矩形波三角波发生器

矩形波三角波发生器
矩形波三角波发生器

(封面)

天津理工大学中环信息学院

电子技术课程设计

设计题目:矩形波、三角波发生器

姓名:薄一慧学号:12050095

系别:电子信息工程系专业班级:通信工程2班

开始日期:2014年6月9日完成日期:2014年6月20日

指导教师:彭利标成绩评定等级

天津理工大学中环信息学院

课程设计任务书

系别:电子信息工程系班级:12 通信工程2班姓名:薄一慧学号:12050095

本表附在课程设计说明书的目录之后。

天津理工大学中环信息学院

课程设计成绩评定表

系别:电子信息工程系班级:12 通信工程2班姓名:薄一慧学号:12050095

本表附在课程设计任务书之后。

目录

一、设计意义 (4)

1.1、任务 (4)

1.2、完成措施 (4)

二、设计方案比较 (4)

2.1、方波-三角波的产生方案 (4)

(1)滞回电压比较器 (4)

(2)方波三角波发生器 (7)

2.2、方波-三角波的产生方案二 (8)

(1)由集成运放构成的三角波—方波发生器原理图 (8)

(2)由集成运放构成的三角波—方波发生器输出波形 (8)

三、电路组成框 (10)

3.1、方波-三角波发生电路组成框图 (10)

3.2、方波形成的工作原理 (10)

四、电路原理图 (12)

4.1、方波-三角波发生器的电路原理图 (12)

4.2、方波-三角波发生器的元件清单 (12)

五、组装及技术指标及仿真 (13)

5.1、输出方波的仿真 (13)

六、总结 (14)

一、设计意义

众所周知,制作函数发生器的电路有很多种。本次设计采用的电路是基于运放的试验电路。由理论分析知,电压比较器可以产生方波,积分电路可以产生三角波,三角波再经过差动放大器可以产生正弦波。向电压比较器输入三角波就可以产生方波,于是可以将积分电路的输出作为电压比较器的输入。各种波形频率段的调整可以由外电路的改变来实现。它的成本不高,电路简单,使用方便,有效地节省了人力,物力资源,具有实际的应用价值。波形发生器广泛的用于各大院校和科研场所。随着科学的进步,生活会的进步,、社会的发展,单一的波形发生器已经不能满足人们的要求,而卧们设计的正式多种的波形发生器,本实验运放来组成积分电路,滞回电压比较器来实现三角波、方波的输出。本次课程设计是要求做一个能够产生方波-三角波-正弦波的函数发生器。

1.1、任务

1、首先要三角波的输出。最后进行方波和三角波的同时输出。 3、对电路图分进行析设计好信号发生器的原理图,进行方波的产生。

2、然后再器原理并进行实际的操作。

1.2、完成措施

利用Multisim 进行仿真。

二、设计方案比较

本设计选两个方案进行比较,如下: 2.1方波-三角波的产生方案一

(1)、 滞回电压比较器

图2-1为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2

和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有

21o

1in 22

1o

2

in 1p 111

1R R u R u R R R u R u R u ++=++=

根据翻转条件,令上式右方为零,得此时的输入电压:

th Z 2

1

o 21in U U R R u R R u ==-=

U th 称为阈值电压。滞回电压比较器的直流传递特性如图2-2所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。

图2-1 滞回电压比较器

图2-2 滞回电压比较器的直流传递特性

如果给图2-1所示电路输入三角波电压,其幅值大于U th ,设t = 0时,u o= -U Z ,其输出波形如图2-3所示。可见,输出为方波。

图2-3 输入为三角波时滞回电压比较器的输出波形

(2)、方波三角波发生器:

给图2-1所示的滞回电压比较器级联一积分器,再将积分器的输出作为比较器的输入,如图2-4所示。

由于积分器可将方波变为三角波,而比较器的输入又正好为三角波,因此可定性判断出,图2-4电路的输出电压uo1为方波,uo2为三角波,如图2-5所示。

下面分析其振荡周期。

图2-4 方波—三角波发生器

积分器输出电压从-Uth 增加到

+Uth 所需的时间为振荡周期T 的一半,由积分器关系式

?+---=2

Z th th 00d )(1T

t t t

U RC U U

214R RCR T =

振荡频率则为

1241RCR R T f =

=

方波-三角波发生器输出的波形则如下图2-5所示.

2.2、方波-三角波产生的方案二

(1)、由集成运放构成的三角波—方波发生器原理图

在图2-7所示的电路中,第一级A

1组成迟滞电压比较器,输出电压u

o1

为对称的方

波信号。第二级A

2

组成积分器,输出电压u。为三角波信号。

设稳压管的稳压值为U

z ,则电压比较器输出的高电平为+U

z

,低电平为-U

z

,由图2-7

可得,A

1

同相端的电压为:

由于此电压比较器的u=0,令u

=0,则可求得电压比较器翻转时的上、下门限电位则门限宽度为:

(2)、由集成运放构成的三角波—方波发生器输出波形

图2-8 由集成运放构成的三角波-方波发生器输出波形

在图2-7所示的电路中,第一级A

1组成迟滞电压比较器,输出电压u

o1

为对称的方

波信号。第二级A

2

组成积分器,输出电压u。为三角波信号。

设稳压管的稳压值为U

z ,则电压比较器输出的高电平为+U

z

,低电平为-U

z

,由图2-7

可得,A

1

同相端的电压为:

由于此电压比较器的u=0,令u

=0,则可求得电压比较器翻转时的上、下门限电

位则门限宽度为:

比较器输出±U

z

经电位器RP分压后,加到积分器的反相输人端。设分压系数为n,

则积分器输入电压为±nU

z

,反相积分器的输出电压为:

方波和三角波的周期为:

方波和三角波的频率为:

结论:

由以分析可知,改变U z可改变输由电压u01,U0的幅度改变R1/R2的比值,可改方波、三角波的周期或频率,同时影响三角波输出电压的幅度,但不影响方波输出电压的幅度;改变而和R.C,可改变频率,而不影响输出电压的幅度。

根据上述比较的两种方案中第一种方案的滞回比较器与积分器的级联操作更加简单所以选择方案一。

三、电路组成框图

结合设计原理画出组成框图如下所示:

3.1、方波-三角波发生电路组成框图

由RC振荡电路比较电路出现方波的产生,方波产生后积分电路出现三角波产生,框图如下:

3-1方波-三角波发生电路组成框图

3.2、方波形成的工作原理

图3-2 方波形成原理图

图3-2 滞回电压比较器的直流传递特性

因为方波电压只有两种状态,不是高电平、就是低电平。所以电压比较器是它的重要组成部分。它由反相输入的滞回比较器和RC电路组成。RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现使输出状态自动地相互转换。

四、电路原理图

画出原理图并列出原件清单并说明。 4.1方波-三角波发生器的电路原理图 如图4-1所示

图4-1 方波-三角波发生器原理图

积分器输出电压从-Uth 增加到+Uth 所需的时间为振荡周期T 的一半,由积分器关系式:

?+---=2

Z th th 00d )(1T

t t t

U RC U U

214R RCR T =

振荡频率则为

1241RCR R T f =

=

4.2方波-三角波发生器的元件清单

方波-三角波发生器的元件清单想请如表一所示,有电容、uA741、电阻、双向稳压二极管组成。

表1 元件清单

五、组装及技术指标测试

运用电路仿真元件仿真,从元件库中调出所需原件,按照原理图连接好。

由于电压比较器与积分器组成正反馈闭环电路,同时输出方波与三角波,故这两个单元电路可以同时安装。如果电路接线正确,则在接通电源后,比较器的输出VO1为方波,积分器的输出VO2为三角波。然后的到的仿真图如下图5-1所示。

图5-1方波与三角波发生器的仿真波形

误差分析:仿真软件的元器件值不可能绝对的精确造成仿真结果会有一定的非可见误差,另外参数的设置问题以及小数点的取舍都是影响结果的因素,而且人眼观察也是有一定的误差的,因此仿真结果会与理论值有一定差别也是可以允许的。

六、总结

在这次试验中,让我深刻的感受到我所学知识的不足,设计一个很完整的电路,需要不断的尝试摸索,这在很大程度上提高了我考虑问题的全面性。设计完整的电路,还要考虑到它什么功能需要什么电路来实现。另外,还要考虑它的可行性,实用性等等。这样,也提高了我分析问题的能力。通过这次设计,我的理论知识上升到了一个实践的过程,我们需要多训练实际动手操作,增强我们的动手能力。

通过对函数发生器的设计,我还深刻的认识到了“理论联系实际”的这句话的重要性与真实性。而且通过对此课程的设计,我不但知道以前不知道的知识,而且也巩固了以前知道的知识。最重要的是在实践中理解了书本上的知识,明白了学以致用的真谛。同时我也明白了老师为什么要求我们做好这个课程设计的原因。

基于51单片机的波形发生器的设计讲解

目录 1 引言 (1) 1.1 题目要求及分析 (1) 1.1.1 示意图 (1) 1.2 设计要求 (1) 2 波形发生器系统设计方案 (2) 2.1 方案的设计思路 (2) 2.2 设计框图及系统介绍 (2) 2.3 选择合适的设计方案 (2) 3 主要硬件电路及器件介绍 (4) 3.1 80C51单片机 (4) 3.2 DAC0832 (5) 3.3 数码显示管 (6) 4 系统的硬件设计 (8) 4.1 硬件原理框图 (8) 4.2 89C51系统设计 (8) 4.3 时钟电路 (9) 4.4 复位电路 (9) 4.5 键盘接口电路 (10) 4.7 数模转换器 (11) 5 系统软件设计 (12) 5.1 流程图: (12) 5.2 产生波形图 (12) 5.2.1 正弦波 (12) 5.2.2 三角波 (13) 5.2.3 方波 (14) 6 结论 (16) 主要参考文献 (17) 致谢...................................................... 错误!未定义书签。

1引言 1.1题目要求及分析 题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。 1.1.1示意图 图1:系统流程示意图 1.2设计要求 (1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。 (2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。 (3) 系统具有存储波形功能。 (4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。 (5) 系统输出波形幅度范围0~5V。 (6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师

二〇一二年七月 模拟电子技术课程设计指导书 一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1 课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。

2.2 课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3 技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调; (3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。

方波_三角波_正弦波_锯齿波发生器

X X X X X X X大学 课程设计报告 课程名称:电子技术基础 设计题目:方波三角波正弦波锯齿波函数发生器 系别: 专业: 班级: 学生姓名: 学号: 同组同学: 学号: 指导教师: XXXX大学XXXX学院 XXXX年月日

摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路

目录 · 设计要求 (1) 1.前言 (1) 2方波、三角波、正弦波发生器方案 (2) 2.1原理框图 (2) 3.各组成部分的工作原理 (3) 3.1方波发生电路的工作原理 (3) 3.2方波--三角波转换电路的工作原理 (4) 3.3三角波--正弦波转换电路的工作原理 (5) 3.4方波—锯齿波转换电路的工作原理 (6) 3.5总电路图 (7) 4.用Multisim10电路仿真 (8) 4.1输出方波电路的仿真 (8) 4.2三角波电路的仿真 (9) 4.3正弦波电路的仿真 (10) 4.4锯齿波电路的仿真 (11) 5实验总结 (11) 6.仪器仪表清单 (13) 7.参考文献 (13) 8.致谢 (13)

方波-三角波-正弦波-锯齿波发生器

方波-三角波-正弦波-锯齿波发生器

电子工程设计报告

目录 设计要求 1.前言 (1) 2方波、三角波、正弦波发生器方案 (2) 2.1原理框图 (2) 3.各组成部分的工作原理 (3) 3.1方波发生电路的工作原理 (3) 3.2方波--三角波转换电路的工作原理 (4) 3.3三角波--正弦波转换电路的工作原理 (6) 3.4方波—锯齿波转换电路的工作原理 (7) 3.5总电路图 (8)

方波—三角波—正弦波函数信号发生器 摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路 设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在0.02-20KHz范围内且连续可调; 1.前言 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实

多波形信号发生器设计 电子技术课程设计

湖南文理学院课程设计报告 课程名称:电子技术课程设计 教学院部:电气与信息工程学院 专业班级:通信工程08101班 学生姓名:林洪湖(200816020143) 指导教师:邱德润 完成时间:2010 年6月25日 报告成绩:

目录 1.绪论 (3) 信号发生器现状 (3) 2.系统设计 (3) 控制芯片的选择 (4) 3.硬件电路的设计 (4) 3.1基本原理: (4) 3.2各部分电路原理 (8) 4.软件设计 (14) 4.1主程序流程图 (14) 4.2子程序流程图 (15) 5.测试结论 (18) 5.1软件仿真结果 (19) 5.2硬件测试结果 (21) 参考文献 (21)

多波形信号发生器设计 1.绪论 1.1信号发生器现状 波形发生器亦称函数发生器,作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。 信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。一旦工作需求功能有增加,则电路复杂程度会大大增加。 本次用要用到的有函数发生器5G8038、集成振荡器E1648、集成定时器555/556. 2.系统设计 2.1系统方案 方案:采用函数信号发生器5G8038集成模拟芯片,它是一种可以同时产生方波、三角波、正弦波的专用集成电路。但是这种模块产生的波形都不是纯净的波形,会寄生一些高次谐波分量,采用其他的措施虽可滤除一些,但不能完全滤除掉。

三角波发生器实验

XXXX XXXX 一、设计方案与原理 图一三角波发生器电路图(Multisim) 图一为电路设计方案。电路结构分为两部分,左侧电路为迟滞比较器能在R3右端形成方波信号;右端电路为积分电路,即对方波信号进行积分得到三角波信号。 以下对照图一再次说明下书上写的三角波发生器原理。运放A1(左侧)输入端无信号,输出端Uo1随机输出高电位或低电位。设先输出高电位(在稳压器的作用下,高电位数值较恒定),则高电位接于电阻R4左侧,由于运放A2(右侧)反相输入端虚地(以理想运放为分析 模型)。因此流入电容C1的电流 f i表达式: 1 4 o f U i R = (1-1) R4右端接入的是反相输入端,所以电容的电流与电压关系: 1 141 11 O f O U i dt U dt C R C =-=- ? ?? (1-2)故当Uo1为高电位时,Uo由初始零电位呈斜率为负的直线下降。另用叠加法得如下关系: 12 11 1212 O O R R U U U R R R R + =+ ++ (1-3) 当U1+随Uo的减小恰好越过0V时,运放A1输出电位Uo1转为低电位,故Uo开始呈斜率为正的直线上升,直到U1+随Uo上升为0V,此时Uo由负转正。如此循环下去,就形成了输出端电位Uo变化呈三角波形式。 二、实验步骤及结果

实验步骤: 1. 用multisim 搭建电路,运行结果得到图像及数据 2. 理论计算出各数据并与实验值比较 3. 对实验室搭建的实际电路得出的数据进行分析。 仿真及理论结果: Multisim 得出的输出三角波Uo 及方波Uo1图像如下: 图二 Multisim 仿真得出的输出三角波图像 对于理论计算,有如下公式(同实验指导书): *1/2t z U U R R = (2-1) 4*1*4*C/R 2T R R = (2-2) 2/(4*R1*R 4*C)f R = (2-3) 三角波 周期(ms) 频率(Hz) 幅值(V) 理论计算结果 227 Multisim 仿真结果 215 表一 三角波数据理论值与Multisim 仿真值比较 可看出理论值与仿真值比较接近。 实验得出的实际电路结果分析: 周期 频率 幅值 对照(2-1)、(2-2)、(2-3)理论计算公式,由于电路电阻及电容的数值在仿真及实验室实际电路中是一样的,故周期和频率与仿真结果较接近。而三角波的幅值受到稳压器稳压值的影响,故实验室实际电路数据与理论值及仿真值有较大差别。 三、拓展分析

方波_三角波波形发生器的设计说明

模拟电子技术课程设计报告 题目名称:方波-三角波波形发生器 姓名: 学号: 班级:

目录 摘要---------------------------------------------------------------------2 关键词------------------------------------------------------------------2 一设计任务与要求--------------------------------------------------2 1.1设计任务-----------------------------------------------------------------------------------2 1.2 设计要求----------------------------------------------------------------------------------2 二电路设计----------------------------------------------------------2 2.1 方案设计与论证-------------------------------------------------------------------------2 2.2 电路设计原理----------------------------------------------------------------------------3 2.2.1 电路原理框图-------------------------------------------------------------------------3 2.2.2 单元电路设计与计算说明----------------------------------------------------------3 2.3 原理图

简易矩形波发生器报告

数字电路设计研讨 --简易矩形波信号发生器 姓名:尹晨洋 学号:13211023 班级:通信1301 同组成员:程永涛 学号:13211007 指导老师:任希

目录 一、综述************************************************************ 1 二、电路元件结构及工作原理***************************** 1 1)、555计数器******************************************************** 1 2)、74ls160同步计数器************************************************ 2 3)、74ls175 4位寄存器************************************************* 4三、频率可调的矩形波发生器***************************** 4 1)、频率可调的矩形波发生器电路图仿真电路图******************************* 4 2)、频率可调的矩形波发生器工作原理分析*********************************** 4 3)、仿真结果分析******************************************************** 5四、可显示频率计数器***************************************** 6 1)、可显示频率计数器仿真电路图******************************************** 6 2)、工作原理分析********************************************************* 6 3)、仿真结果分析********************************************************** 7 4)、实验误差************************************************************** 9 五、总结与体会************************************************** 9 六、参考文献*******************************************************

多种波形发生器的设计与制作

课题三 多种波形发生器的设计与制作 方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。 1、 设计任务 设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。 图3-3-1 波形图 设计要求: ⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。 ⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。 ⑶ 只允许采用通用器件,如集成运放,选用F741。

要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。 2、设计方案的选择 由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。属于环形多种波形发生器,原理框图可用3-3-2表示。 图3-3-2 多种波形发生器的方框图 仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。三角波可由方波通过积分电路来实现,选用一个积分电路来完成。图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。由上,可进一步将图3-3-2的方框图进一步具体化,如图3-3-3所示。 图3-3-3 多种波形发生器实际框图 器件选择,设计要求中规定只能选用通用器件,由于波形均有正、负电平,应选择由正、负电源供电的集成运放来完成,考虑到重复频率为100Hz(10ms),故选用通用型运放F741(F007)或四运放F324均可满足要求。本设计选用F741。其管脚排列及功能见附录三之三。

方波-三角波产生电路的设计.

方波-三角波产生电路的设计 1 技术指标 设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz ,方波脉冲幅度为6-6.5V ,三角波为1.5-2V ,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL 与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC 电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC 积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。1U 构成迟滞比较器,用于输出方波;2U 构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位p V 由1O V 和2O V 决定。利用叠加定理可得: 21211211211) ()(O V V O V P V R R R R R V R R R R V ?++++?++= 当0>P V 时,U1输出为正,即Z O V V +=1 当0

方波-三角波波形发生器设计

电子技术课程设计 题目方波、三角波信号发生器 学院名称电气工程学院 指导教师 职称 班级自动化071班 学号 学生姓名 2009年01 月14日

目录 摘要---------------------------------------------------------------------------2 关键词------------------------------------------------------------------------2 一、设计任务与要求------------------------------------------------------2 1.1 设计任务------------------------------------------------------------------------------2 1.2 设计要求-----------------------------------------------------------------------------2 二、方案设计与论证------------------------------------------------------3 2.1 方案一--------------------------------------------------------------------------------3 2.2 方案二--------------------------------------------------------------------------------3 2.3 两种方案比较------------------------------------------------------------------------4 三、单元电路设计与参数计算------------------------------------------4 3.1 方波产生电路-----------------------------------------------------------------------4 3.2 三角波发生电路--------------------------------------------------------------------5 3.3 参数计算------------------------------------------------------------------------------5 四、仿真过程仿真结果----------------------------------------------------5 4.1仿真调试输出波形-------------------------------------------------------------------5 4.2 调试输出波形------------------------------------------------------------------------6 4.3 数据记录------------------------------------------------------------------------------6 五、总原理图及元件清单------------------------------------------------7 5.1 电路设计原理------------------------------------------------------------------------7 5.2 总原理图------------------------------------------------------------------------------7 5.3 PCB图-------------------------------------------------------------------------------7 5.4 元件清单------------------------------------------------------------------------------8 六、电路调试与分析------------------------------------------------------8 6.1 电路的装调--------------------------------------------------8 6.2 调试结论------------------------------------------------------------------------------8 6.3 误差分析------------------------------------------------------------------------------9 七、设计心得---------------------------------------------------------------9 八、参考文献---------------------------------------------------------------9

矩形波发生器的设计

目录 第一章概述 (1) 第二章设计原理及思路 (1) 2.1 占空比可调的矩形波发生电路 (1) 2.1.1 电路组成及工作原理 (1) 2.1.2 占空比可调电路的实现 (2) 2.2 RC串并联网络振荡电路 (3) 第三章系统电路总图及元件清单 (4) 3.1电路设计图 (4) 3.1.1 Protel原理图 (4) 3.1.2 仿真图 (5) 3.2元件清单 (7) 第四章电路调试与分析 (8) 4.1 测试仪器 (8) 4.2 测试说明 (8) 4.3 误差分析 (8) 第五章设计心得 (8) 参考文献 (9)

第一章 概述 非正弦波发生电路常常用于脉冲和数字系统中作为信号源,而常用的非正弦波发生电路有矩形波发生电路、三角波发生电路和锯齿波发生电路等。其中,矩形波发生电路是三角波发生电路和锯齿波发生电路等的基础,因此,本设计旨在创建一种能够产生稳定且占空比和频率可调的矩形波模块电路,包括了Protel 原理图和Mulstism 仿真图。 该电路主要由RC 串并联网络振荡电路及一个滞回比较器和一个RC 充放电回路组成,重点阐述了发生器的电路结构及工作原理,分析了单元电路的制作和工作过程并进行了调试,调试结果表明设计的电路在低频段是可行的。 第二章 设计原理及思路 2.1 占空比可调的矩形波发生电路 2.1.1 电路组成及工作原理 图2-1为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充放电实现输出状态的自动转换。 图中滞回比较器的阈值电压 Z T U R R R U ?+±=±2 11 (1) 因而滞回比较器的电压传输特性如图2-2所示:

方波 三角波波形发生器的设计教学文案

方波三角波波形发生 器的设计

精品资料 西安文理学院物理与机械电子工程学院 课程设计报告 专业班级 课程电子技术课程设计 题目方波三角波波形发生器的设计 学号 学生姓名 指导教师 2013年12

西安文理学院机械电子工程系 课程设计任务书 学生姓名专业班级学号 指导教师职称教研室自动化 课程电子技术课程设计 题目方波、三角波波形发生器的设计 任务与要求 任务: 设计能产生方波、三角波波形信号输出的波形发生器。 1.输出的各种波形工作频率范围0.02Hz~10k Hz连续可调; 2.方波幅值10V; 3.三角波峰-峰值20V;各种输出波形幅值均连续可调; 4.设计电路所需的直流电源。 要求: 1.根据设计任务和指标,初选电路; 2.通过调查研究、设计计算,确定电路方案。 开始日期 2013.12.13 完成日期 2013.12.27 2013年 12 月 27 日

目录 设计目的 (4) 设计任务和要求 (4) 总体设计方案 (5) 功能模块设计与分析 (10) 电路的安装与调试 (14) 实验仪器及元器件清单 (14) 心得体会 (16)

一、设计目的 1.掌握方波—三角波产生电路的设计方法及工作原理; 2.掌握电子系统的一般设计方法; 3.掌握常用原件的识别和测试; 4.掌握模拟电路的安装测量与调试的基本技能; 5.培养实事求是,严谨的工作态度和严肃的工作作风。 二、设计任务和要求 任务: 设计能产生方波、三角波波形信号输出的波形发生器。 1.方波幅值10V; 2.输出的各种波形工作频率范围0.02Hz~10k Hz连续可调; 3.三角波峰-峰值20;各种输出波形幅值均连续可调; 4.设计电路所需的直流电源。 要求: 1.根据设计任务和指标,初选电路; 2.通过调查研究、设计计算,确定电路方案。 三.总体设计方案 方案一,框图如下图1所示:

方波发生器讲解

课程设计报告 课程名称:基于单片机的方波信号发生器院部:电控学院 专业班级:电气0601班 学生姓名:程云鹏 指导教师:郝兆明 完成时间:2009年06月10日 报告成绩:_____ _____________________ 评阅意见: 评阅教师日期

目录 一、概述 ------------------------------------------------------------------ 3 1.1、设计内容 ------------------------------------------------------ 3 1.2、设计的基本要求 ------------------------------------------------ 3 二、方波发生器设计方案 ---------------------------------------------------- 4 2.1、方案介绍 ------------------------------------------------------ 4 2.2、方波信号发生器的原理与功能 ------------------------------------ 4 三、系统的硬件设计 -------------------------------------------------------- 6 3.1、单片机最小系统 ------------------------------------------------ 6 3.2、小键盘接口电路 ------------------------------------------------ 7 3.3、LED显示电路--------------------------------------------------- 7 四、系统的软件设计 -------------------------------------------------------- 8 4.1、主程序 -------------------------------------------------------- 8 4.2、系统初始化子程序 ---------------------------------------------- 9 4.3、显示子程序 ---------------------------------------------------- 9 4.4、键盘扫描程序 ------------------------------------------------- 10 4.5、定时器中断子程序 --------------------------------------------- 11 五、调试与性能分析 ------------------------------------------------------- 12 5.1硬件调试------------------------------------------------------- 12 5.2软件调试------------------------------------------------------- 12 六、设计体会 ------------------------------------------------------------- 13 参考文献 ----------------------------------------------------------------- 14 附录A:基于单片机方波信号发生器的原理图---------------------------------- 15 附录B:基于单片机方波信号发生器的程序清单-------------------------------- 16 附录C:仿真图——————————————————————————————21

方波发生器设计

方波发生器设计 摘要:随着EDA技术以及大规模集成电路技术的迅猛发展,波形发生器的各方面性能指标都达到了一个新的水平。采用CPLD/FPGA器件在QuartuesII设计环境中用VHDL语言完成的波形发生器具有频率稳定性高,可靠性高,输出波形稳定等特点。本文介绍了基于EDA技术的波形发生器的研究与设计。 一、设计任务与要求 设计一方波发生器并且输出信号的频率范围为100Hz~200KHz,输出频率可以调节;可以存储任意波形特征数据并能重现该波形,还可完成各种波形的线形叠加输出,具有显示输出波形、频率的功能。 通过运用VHDL语言编程,通过运用软件Quartus II 6.0,逐渐掌握EDA的用法,熟练步骤,为以后的学习与工作做很好的铺垫。 二、总体框图 (1)方案论证 方案一: 本系统由FPGA(可编程门阵列),数模转换,时钟(提供clk信号)等组成。全部为FPGA试验箱所有,不需要增加任何器件。用FPGA产生的255—0的计数值输入到DAC0832中,将产生对应的模拟信号。本系统采用的是软硬件结合的方法。由于一个周期内的任意波形的离散样点数对硬件实现的复杂性直接产生影响,因此,为了简化硬件存储器件的规模,取64个样点进行讨论。 具体做法是先对一个周期进行64点采样,然后依次存于ROM中,再以fs频率给出地址码,控制存储器周期的读出数据,并经D、A转换和模拟放大,便能得到一定的频率的周期信号。因此周期信号的频率为fo=fs/M.其中M为采样点个数,本设计中取为64;fs为存储器读出频率。显然,通过改变读出频率fs,便可获得不同频率的周期信号fo.。 原理说明: 完整的波形发生器由三部分组成:由计数器构成的地址信号发生器、波形数据ROM和D/A。在FPGA的顶层文件中,计数器通过外来控制信号和高速时钟信号向波形数据ROM发出地址信号,输出波形的批评你率由发出的地址信号的速度决定;当以固定的频率扫描输出地址时,输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则输出波形为扫频信号。波形数据ROM中存有发生器的波形数据,如正弦波或者三角波数据等。当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据。波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM或者由FPGA中的EAB模块相当,即利用LPM-ROM来实现。 D/A转换器负责将ROM输出的数据转换成模拟信号,经过滤波电路后输出。输出波形的频率上限与D/A转换器件的转换速度有重要关系,我们的试验箱上用

实验 方波、三角波发生器的设计

实验5.4 波形发生器的设计 1.实验目的 (1)学会用集成运算放大器组成方波与三角波发生器。 (2)掌握方波与三角波发生器电路的调试与测量方法。 2.预备知识 (1)LM324 介绍 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中 “+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo ”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。LM324的引脚排列见图5.4.1。 (2) 方波发生器 基本方波发生器如图5.4.2电路(R 1 = 90k Ω,R 2 = 22k Ω,R 3 = 10k Ω,R 0 = 2.2k Ω,C = 0.01μF 。D 1和D 2采用稳压管,其稳压值为5V ,正向压降为0.7V 。)所示。其中电阻R 2 与R 3 组成正反馈支路;电阻R 1 与电容C 组成的充放电回路是运算放大器的负反馈支路。为了防止放大器输出电流太大而过载,在放大器的输出端串联一个限流电阻R 0。另外为 预习与思考 ① 在方波发生器中,要改变方波的频率,可改变那些元件的值? 方波的频率改变时,方波的幅度会不会改变? ②在方波、三角波发生器中,若要保持三角波的幅度不变,又要改变三角波的频率,应改变电路中那一个元件的值? 图 5.4.1 LM324的引脚排列 图 5.4.1 LM324的引脚排列 图 5.4.2基本方波发生器

方波三角波正弦波锯齿波发生器

方波三角波正弦波锯齿波 发生器 This manuscript was revised by the office on December 10, 2020.

电子工程设 计报告

目录

方波—三角波—正弦波函数信号发生器 摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路 设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在-20KHz范围内且连续可调; 1.前言 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,

方波和三角波发生器电路

创作编号:BG7531400019813488897SX 创作者:别如克* 方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6. 5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -Vz A2构成反相积分器 VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。假设电源接通时VO 1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率范围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

相关文档
最新文档