MATLAB_信号处理工具箱函数

MATLAB_信号处理工具箱函数
MATLAB_信号处理工具箱函数

Matlab优化工具箱函数简介

Matlab优化工具箱函数简介 一维搜索问题fminbnd 无约束极小值fminunc, fminsearch 约束极小值fmincon 线性规划linprog 二次规划quadprog 1.一维搜索问题 优化工具箱函数fminbnd 对应问题:min f(x) x10表示计算收敛,exitflag=0表示超过了最大的迭代次数,exitflag<0表示计算不收敛,返回值output有3个分量,其中iterations是优化过程中迭代次数,funcCount是代入函数值的次数,algorithm是优化所采用的算法。 例: clear fun='(x^5+x^3+x^2-1)/(exp(x^2)+sin(-x))' ezplot(fun,[-2,2])

基于Matlab的脑电波信号处理

做脑电波信号处理滴嘿嘿。。Matlab addicted Codes %FEATURE EXTRACTER function [features] = EEGfeaturetrainmod(filename,m) a = 4; b = 7; d = 12; e = 30; signals = 0; for index = 1:9; % read in the first ten EEG data because the files are numbered as ha11test01 rather than ha11test1. s = [filename '0' num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end for index = 10:1:m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0;

signals = signal; else signals = [signals signal]; end end %%%%% modification just for varying the training testing ratio ------ for index = 25:1:25+m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end %%%%%end of modification just for varying the training testing ratio----- for l = 1:m % exrating features (power of each kind of EEG wave forms) [Pxx,f]=pwelch(signals(:,l)-mean(signals(:,l)), [], [], [], 200); % relative power fdelta(l) = sum(Pxx(find(fa))); falpha(l) = sum(Pxx(find(fb))); fbeta(l) = sum(Pxx(find(fd))); fgama(l)= sum(Pxx(find(f>e))); % gama wave included for additional work

matlab与信号 处理知识点

安装好MATLAB 2012后再安装目录下点击setup.exe 会出现 "查找安装程序类时出错,查找类时出现异常"的错误提示。该错误的解决方法是进入安装目录下的bin 文件夹双击matlab.exe 对安装程序进行激活。这是可以对该matlab.exe 创建桌面快捷方式,以后运行程序是直接双击该快捷方式即可。 信号运算 1、 信号加 MATLAB 实现: x=x1+x2 2、 信号延迟 y(n)=x(n-k) 3、 信号乘 x=x1.*x2 4、 信号变化幅度 y=k*x 5、 信号翻转 y=fliplr(x) 6、 信号采样和 数学描述:y=∑=2 1)(n n n n x MATLAB 实现: y=sum(x(n1:n2)) 7、 信号采样积 数学描述:∏==2 1)(n n n n x y MATLAB 实现: y=prod(x(n1:n2)) 8、 信号能量 数学描述:∑∞ -∞ == n x n x E 2 | )(| MATLAB 实现:Ex=sum(abs(x)^2)

9、 信号功率 数学描述:∑-== 1 2 | )(|1 P N n x n x N MATLAB 实现:Px=sum((abs(x)^2)/N MATLAB 窗函数 矩形窗 w=boxcar(n) 巴特利特窗 w=bartlett(n) 三角窗 w=triang(n) 布莱克曼窗 w=blackman(n) w=blackman(n,sflag) 海明窗 w=haiming(n) W=haiming(n,sflag) sflag 用来控制窗函数首尾的两个元素值,其取值为symmetric 、periodic 汉宁窗 w=hanning(n) 凯塞窗 w=Kaiser(n,beta) ,beta 用于控制旁瓣的高度。n 一定时,beta 越大,其频谱的旁瓣越小,但主瓣宽度相应增加;当beta 一定时,n 发生变化,其旁瓣高度不变。 切比雪夫窗:主瓣宽度最小,具有等波纹型,切比雪夫窗在边沿的采样点有尖峰。 W=chebwin(n,r)

matlab拟合工具箱的使用

matlab拟合工具箱使用 2011-06-17 12:53 1.打开CFTOOL工具箱。在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。也可以在命令窗口中直接输入”cftool”,打开工具箱。 2.输入两组向量x,y。 首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量和y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。 例如在命令行里输入下列数据: x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33]; y=[0.012605,0.013115,0.016866,0.014741,0.022353,0.019278,0.041803,0.0 38026,0.038128,0.088196]; 3.数据的选取。打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data 选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

MATLAB信号处理例题

◆例1设方波的数学模型为: ]5sin 513sin 31[sin 4)(000 t t t E t f T ,基频: T 20 用MATLAB 软件完成该方波的合成设计 ◆ MATLAB 源程序 t=-10:0.1:10; %设定一个数组有201个点,方波周期为20 e=5;w=pi/10; %设定方波幅值为5,w 代表w0 m=-5*sign(t); %给定幅值为5的方波函数 y1=(-4*e/pi)*sin(w*t); %计算1次谐波 y3=(-4*e/pi)*(sin(w*t)+sin(3*w*t)/3); %计算3次谐波 y5=(-4*e/pi)*(sin(w*t)+sin(3*w*t)/3+sin(5*w*t)/5); %计算5次谐波 plot(t,y1,'y');hold; grid; %用黄色点线画出1次谐波及网格线,并在同一张图上画其余曲线 plot(t,y3,'g'); %用绿色点线画出3次谐波 plot(t,y5,'b'); %用蓝色点线画出5次谐波 plot(t,m,'-k'); %用黑色实线画方波 title('方波合成');xlabel('t');ylabel('f(t)'); %为图形加上标题 n=50; %合成任意次方波,n 决定方波的合成次数,在此给定50 yn=0; %设置初始值 for i=1:n yn=yn+(-4*e/pi)*(1/(2*i-1))*sin((2*i-1)*w*t); end; %计算n 次谐波合成 plot(t,yn,'r') %用红色实线画出n 次谐波合成 ◆ 从图中我们可以看到Gibbs 现象。在函数的间断点附近,增加傅里叶级数的展开次数,虽然可以使其间断点附近的微小振动的周期变小,但振幅却不能变小。此现象在控制系统表现为:当求控制系统对阶跃函数的响应时,超调量总是存在的。

Matlab工具箱中地BP与RBF函数

Matlab工具箱中的BP与RBF函数 Matlab神经网络工具箱中的函数非常丰富,给网络设置合适的属性,可以加快网络的学习速度,缩短网络的学习进程。限于篇幅,仅对本章所用到的函数进行介绍,其它的函数及其用法请读者参考联机文档和帮助。 1 BP与RBF网络创建函数 在Matlab工具箱中有如表1所示的创建网络的函数,作为示例,这里只介绍函数newff、newcf、newrb和newrbe。 表 1 神经网络创建函数 (1) newff函数 功能:创建一个前馈BP神经网络。 调用格式:net = newff(PR,[S1 S2...S Nl],{TF1 TF2...TF Nl},BTF,BLF,PF) 参数说明: ?PR - R个输入的最小、最大值构成的R×2矩阵; ?S i–S NI层网络第i层的神经元个数; ?TF i - 第i层的传递函数,可以是任意可导函数,默认为'tansig',

可设置为logsig,purelin等; ?BTF -反向传播网络训练函数,默认为'trainlm',可设置为trainbfg,trainrp,traingd等; ?BLF -反向传播权值、阈值学习函数,默认为'learngdm'; ?PF -功能函数,默认为'mse'; (2) newcf函数 功能:创建一个N层的层叠(cascade)BP网络 调用格式:net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 参数同函数newff。 (3) newrb函数 功能:创建一个径向基神经网络。径向基网络可以用来对一个函数进行逼近。newrb函数用来创建一个径向基网络,它可以是两参数网络,也可以是四参数网络。在网络的隐层添加神经元,直到网络满足指定的均方误差要求。 调用格式:net = newrb(P,T,GOAL,SPREAD) 参数说明: ?P:Q个输入向量构成的R×Q矩阵; ?T:Q个期望输出向量构成的S×Q矩阵; ?GOAL:均方误差要求,默认为0。 ?SPREAD:分散度参数,默认值为1。SPREAD越大,网络逼近的函数越平滑,但SPREAD取值过大将导致在逼近变化比较剧烈的函

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

Matlab数理统计工具箱常用函数命令大全

Matlab数理统计工具箱应用简介 1.概述 Matlab的数理统计工具箱是Matlab工具箱中较为简单的一个,其牵扯的数学知识是大家都很熟悉的数理统计,因此在本文中,我们将不再对数理统计的知识进行重复,仅仅列出数理统计工具箱的一些函数,这些函数的意义都很明确,使用也很简单,为了进一步简明,本文也仅仅给出了函数的名称,没有列出函数的参数以及使用方法,大家只需简单的在Matlab工作空间中输入“help 函数名”,便可以得到这些函数详细的使用方法。 2.参数估计 betafit 区间 3.累积分布函数 betacdf β累积分布函数 binocdf 二项累积分布函数 cdf 计算选定的累积分布函数 chi2cdf 累积分布函数2χ expcdf 指数累积分布函数 fcdf F累积分布函数 gamcdf γ累积分布函数 geocdf 几何累积分布函数 hygecdf 超几何累积分布函数 logncdf 对数正态累积分布函数 nbincdf 负二项累积分布函数 ncfcdf 偏F累积分布函数 nctcdf 偏t累积分布函数 ncx2cdf 偏累积分布函数2χ normcdf 正态累积分布函数 poisscdf 泊松累积分布函数 raylcdf Reyleigh累积分布函数 tcdf t 累积分布函数 unidcdf 离散均匀分布累积分布函数 unifcdf 连续均匀分布累积分布函数 weibcdf Weibull累积分布函数 4.概率密度函数 betapdf β概率密度函数 binopdf 二项概率密度函数 chi2pdf 概率密度函数2χ

exppdf 指数概率密度函数 fpdf F概率密度函数 gampdf γ概率密度函数 geopdf 几何概率密度函数 hygepdf 超几何概率密度函数 lognpdf 对数正态概率密度函数 nbinpdf 负二项概率密度函数 ncfpdf 偏F概率密度函数 nctpdf 偏t概率密度函数 ncx2pdf 偏概率密度函数2χ normpdf 正态分布概率密度函数 pdf 指定分布的概率密度函数 poisspdf 泊松分布的概率密度函数 raylpdf Rayleigh概率密度函数 tpdf t概率密度函数 unidpdf 离散均匀分布概率密度函数unifpdf 连续均匀分布概率密度函数weibpdf Weibull概率密度函数5.逆累积分布函数 Betainv 逆β累积分布函数 binoinv 逆二项累积分布函数 chi2inv 逆累积分布函数2χ expinv 逆指数累积分布函数 finv 逆F累积分布函数 gaminv 逆γ累积分布函数 geoinv 逆几何累积分布函数 hygeinv 逆超几何累积分布函数 logninv 逆对数正态累积分布函数 nbininv 逆负二项累积分布函数 ncfinv 逆偏F累积分布函数 nctinv 逆偏t累积分布函数 ncx2inv 逆偏累积分布函数2χ norminv 逆正态累积分布函数 possinv 逆正态累积分布函数 raylinv 逆Rayleigh累积分布函数 tinv 逆t累积分布函数 unidinv 逆离散均匀累积分布函数 unifinv 逆连续均匀累积分布函数 weibinv 逆Weibull累积分布函数

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

Matlab滤波信号处理函数

Matlab滤波信号处理函数 2009-12-04 19:32:22| 分类:matlab方法| 标签:|字号大中小订阅 1 conv 功能:求卷积。 格式:c = conv(a,b) 说明:c = conv(a,b)返回向量a、b的卷积c。 举例:a = [1 2 3] b = [4 5 6] c = conv(a,b) c= 4 13 28 27 18 2 impz 功能:数字滤波器的冲激响应。 格式:[h,t] = impz(b,a) [h,t] = impz(b,a,n) [h,t] = impz(b,a,n,Fs) impz(b,a) impz(...) 说明:[h,t] = impz(b,a)返回系统(b,a)的冲激响应h和相应的时间轴向量t,b、a分别为系统传递函数的分子和分母系数向量。

[h,t] = impz(b,a,n)返回指定的n点冲激响应 [h,t] = impz(b,a,n,Fs)指定了冲激响应采样点的频率间隔1/Fs。Fs 为相对频率, 缺省值为1。 impz(b,a)和impz(...)绘制冲激响应的图形。 举例:计算线性系统(b,a)的冲激响应,结果见图1.4.1。 b =[0.2 0.1 0.3 0.1 0.2]; a =[1 ?.1 1.55 ?.7 0.3]; impz(b,a,50) 3 zplane 功能:离散系统的零极点图。 格式:zplane(z,p) zplane(b,a) 说明:zplane(z,p)和zplane(b,a)绘制系统的零极点图,用“o”表示零点,“x”表示 极点。z、p分别为零点和极点向量,b、a分别为系统传递函数的分子和分母 系数向量。 举例:计算线性系统(b,a)的零点和极点,结果见图1.4.2。 b =[0.2 0.1 0.3 0.1 0.2]; a =[1.0 -1.1 1.5 -0.7 0.3]; zplane(b,a)

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

MATLAB模型预测控制工具箱函数..

MATLAB模型预测控制工具箱函数 8.2 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 8.2.1 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型;

⑤ MPC 传递函数模型。 在上述5种模型格式中,前两种模型格式是MATLAB 通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC 状态空间模型和MPC 传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC 状态空间模型之间的转换 MPC 状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod ()和mod2ss ()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC 状态空间模型函数ss2mod () 该函数的调用格式为 pmod= ss2mod (A,B,C,D) pmod = ss2mod (A,B,C,D,minfo) pmod = ss2mod (A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D 为通用状态空间矩阵; minfo 为构成MPC 状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆ minfo(1)=dt ,系统采样周期,默认值为1; ◆ minfo(2)=n ,系统阶次,默认值为系统矩阵A 的阶次; ◆ minfo(3)=nu ,受控输入的个数,默认值为系统输入的维数; ◆ minfo(4)=nd ,测量扰的数目,默认值为0; ◆ minfo(5)=nw ,未测量扰动的数目,默认值为0; ◆ minfo(6)=nym ,测量输出的数目,默认值系统输出的维数; ◆ minfo(7)=nyu ,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o ,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod 为系统的MPC 状态空间模型格式。 例8-5 将如下以传递函数表示的系统模型转换为MPC 状态空间模型。 1 2213)(232+++++=s s s s s s G 解:MATLAB 命令如下:

matlab信号处理学习总结

常用函数 1 图形化信号处理工具,fdatool(滤波器设计),fvtool(图形化滤波器参数查看)sptool (信号处理),fvtool(b,a),wintool窗函数设计.或者使用工具箱 filter design设计。当使用离散的福利叶变换方法分析频域中的信号时,傅里叶变换时可能引起漏谱,因此 需要采用平滑窗, 2数字滤波器和采样频率的关系。 如果一个数字滤波器的采样率为 FS,那么这个滤波器的分析带宽为Fs/2。也就是说这 个滤波器只可以分析[0,Fs/2]的信号.举个例字: 有两个信号,S1频率为20KHz,S2频率为40KHz,要通过数字方法滤除S2。 你的滤波器的采样率至少要为Fs=80HKz,否则就分析不到 S2了,更不可能将它滤掉 了!(当然根据采样定理,你的采样率 F0也必须大于80HK,,Fs和 F0之间没关系不大,可以任取,只要满足上述关系就行。) 3 两组数据的相关性分析 r=corrcoef(x,y) 4 expm 求矩阵的整体的 exp 4 离散快速傅里叶 fft信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。Ft为连续傅里叶变换。反傅里叶 ifft 5 ztrans(),Z变换是把离散的数字信号从时域转为频率 6 laplace()拉普拉斯变换是把连续的的信号从时域转为频域 7 sound(x)会在音响里产生 x所对应的声音 8 norm求范数,det行列式,rank求秩 9 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s; 数字频率w:每个采样点间隔之间的弧度,单位rad。 Ω=2pi*f; w = Ω*T 10 RMS求法 Rms = sqrt(sum(P.^2))或者norm(x)/sqrt(length(x) var方差的开方是std标准差,RMS应该是norm(x)/sqrt(length(x))吧. 求矩阵的RMS:std(A(:)) 11 ftshift 作用:将零频点移到频谱的中间 12 filtfilt零相位滤波, 采用两次滤波消除系统的非线性相位, y = filtfilt(b,a,x);注意x的长度必须是滤波器阶数的3倍以上,滤波器的 阶数由max(length(b)-1,length(a)-1)确定。 13 [h,t]=impz(b,a,n,fs),计算滤波器的冲激响应 h为n点冲击响应向量 [h,x]=freqz(b,a,n,fs)计算频响,有fs时,x为频率f,无fs,x为w角频率, 常用于查看滤波器的频率特性 14 zplane(z,p) 画图零极点分布图 15 beta=unwarp(alpha) 相位会在穿越+-180发生回绕,可将回绕的 16 stepz 求数字滤波器的阶跃响应 [h,t] = stepz(b,a,n,fs) fvtool(b1,a1,b2,a2,...bn,an) fvtool(Hd1,Hd2,...) h = fvtool(...) 15 IIR数字滤波器设计方法 1 先根据已知带同参数求出最佳滤波器阶数和截止频率 [n,Wn] = buttord(Wp,Ws,Rp,Rs);

基于MATLAB的脑电信号处理

南京航空航天大学基于Matlab的脑电信号处理 姓名陆想想 专业领域生物医学工程 课程名称数字信号处理 二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为“α波阻断”。一般

用matlab绘制各种数字信号中的函数-还有分段函数及翻褶-平移

《数字信号处理》 (一)实验目的 使用stem绘图函数分别画出离散时间信号在指定范围内的图形。画图时使用xlabel,ylabel,title,legend等函数进行注释。复习MATLAB的基本应用,如:函数的定义、画图……并巩固理论知识中的多种离散时间信号及其图形,以及延迟与翻褶的函数变换等。(二)程序的运行与截图 1)用stem绘制单位阶跃序列u(n) clear all;close all;clc;%清除所有变量 n=0:50;%取值范围 y=(n>=0);%n>=0,y=1;n<0,y=0 stem(n,y);%显示出当0<=n<=50 时,函数u(n)的取值范围 xlabel('n');%对横轴进行注释 ylabel('y=u(n)');%对纵轴进行注释 title('y=u(n)的图形');%对图像的标题进行注释 legend('y=u(n)',2);%对图中曲线进行注释,标注在第二象限

2)用stem绘制单位抽样(冲激)序列δ(n)clear all;close all;clc; %清除所有变量 n=0:50; %取值范围 y=(n==0);%n=0,y=1;n!=0,y=1 stem(n,y);%显示出当0<=n<=50 时,函数δ(n)的取值范围 xlabel('n');%对横轴进行注释 ylabel('y=δ(n)');%对纵轴进行注释 title('y=δ(n)的图形');%对图像的标题进行注释 legend('y=δ(n)',2);%对图中曲线进行注释,标注在第二象限

3)用stem绘制矩形序列Rn(n)clear all;close all;clc; %清除所有变量 n=0:50; %取值范围 R10=((n>=0)&(n-9)<=0);%0<=n<=10,y=1;n>10,y=0 stem(n,R10);%显示出当0<=n<=50 时,函数Rn(n)的取值范围xlabel('n');%对横轴进行注释 ylabel(' y=R10(n)');%对纵轴进行注释 title('y=R10(n)的图形');%对图像的标题进行注释 legend('y=R10(n)',2);%对图中曲线进行注释,标注在第二象限

MATLAB工具箱函数

表Ⅰ-11 线性模型函数 函数描述 anova1 单因子方差分析 anova2 双因子方差分析 anovan 多因子方差分析 aoctool 协方差分析交互工具 dummyvar 拟变量编码 friedman Friedman检验 glmfit 一般线性模型拟合 kruskalwallis Kruskalwallis检验 leverage 中心化杠杆值 lscov 已知协方差矩阵的最小二乘估计manova1 单因素多元方差分析manovacluster 多元聚类并用冰柱图表示multcompare 多元比较 多项式评价及误差区间估计 polyfit 最小二乘多项式拟合 polyval 多项式函数的预测值 polyconf 残差个案次序图 regress 多元线性回归 regstats 回归统计量诊断 续表 函数描述 Ridge 岭回归 rstool 多维响应面可视化 robustfit 稳健回归模型拟合 stepwise 逐步回归 x2fx 用于设计矩阵的因子设置矩阵 表Ⅰ-12 非线性回归函数 函数描述 nlinfit 非线性最小二乘数据拟合(牛顿法)nlintool 非线性模型拟合的交互式图形工具nlparci 参数的置信区间 nlpredci 预测值的置信区间 nnls 非负最小二乘 表Ⅰ-13 试验设计函数 函数描述 cordexch D-优化设计(列交换算法)daugment 递增D-优化设计 dcovary 固定协方差的D-优化设计ff2n 二水平完全析因设计 fracfact 二水平部分析因设计 fullfact 混合水平的完全析因设计hadamard Hadamard矩阵(正交数组)rowexch D-优化设计(行交换算法) 表Ⅰ-14 主成分分析函数 函数描述 barttest Barttest检验 pcacov 源于协方差矩阵的主成分pcares 源于主成分的方差 princomp 根据原始数据进行主成分分析 表Ⅰ-15 多元统计函数 函数描述 classify 聚类分析 mahal 马氏距离 manova1 单因素多元方差分析manovacluster 多元聚类分析 表Ⅰ-16 假设检验函数 函数描述 ranksum 秩和检验 signrank 符号秩检验 signtest 符号检验 ttest 单样本t检验 ttest2 双样本t检验 ztest z检验 表Ⅰ-17 分布检验函数 函数描述 jbtest 正态性的Jarque-Bera检验kstest 单样本Kolmogorov-Smirnov检验kstest2 双样本Kolmogorov-Smirnov检验lillietest 正态性的Lilliefors检验 表Ⅰ-18 非参数函数 函数描述 friedman Friedman检验 kruskalwallis Kruskalwallis检验ranksum 秩和检验 signrank 符号秩检验 signtest 符号检验

相关文档
最新文档