解牛顿运动方程。运动方程的积分不用考虑计算速度

解牛顿运动方程。运动方程的积分不用考虑计算速度

解牛顿运动方程。运动方程的积分不用考虑计算速度

《牛顿运动定律的运用》教案

牛顿运动定律的应用 教学目标 一、 知识目标 1. 知道运用牛顿运动定律解题的方法 2. 进一步学习对物体进行正确的受力分析 二、 能力目标 1. 培养学生分析问题和总结归纳的能力 2. 培养学生运用所学知识解决实际问题的能力 三、 德育目标 1. 培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、 导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、 新课教学 (一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ;

高中物理牛顿运动定律的应用模拟试题含解析

高中物理牛顿运动定律的应用模拟试题含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC长度L=10m,重力加速度g=10m/s2,sin37o=0.6,cos37o=0.8,求: (1)包裹P沿传送带下滑过程中的加速度大小和方向; (2)包裹P到达B时的速度大小; (3)若传送带匀速转动速度v=2m/s,包裹P经多长时间从B处由静止被送回到C处;(4)若传送带从静止开始以加速度a加速转动,请写出包裹P送回C处的速度v c与a的关系式,并画出v c2-a图象. 【答案】(1)0.4m/s2 方向:沿传送带向上(2)1m/s(3)7.5s (4) 2 2 2 200.4/ 80.4/ c a a m s v a m s ?< =? ≥ ? () () 如图所示: 【解析】 【分析】 先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a进行讨论分析得到v c2-a的关系,从而画出图像。 【详解】

(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-= 代入数据得:2 10.4/a m s =-,方向:沿传送带向上; (2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220 L=2v v a - 代入数据得:1/v m s =; (3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-= 得2 20.4/a m s = 当包裹P 的速度达到传送带的速度所用时间为:12250.4 v t s s a = == 速度从零增加到等于传送带速度时通过的位移有:2245220.4 v x m m a = ==? 因为x

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

牛顿运动定律测试题

《牛顿运动定律》测试题 一、选择题(每小题给出的四个选项中至少有一项是正确的,将正确选项填入括号内,每题4分,共48分。) 1、关于物体运动状态的改变,下列说法中正确的是() A、物体运动的速率不变,其运动状态就不变 B、物体运动的加速度不变,其运动状态就不变 C、物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D、物体的运动速度不变,我们就说它的运动状态不变 2、关于惯性的大小,下列说法中正确的是() A、质量相同的物体,在阻力相同情况下,速度大的不容易停下来,所以速度大的物体惯性大 B、上面两个物体既然质量相同,那么惯性就一定相同 C、推动地面上静止的物体比维持这个物体做匀速运动所需的力大,所以静止的物体惯性大 D、在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 3、关于物体运动状态与所受外力的关系,下列说法中正确的是() A、物体受到恒定外力作用时,它的运动状态一定不变 B、物体受到的合力不为零时,一定做变速运动 C、物体受到的合外力为零时,一定处于静止状态 D、物体的运动方向就是物体受到的合外力的方向 4、物体静止于水平桌面上,则下列说法中正确的是() A、桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力 B、物体所受的重力和桌面对它的支持力是一对作用力与反作用力 C、物体对桌面的压力就是物体的重力,这两个力是同一种性质的力 D、物体对桌面的压力和桌面对物体的支持力是一对平衡的力 5、下列说法正确的是() A、体操运动员双手握住单杠吊在空中不动时处于失重状态 B、蹦床运动员在空中上升和下落过程中都处于失重状态 C、举重运动员在举起杠铃后不动的那段时间内处于超重状态 D、游泳运动员仰卧在水面静止不动时处于失重状态 6、设雨滴从很高处竖直下落,所受空气阻力f和速度v成正比.则雨滴的运动情况() A、先加速后减速,最后静止 B、先加速后匀速 C、先加速后减速直至匀速 D、加速度逐渐减小到零 1,g为重力加速度。人对电梯7、一质量为m的人站在电梯中,电梯加速上升,加速大小为g 3

【物理】物理牛顿运动定律的应用练习题

【物理】物理牛顿运动定律的应用练习题 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求: (1)开始时B离小车右端的距离; (2)从A、B开始运动计时,经t=6s小车离原位置的距离。 【答案】(1)B离右端距离(2)小车在6s内向右走的总距离: 【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒 解得:, A离左端距离,运动到左端历时,在A运动至左端前,木板静止 ,, 解得 B离右端距离 (2)从开始到达共速历时,,, 解得 小车在前静止,在至之间以a向右加速: 小车向右走位移

牛顿运动定律的综合应用试题整理

考点11 牛顿运动定律的综合应用考点名片 考点细研究:本考点是物理教材的基础,也是历年高考必考的内容之一,其主要包括的考点有:(1)超重、失重;(2)连接体问题;(3)牛顿运动定律的综合应用、滑块滑板模型、传送带模型等。其中考查到的如:2015年全国卷Ⅰ第25题、2015年全国卷Ⅱ第25题、2015年海南高考第9题、2014年北京高考第8题、2014年四川高考第7题、2014年大纲卷第19题、2014年江苏高考第5题、2014年福建高考第15题、2013年浙江高考第17题和第19题、2013年广东高考第19题、2013年山东高考第15题等。 备考正能量:牛顿运动定律是历年高考的主干知识;它不仅是独立的知识点,更是解决力、电动力学综合问题的核心规律。可单独命题(选择题、实验题),也可综合命题(解答题)。高考对本考点的考查以对概念和规律的理解及应用为主,试题难度中等或中等偏上。 一、基础与经典 1.小明家住十层,他乘电梯从一层直达十层。则下列说法正确的是( ) A.他始终处于超重状态 B.他始终处于失重状态 C.他先后处于超重、平衡、失重状态 D.他先后处于失重、平衡、超重状态 答案 C 解析小明乘坐电梯从一层直达十层过程中,一定是先向上加速,再向上匀速,最后向上减速,运动过程中加速度方向最初向上,中间为零,最后加速度方向向下,因此先后对应的状态应该是超重、平衡、失重三个状态,C正确。

2.如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( ) 答案 A 解析放上小木块后,长木板受到小木块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小木块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于木板刚开始运动时的加速度,故A正确,也可能物块与长木板间动摩擦因数较小,达到共同速度后物块相对木板向右运动,给木板向右的摩擦力,但木板的加速度也小于刚开始运动的加速度,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误。 3.如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则( )

牛顿运动定律测试题及解析

牛顿运动定律测试题及解析 1.(2020·福建六校联考)如图所示,质量分别为m 和2m 的两物体P 和Q 叠放在倾角θ=30°的固定斜面上,Q 与斜面间的动摩擦因数为μ,它们从静止开始沿斜面加速下滑,P 恰好能与Q 保持相对静止,设P 与Q 间的最大静摩擦力等于滑动摩擦力,则P 与Q 间的动摩擦因数为 ( ) A.μ4 B.μ2 C .μ D .2μ 解析:选C 对P 、Q 整体,由牛顿第二定律有(m +2m )g sin 30°-μ(m +2m )g cos 30°=(m +2m )a ,设P 与Q 之间的动摩擦因数为μ′,P 恰好与Q 保持相对静止,静摩擦力恰好达到最大,对P ,由牛顿第二定律有mg sin 30°-μ′mg cos 30°=ma ,联立解得μ′=μ,选项C 正确。 2.[多选]如图所示,水平方向的传送带顺时针转动,传送带速度大小恒为v =2 m /s ,一物块从B 端以初速度v 0=4 m/s 滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g 取10 m/s 2,下列判断正确的是 ( ) A .如果物块从A 端离开传送带,两端A 、 B 间距离可能为3 m B .如果物块从B 端离开传送带,两端A 、B 间距离可能为3 m C .如果A 、B 间距离为4 m ,物块离开传送带时的速度大小为2 m/s D .如果A 、B 间距离为4 m ,物块离开传送带时的速度大小为4 m/s 解析:选BC 物块刚开始做匀减速直线运动,若传送带足够长,由于v 0>v ,物块先向左做匀减速直线运动,后向右做匀加速直线运动,最后做匀速直线运动,物块在传送带上的加速度大小为a =μg =4 m/s 2。若物块向左匀减速从A 端离开,设物块运动到A 端速度恰好减为零,则根据0-v 02=-2ax 得x =2 m ,AB 最长为2 m ,故A 错误;若从B 端离开,只要传送带长度大于2 m 即可,故B 正确;若A 、 B 间距为4 m ,则物块向左匀减速2 m ,然后向右开始匀加速运动,物块匀加速运动的距离为x =v 2 2a =0.5 m<2 m ,物块速度达到2 m /s 后,与传送带一起向右以2 m/s 的速度运动直到离开传送带,故C 正确,D 错误。 3.(2019·昆明4月质检)如图所示,质量为M 的滑块A 放置在光滑 水平地面上,左侧面是圆心为O 、半径为R 的光滑四分之一圆弧面,当 用一水平恒力F 作用在滑块A 上时,一质量为m 的小球B (可视为质点) 在圆弧面上与A 保持相对静止,此时小球B 距轨道末端Q 的竖直高度 为H =R 3 ,重力加速度为g ,则F 的大小为( ) A.53Mg B.52Mg C.53(M +m )g D.52 (M +m )g 解析:选D 连接OB ,设OB 连续与竖直方向的夹角为θ,由几何

牛顿运动定律练习题

牛顿运动定律练习题 一、选择题 1.关于伽利略的理想实验,以下说法中正确的是( ) A .伽利略的实验是假想实验,事实上无法完成,从而得出的结论不可靠 B .是以可靠事实为基础,经科学抽象出来的 C .伽利略通过斜面实验得到结论:一切运动着的物体在没有受到阻力作用的时候,它的速度不变,并且一直运动下去 D .伽利略利用自己设计的理想实验,观察到小球不受阻力时以恒定速度运动,从而推翻了亚里士多德的结论 2.一个物体在水平恒力F 的作用下,由静止开始在一个粗糙的水平面上运动,经过时间t ,速度变为v ,如果要使物体的速度变为2v ,下列方法正确的是( ) A .将水平恒力增加到2F ,其他条件不变 B .将物体质量减小一半,其他条件不变 C .物体质量不变,水平恒力和作用时间都增为原来的两倍 D .将时间增加到原来的2倍,其他条件不变 3.关于物体的惯性,下列说法中正确的是( ) A .把手中的球由静止释放后,球能加速下落,说明力是改变物体惯性的原因 B .我国优秀田径运动员刘翔在进行110 m 栏比赛中做最后冲刺时,速度很大,很难停下来,说明速度越大,物体的惯性也越大 C .战斗机在空战时,甩掉副油箱是为了减小惯性,提高飞行的灵活性 D .公交汽车在起动时,乘客都要向前倾,这是乘客具有惯性的缘故 4.如图所示,物块A 和B 的质量均为m ,吊篮C 的质量为2m ,物块A 、B 之间用轻弹簧连接.重力加速度为g ,将悬挂吊篮的轻绳烧断的瞬间,A 、B 、C 的加速度分别为( ) A .a A =0 B . a B =g 3 C .a C =g D .a B =2g 5.如图甲所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆间的动摩擦因数为μ.现给环一个向右的初速度v 0,同时对环加一个竖直向上的作用力F ,并使F 的大小随v 的大小变化,两者的关系为F =kv ,其中k 为常数,则环在运动过程中的速度图象可能是图乙中的( ) 6.如图所示,一水平方向足够长的传送带以恒定的速率v 1沿顺时针转动,传送带右侧有一与传送带等高的光滑水平面,一物块以初速度v 2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为v 3.则下列说法正确的是( ) A .只有v 1=v 2时,才有v 3=v 1 B .若v 1 >v 2,则v 3=v 2 C .若v 1

物理牛顿运动定律的应用题20套(带答案)

物理牛顿运动定律的应用题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律的应用 1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求: (1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ?= 【解析】 【分析】 物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】 (1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则: 222 011-22A B v v v L a a =+ 又: 011 -=A B v v v a a 解得:a B =6m/s 2 再代入F +μMg =ma B 得:F =1N 若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N 若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N (2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2 平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2

牛顿运动定律测试题及答案详解

(三)牛顿运动定律测验卷 一.命题双向表 二. 期望值:65 三. 试卷 (三)牛顿运动定律测验卷 一.选择题(每道小题 4分共 40分 ) 1.下面关于惯性的说法正确的是() A.物体不容易停下来是因为物体具有惯性 B.速度大的物体惯性一定大 C.物体表现出惯性时,一定遵循惯性定律 D.惯性总是有害的,我们应设法防止其不利影响 2.一个物体受到多个力作用而保持静止,后来物体所受的各力中只有一个力逐渐减小到零后 又逐渐增大,其它力保持不变,直至物体恢复到开始的受力情况,则物体在这一过程中A.物体的速度逐渐增大到某一数值后又逐渐减小到零 B.物体的速度从零逐渐增大到某一数值后又逐渐减小到另一数值 C.物体的速度从零开始逐渐增大到某一数值 D.以上说法均不对 3.质量为m1和m2的两个物体,分别以v1和v2的速度在光滑水平面上做匀速直线运动, 且v1

图-1 图 3-3-7 A .力F 与v1、v2同向,且m1>m2 B .力F 与v1、v2同向,且m1m2 D .力F 与v1、v2反向,且m1 2a 1 D a 2 = 2a 1 9、质量为m 1和m 2的两个物体,由静止从同一高度下落,运动中所受的空气阻力分别是F 1和F2.如果发现质量为m 1的物体先落地,那么 A. m 1>m 2 B. F 1<F 2 C. F 1/m 1<F 2/m 2 D. F 1/m 1>F 2/m 2 10、如图所示,将质量为m =0.1kg 的物体用两个完全一样的竖直轻弹簧固定在升降机内,当升降机和物体以4m/s 2的加速度匀加速向上运动时,上面的弹簧对物体的拉力为0.4N ,当升降机和物体以8m/s 2的加速度向上运动 时,上面弹簧的拉力为 A 、0.6N B 、0.8N C 、1.0N D 、 1.2N

(物理)物理牛顿运动定律练习题含答案含解析

(物理)物理牛顿运动定律练习题含答案含解析 一、高中物理精讲专题测试牛顿运动定律 1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。已知圆轨道的半径R=0.5 m。(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)物块与斜面间的动摩擦因数μ; (2)物块到达C点时对轨道的压力F N的大小; (3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。 【答案】(1)μ=0.5 (2)F'N=4 N (3) 【解析】 【分析】 由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度; 【详解】 解:(1)由图乙可知物块上滑时的加速度大小为 根据牛顿第二定律有: 解得 (2)设物块到达C点时的速度大小为v C,由动能定理得: 在最高点,根据牛顿第二定律则有: 解得: 由根据牛顿第三定律得: 物体在C点对轨道的压力大小为4 N (3)设物块以初速度v1上滑,最后恰好落到A点 物块从C到A,做平抛运动,竖直方向:

水平方向: 解得 ,所以能通过C 点落到A 点 物块从A 到C ,由动能定律可得: 解得: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资 (P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--= -

高考物理牛顿运动定律的应用题20套(带答案)及解析

高考物理牛顿运动定律的应用题20套(带答案)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求: (1)物体与传送带间的动摩擦因数; (2) 0~8 s内物体机械能的增加量; (3)物体与传送带摩擦产生的热量Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得: 可解得:μ=0.875. (2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移 0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为 (3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为: 0~6 s内物体位移为: 则0~6 s内物体相对于皮带的位移为 0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小, 代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求: (1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ?= 【解析】 【分析】 物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】 (1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则: 222 011-22A B v v v L a a =+ 又: 011 -=A B v v v a a 解得:a B =6m/s 2 再代入F +μMg =ma B 得:F =1N 若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N 若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N (2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2 平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2 两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s

高中物理牛顿运动定律基础练习题

牛顿运动定律 第一课时牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作

相关文档
最新文档