动转矩和较大范围的调速性能,以满足启动、加速、行驶、减速、制动等所需的功率与转矩。电动机应具有自动调速功能,以减轻驾驶员的操纵强度,提高驾驶的舒适性,并且能够达到与内燃机汽车加速踏板同样的控制响应。 (5)电动汽车驱动电动机需要有4一5倍的过载,以满足短时加速行驶与最大爬坡度的要求,而工业驱动电动机只要求有2倍的过载就可以了。 (6)电动汽车驱动电动机应具有高的可控性、稳态精度、动态性能,以满足多部电动机协调运行,而工业驱动电动机只要求满足某一种特定的性能。 (7)电动机应具有高效率、低损耗,并在车辆减速时,可进行制动能量回收。 (8)电气系统安全性和控制系统的安全性应达到有关的标准和规定。电动汽车的各种动力电池组和电动机的工作电压可以达到300 V以上,因此必须装备高压保护设备以保证安全。

电机学实验报告

湖北理工学院 实验报告 课程名称: 专业: 班级: 学号: 学生姓名: 电气与电子信息工程学院

实验一 直流电动机的运行特性 实验时间: 实验地点: 同组人: 一、实验目的: 1、掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2、掌握直流并励电动机的调速方法。 二、预习要点 1、如何正确选择使用仪器仪表。特别是电压表电流表的量程。 2、直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? 不串接会产生什么严重后果? 3、直流电动机起动时,励磁回路串接的磁场变阻器应调至什么位置? 为什么? 若励磁回路断开造成失磁时,会产生什么严重后果? 4、直流电动机调速及改变转向的方法。 三、实验主要仪器与设备: 序号 型 号 名 称 数 量 1 DD03 导轨、测速发电机及转速表 1台 2 DJ23 校正直流测功机 1台 3 DJ15 直流并励电动机 1台 4 D31 直流电压、毫安、电流表 2件 5 D42 三相可调电阻器 1件 6 D44 可调电阻器、电容器 1件 7 D51 波形测试及开关板 1件 四、实验原理 工作特性:电源电压一定,励磁电阻一定时,η、n 、T em =f(P 2)的关系曲线。 (一)并励电动机 (U N I fN 条件下)(并励电动机励磁绕组绝对不能断开) 1. 速率特性n=f(P 2) φ e a a C R I U n -= 转速调整率 %1000?-= ?N N n n n n

02020260 2T n P T P T T T em +=+Ω = +=π 3. 效率特性η=f(P 2) (75~95)% 实验原理图见图1-1 图1-1 直流并励电动机接线图 五、实验内容及步骤 1、实验内容: 工作特性和机械特性 保持U=U N 和I f =I fN 不变,测取n 、T 2、η=f (I a )、n=f (T 2)。 2、实验步骤: (1)并励电动机的工作特性和机械特性 1)按图1-1接线。校正直流测功机 MG 按他励发电机连接,在此作为直流电动机M 的负载,用于测量电动机的转矩和输出功率。R f1选用D44的1800Ω阻值。R f2 选用D42的900Ω串联900Ω共1800Ω阻值。R 1用D44的180Ω阻值。R 2选用D42的900Ω串联900Ω再加900Ω并联900Ω共2250Ω阻值。 2)将直流并励电动机M 的磁场调节电阻R f1调至最小值,电枢串联起动电阻R 1调至最大值,接通控制屏下边右方的电枢电源开关使其起动,其旋转方向应符合转速表正向旋转的要求。 3)M 起动正常后,将其电枢串联电阻R 1调至零,调节电枢电源的电压为220V ,调节校正直流测功机的励磁电流I f2为校正值(50mA 或100 mA ),再调节其负载电阻R 2和电动机的磁场调节电阻R f1,使电动机达到额定值:U =U N ,I =I N ,n =n N 。此时M 的励磁电流I f 即为额定励磁电流I fN 。 4)保持U =U N ,I f =I fN ,I f2为校正值不变,逐次减小电动机负载。测取电动机电枢输入电流I a ,转速n 和校正电机的负载电流I F 。 表1-1 U =U N = 220 V I f =I fN = 100 mA I f2= 81.4 mA

昆明理工大学电气工程及其自动化 发电机同步实验报告

实验二:同步发电机综合实验 三相同步发电机并网运行 一、 实验目的 1、学习三相同步发电机投入并网运行的方法。 2、测试三相同步发电机并网运行条件不满足时的冲击电流。 3、研究三相同步发电机并网运行时的静态稳定性。 4、测试三相同步发电机突然短路时的短路电流。 二、 实验原理 1. 同步发电机的并网运行 发电机与电网是否符合下列条件: a 、双方应有相同的相序; b 、双方应有相同的电压; c 、双方应有相同或接近相同的频率; d 、双方应有相同的电压初相位。 在实际并网中,这些条件并不要求完全达到,只要在一定的 误差范围之内就可以进行并网,比如转速(频率)相差约??(2%~5%)。 总之,在并车的时候必须避免产生巨大的冲击电流,以防止同步电机损坏,避免电力系统受到严重的干扰。 2. 同步发电机的静态稳定性 发电机输出的电磁功率与功角的关系为: 静态稳定的条件用数学表达为0>??δM P ,我们称δ ??M P 为比整步功率,又称为整补功率系数,其大小可以说明发电机维护同步运行的能力,既说明静态稳定的程度,用P ss 表示。

δ角越小,P ss 数值越大,发电机越稳定。由δ d dP E 和P E 可知,当δ小于90°时,δ d dP E 为正值,在这个范围内发电机的运行是稳定的,但当δ愈接近90°,其值愈小,稳定的程度越低。当δ等于90°时,是稳定和不稳定的分界点,称为静态稳定极限。在所讨论的简单系统情况下,静态稳定极限所对应的功角正好与最大功率或称功率极限的功角一致。对应的o 90=δ时达到静态稳定功率极限。为了安全可靠,极限功率应该比额定功率大一定的倍数,即发电机的额定运行点都远低于稳定极限,以保持有足够的静稳定储备。P em 与P en 之比称为静过载能力K m ,即: 一般要求K m >1.7,也可以说发电机带额定有功负荷运行时静态稳定储备应该在70% 以上,因此额定功角n δ一般应该是30°左右。 三、 实验线路 四、 实验结果及分析 a 、 在短路器断开的情况下,测出电网和发电机的电压波形,找到并联条件满 足的点,确定并网的时间,进行并网实验,测试并网时的冲击电流; 实验参数: 图1:励磁电流图2:相位 实验结果: 图3:电网与发电机的电压波形图4:调整后的电网与发电机电压波形 图5:并网时间图6:冲击电流波形 b 、 调整发电机的运行条件,分别在初相位不同和电压幅值不同时,进行并网 实验,测试并网时的冲击电流 实验参数: 图7:相位不同,幅值相同图8:并网时间 实验结果:

三相永磁同步电机实验

实验三三相永磁同步电机实验 一、实验目的 1、掌握三相永磁同步电机结构特点 2、掌握三相永磁同步电机工作原理 3、掌握三相永磁同步电机运行特性 二、预习要点 1、三相永磁同步电机的工作原理 2、三相永磁同步电机的运行特性 三、实验项目 1、测量定子绕组的冷态电阻。 2、速度—频率n=f(f)测试 3、压频—转矩特性的测定 4、测取三相永磁同步电机在工频下的工作特性。 四、实验方法 1 2、屏上挂件排列顺序 HK91 3、测量定子绕组的冷态直流电阻。 将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。

(1) 伏安法 测量线路图为图3-1。直流电源用主控屏上电枢电源先调到50V。开关S选用D51挂件上的双刀双掷开关,R用1800Ω可调电阻。 图3-1 三相交流绕组电阻测定 量程的选择:测量时通过的测量电流应小于额定电流的20%,约为50毫安,因而直流电流表的量程用200mA档,直流电压表量程用20V档。 按图3-1接线。把R调至最大位置,合上开关S,调节直流电源及R阻值使试验电流不超过电机额定电流的20%,以防因试验电流过大而引起绕组的温度上升,读取电流值,再读取电压值。 调节R使A表分别为50mA,40mA,30mA测取三次,取其平均值,测量定子三相绕组的电阻值,记录于表3-1中。 4、速度—频率n=f(f)测试 (1) 按图3-2接线。电机绕组为Y接法,直接与涡流测功机同轴联接。

图3-2 速度—频率n=f(f)测试接线图 (2) 按下控制屏上的“启动”按钮,把交流调压器调至电压380V,首先按下变频器上的PU/EXT按钮,调节左侧旋钮使频率显示为零,然后按下RUN使电机运转起来,然后调节变频器左侧旋钮既可调节频率从而改变转速。观察电机旋转方向,每10H Z记录电机转速,(涡流测功机不加载)将得到的数据记录表3-2中。 5、压频—转矩特性的测定 (1) 测量接线图同图3-2,调节变频频率为10 Hz,调节涡流测功机加载,达到额定转矩 T N= 1.15N.m并保持不变。然后调节变频器旋钮,测取不同频率对应的电压值将数据记录于表3-3中。 比较带负载与不带负载时的压频特性曲线。 6、测取三相永磁同步电机在工频下的工作特性 (1)测量接线图同图3-3,同轴联接测功电机。

电机学实验报告

电机学实验报告 学院:核技术及其自动化工程专业:电气工程及其自动化 教师:黄洪全 姓名:许新 学号:200706050209

实验一异步电机的M-S曲线测绘 一.实验目的 用本电机教学实验台的测功机转速闭环功能测绘各种异步电机的转矩~转差曲线,并加以比较。 二.预习要点 1.复习电机M-S特性曲线。 2.M-S特性的测试方法。 三.实验项目 1.鼠笼式异步电机的M-S曲线测绘测。 2.绕线式异步电动机的M-S曲线测绘。 >T m, (n=0) 当负载功率转矩 当S≥S m 过读取不同转速下的转矩,可描绘出不同电机的M-S曲线。

四.实验设备 1.MEL 系列电机系统教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(MEL-13、MEL-14)。 3.电机起动箱(MEL-09)。 4.三相鼠笼式异步电动机M04。 5.三相绕线式异步电动机M09。 五.实验方法 1 被试电动机M04法。 G 功机,与按图线,实验步骤: (1)按下绿色“闭合”按钮开关,调节交流电源输出调节旋钮,使电压输出为220V ,起动交流电机。观察电机的旋转方向,是之符合要求。 (2)逆时针缓慢调节“转速设定”电位器经过一段时间的延时后,M04电机的负载将随之增加,其转速下降,继续调节该电位器旋钮电机由空载逐渐下降到200转/分左右(注意:转速低于200转/分时,有可能造成电机转速不稳定。) (3)在空载转速至200转/分范围内,测取8-9组数据,其中在最大转矩附近多测几点,填入表5-9。

(4)当电机转速下降到200转/分时,顺时针回调“转速设定”旋钮,转速开始上升,直到升到空载转速为止,在这范围内,读出8-9组异步电机的转矩T,转速n,填入表5-10。 2.绕线式异步电动机的M-S曲线测绘

川大电力系统自动装置实验报告

同步发电机并车实验 一、实验目的 1、加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2、熟悉同步发电机准同期并列过程; 3、观察、分析有关波形。 二、原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的越前时刻送出合闸脉冲。 三、实验项目、方法及过程 (一)机组启动与建压 1、检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0 位置; 2、合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯 熄。调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在 并网后显示控制量(左)和功率角(右)。调速器上“并网”灯和“微机故障” 灯均为熄灭状态,“输出零”灯亮; 3、按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮; 4、励磁调节器选择它励、恒UF运行方式,合上励磁开关; 5、把实验台上“同期方式”开关置“断开”位置; 6、合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V; 7、合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动

永磁同步电机的建模与仿真

研究生设计性实验论文 题目永磁同步电机的建模与仿真 专业机械工程课程名称、代码新能源汽车关键技术年级 2 013级姓名 学号 2131170103 时间 2014 年 1 月 任课教师成绩

永磁同步电机的数学建模与仿真 1. 永磁同步电机建模的流程图 2. 坐标变换的基本原理 电机控制中的坐标系有两种,一种是静止坐标系,一种是旋转坐标系。 (1)三相定子坐标系(A, B, C坐标系) 如图2-3所示,三相交流电机绕组轴线分别为A,B,C,彼此之间互差120度空间电角度,构成了一个A-B-C三相坐标系。空间任意一矢量V在三个坐标上的投影代表了该矢量在三个绕组上的分量。 (2)两相定子坐标系(α一β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α一β坐标系,它的α轴和三相定子坐标系的A轴重合,β轴逆时针超前α轴90度空间电角度。由于轴固定在定子A相绕组轴线上,所以α一β坐标系也是静止坐标系。 (3)转子坐标系(d-q坐标系) 转子坐标系d轴位于转子磁链轴线上,q轴逆时针超前d轴90度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d轴是转子磁极的轴线。永磁同步电机的空间矢量图如图2-3所示。 图中A、B、C为定子三相静止坐标系,选定α轴方向与电机定子A相绕组轴线一致,α-β为定子两相静止坐标系,转子坐标系d-q与转子同步旋转;θ为转子磁极d轴相对定子A相绕组或a轴的转子空间位置角;δ为定、转子磁链矢量

s ψ 、f ψ间夹角,即电机功角[8 ,9]。 图1静止两相坐标系到旋转两相坐标系变换 图2 坐标变换矢量图 从三相定子坐标系(A,B,C坐标系)变换到静止坐标系(α,β坐标系)的关系式为: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - = ? ? ? ? ? ? c b a ? ? ? ? ? β α 2 3 2 1 2 3 2 1 1 3 2 (2-1) 从两相静止坐标系(α,β坐标系)变换到两相旋转坐标系(d,q坐标系)的关系式为: ? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? β α ? ? θ θ θ θ ? ? cos sin sin cos q d(2-2)从两相旋转坐标系(d,q坐标系)变换到两相静止坐标系(α,β坐标系)的关系式为:

电机与拖动实验实验报告

网络教育学院 电 机 与 拖 动 实 验 报 告 学习中心: 陕西礼泉奥鹏学习中心 层 次: 专升本 专 业: 电气工程及其自动化 学 号: 1 学 生: 刘 洁 完成日期: 2017 年 2 月 27 日 实验报告一 实验名称: 单相变压器实验 实验目的: 1、通过空载和短路实验测定变压器的变比和参数。 2、通过负载实验测取变压器的运行特性。 实验项目: 1、空载实验 测取空载特性0000U =f(I ), P =f(U ) 。 2、短路实验 测取短路特性 k k k U =f(I ), P =f(I) 。 3、负载实验 保持11N U =U , 2cos 1 ?=的条件下,测取22U =f(I ) 。 (一)填写实验设备表

(二)空载实验 1.填写空载实验数据表格表1-1

2. 根据上面所得数据计算得到铁损耗Fe P 、励磁电阻m R 、励磁电抗m X 、电压比k 表1-2

(三)短路实验 1.填写短路实验数据表格 表2 室温θ=25O C (四)负载实验 1. 填写负载实验数据表格 cos =1 U1=U N=110V 表3 2

I (A) 2 (五)问题讨论 1. 什么是绕组的同名端? 答:铁心上绕制的所有线圈都被铁心中交变的主磁通所穿过在任意瞬间当变压器一个绕组的某一出线端为高电位时则在另一个绕组中也有一个相对应的出线端为高电位那么这两个高电位如正极性的线端称同极性端而另外两个相对应的低电位端如负极性也是同极性端。即电动势都处于相同极性的线圈端就称为绕组的同名端。 2. 为什么每次实验时都要强调将调压器恢复到起始零位时方可合上电源开关或断开电源开关? 答:主要是为了防止在高压下合闸产生产生较大的冲击损坏设备。其次是因为既然需要调压器对负载进行调压,那么调压器后面的负载情况就是一个不确定因素,就不能事先预料在较高电压下负载可能情况。因此,就需要从低电压慢慢调高电压,观察负载的情况。而断开电源时,如果负载时隔较大的感性负载,那么在高压状况下突然停电会产生很高的感应电势。 3. 实验的体会和建议 答:体会:安全在实验中非常重要要注意调压器的及时调零。实验数据记录间隔相同的一段数据。使得实验结果比较有普遍性。 建议:数据结果可以用图表显示。

相关文档
最新文档