如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS中模拟钢筋混凝土的计算模型
如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS 中模拟钢筋混凝土的计算模型最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处敬请指正。

一、关于模型

钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。

就ANSYS 而言,她可以考虑分离式模型(solid65+link8 ,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65) 。而其裂缝的处理方

式则为分布裂缝模型。

二、关于本构关系

混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。

就ANSYS 而言,其问题比较复杂些。

1 ANSYS 混凝土的破坏准则与屈服准则是如何定义的?

采用tb,concr,matnum 则定义了W-W 破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W 破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。

理论上破坏准则(failure criterion) 和屈服准则(yield criterion) 是不同的,例如在高静水压力下会发生相当的

塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。

定义tb,concr matnum 后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W —W 破坏准则、混凝土

开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN, 则定义的屈服准则是Von Mises, 流动法则、硬化法则也就确定了)。

2 定义tb,concr 后可否定义其它的应力应变关系

当然是可以的,并且只有在定义tb,concr 后,有些问题才好解决。例如可以定义tb,miso, 输入混凝土的应力应变关系曲线(多折线实现),这样也就将屈服准则、流动法则、硬化法则等确定了。

这里可能存在一点疑问,即ANSYS 中的应力应变关系是拉压相等的,而混凝土材料显然不是这样的。是的,因为混凝土受拉段非常短,认为拉压相同影响很小,且由于定义的tb,concr 中确定了开裂强度,所以尽管定义的是一条大曲线,但应用于受拉部分的很小。

三、具体的系数及公式

1 定义tb,concr 时候的两个系数如何确定?

一般的参考书中,其值建议先取为0.3~0.5(江见鲸),原话是“ 在没有更仔细的数据时,不妨先取0.3~0.5 进行计算”,足见此0.3~0.5 值的可用程度。根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取0.5, (定要>0.2 )闭合的剪力传递系数取 1.0。支持此说法的还有现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。

2 定义混凝土的应力应变曲线单向应力应变曲线很多,常用的可参考国标混凝土结构规范,其中给出的应力应变曲线是二次曲线+直线的下降段,其参数的设置按规范确定即可。当然如有实测的应力应变曲线更好了。

四、关于收敛的问题

ANSYS 混凝土计算收敛(数值)是比较困难的,主要影响因素是网格密度、子步数、收敛准则等,这里讨论如下。

1 网格密度:网格密度适当能够收敛。不是网格越密越好,当然太稀也不行,这仅仅是就收敛而言的,不考虑计算费

用问题。但是究竟多少合适,没有找到规律,只能靠自己针对情况慢慢试算。

2 子步数:NSUBST 的设置很重要,设置太大或太小都不能达到正常收敛。这点可以从收敛过程图看出,如果F 范数曲线在[F] 曲线上面走形的很长,可考虑增大nsubst 。或者根据经验慢慢调正试算。

3 收敛精度:实际上收敛精度的调正并不能彻底解决收敛的问题,但可以放宽收敛条件以加速吧。一般不

超过5%(缺省是0.5%),且使用力收敛条件即可。

4 混凝土压碎的设置:不考虑压碎时,计算相对容易收敛;而考虑压碎则比较难收敛,即便是没有达到压碎应力时。如果是正常使用情况下的计算,建议关掉压碎选项;如果是极限计算,建议使用concr +MISO 且关闭压碎检查;如果必设压碎检查,则要通过大量的试算(设置不同的网格密度、NSUBST )以达到目的,但也很困难。

5 其他选项:如线性搜索、预测等项也可以打开,以加速收敛,但不能根本解决问题。

6 计算结果:仅设置concr ,不管是否设置压碎,其一般P-F 曲线接近二折线;采用concr+miso 则P-F 曲线与二折线有差别,其曲线形状明显是曲线的。

*******************************************************************************

例题1

! ---------------------------------------------------

!题目:钢筋混凝土简支梁模拟计算

!方法:分离式;solid65 和link8

!材料:混凝土采用concr 和钢筋为弹性材料,但不考虑压碎

! --------------------------------------------------

!为方便,假定钢筋置于梁底两侧.

!=================================================== /config,nres,2000

/prep7

!定义单元及其材料特性等rd0=20.0 !钢筋直径

et,1,solid65

et,2,link8

mp,ex,1,33e3

mp,prxy,1,0.20

r,1

hntra=28

hntrl=2.6

tb,concr,1

tbdata,,0.7,1.0,hntrl,-1 mp,ex,2,2.1e5

mp,prxy,2,0.30

r,2,acos(-1)*0.25*rd0*rd0 !定义梁体即单元划分

blc4, , ,100,200,3000

/view,1,1,1,1

/ang,1 gplot

!定义网分时边长控制lsel,s,loc,z,1,2999

lsel,r,loc,y,0

latt,2,2,2

lesize,all,,,20 ! 钢筋网格数目

lmesh,all

lsel,s,loc,z,0

lesize,all,,,4 !截面上的网格数目

4x4

vsel,all

vatt,1,1,1

mshape,0,3d

mshkey,1

vmesh,all

allsel,all

finish

/solu

!施加约束

lsel,s,loc,z,0

lsel,r,loc,y,0

dl,all,,uy

dl,all,,uz lsel,all lsel,s,loc,z,3000 lsel,r,loc,y,0 dl,all,,uy lsel,all ksel,s,loc,x,0 ksel,r,loc,y,0 dk,all,ux allsel,all !施加荷载qmz=0.3 asel,s,loc,y,200 sfa,all,1,pres,qmz allsel,all nsubst,40 outres,all,all time,qmz*10 neqit,40 solve finish

/post1

pldisp,1 etable,zxyl,ls,1

plls,zxyl,zxyl,1

finish

/post26

nsol,2,33,u,y

prod,3,1,,,,,,1/100

prod,4,2,,,,,,-1

xvar,4

plvar,3

*******************************************************************************

例题2

! ---------------------------------------------------

!题目:钢筋混凝土简支梁模拟计算

!方法:分离式;solid65 和link8

!材料:混凝土采用concr+Miso 和钢筋为弹性材料,但不考虑压碎!增加网格密度

! ---------------------------------------------------

!为方便,假定钢筋置于梁底两侧.

!=================================================== /config,nres,2000 /prep7 !定义单元及其材料特性等rd0=20.0 !钢筋直径

et,1,solid65

et,2,link8

mp,ex,1,33e3

mp,prxy,1,0.20

r,1

hntra=28

hntrl=2.6

tb,concr,1

tbdata,,0.7,1.0,hntrl,-1

tb,miso,1,,14

tbpt,,0.0002,hntra*0.19

tbpt,,0.0004,hntra*0.36

tbpt,,0.0006,hntra*0.51

tbpt,,0.0008,hntra*0.64

tbpt,,0.0010,hntra*0.75

tbpt,,0.0012,hntra*0.84

tbpt,,0.0014,hntra*0.91

tbpt,,0.0016,hntra*0.96

tbpt,,0.0018,hntra*0.99 tbpt,,0.0020,hntra*1.00 tbpt,,0.0025,hntra*0.95 tbpt,,0.0030,hntra*0.90 tbpt,,0.0035,hntra*0.85 tbpt,,0.0040,hntra*0.80 mp,ex,2,2.1e5 mp,prxy,2,0.30 r,2,acos(-1)*0.25*rd0*rd0 !定义梁体即单元划分blc4, , ,100,200,3000 /view,1,1,1,1

/ang,1

gplot !定义网分时边长控制lsel,s,loc,z,1,2999 lsel,r,loc,y,0 latt,2,2,2 lesize,all,,,20 lmesh,all lsel,s,loc,z,0 lesize,all,,,4

vsel,all vatt,1,1,1

mshape,0,3d mshkey,1 vmesh,all allsel,all finish /solu !施加约束lsel,s,loc,z,0 lsel,r,loc,y,0 dl,all,,uy dl,all,,uz lsel,all lsel,s,loc,z,3000 lsel,r,loc,y,0 dl,all,,uy lsel,all ksel,s,loc,x,0 ksel,r,loc,y,0 dk,all,ux allsel,all !施加荷载qmz=0.3

asel,s,loc,y,200 sfa,all,1,pres,qmz allsel,all outres,all,all time,qmz*10 nsubst,40 neqit,40 solve finish /post1 pldisp,1 etable,zxyl,ls,1 plls,zxyl,zxyl,1 finish /post26 nsol,2,33,u,y prod,3,1,,,,,,1/100 prod,4,2,,,,,,-1 xvar,4 plvar,3

用ANSYS进行桥梁结构分析..

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

安庆长江铁路大桥ANSYSAPDL建模

桥址概况 安庆长江铁路大桥是南京至安庆城际铁路和阜阳至景德镇铁路的重要组成部分,位于安庆前江口汇合口处下游官山咀附近,距上游已建成通车的安庆长江公路大桥约21km;线路在池州侧晏塘镇靠近长江的刘村附近右拐过江,过江后从安庆的长风镇穿过。 安庆铁路长江大桥全长2996.8m,其中主桥采用跨度为101.5+188.5+580+217.5+159.5+116m 的钢桁梁斜拉桥;非通航孔正桥采用6孔跨径64m预应力混凝土简支箱梁;东引桥采用16孔梁长32.6m预应力混凝土简支箱梁;跨大堤桥采用48.9+86+48.8m预应力混凝土连续箱梁;西引桥采用15孔梁长32.6m预应力混凝土简支梁及2孔梁长24.6m预应力混凝土简支梁,其中宁安线采用箱梁,阜景线采用T梁。 主桥桥式及桥型特点 主桥采用103+188.5+580+217.5+159.5+117.5m两塔钢桁斜拉桥方案,全长1366m。主梁为三片主桁钢桁梁,桁间距2x14m,节间长14.5m,桁高15m。主塔为钢筋混凝土结构,塔顶高程+204.00m,塔底高程-6.00m,斜拉索为空间三索面,立面上每塔两侧共18对索,全桥216根斜拉索。所有桥墩上均设竖向和横向约束,4#塔与主梁之间设纵向水平约束,3#塔与梁间使用带限位功能的粘滞阻尼器。主梁为”N”字型桁式,横向采用三片桁结构,主桁的横向中心距各为14m,桁高15m,节间距14.5m[2]。 结构构造 主桥采用两塔钢桁斜拉桥方案,主梁为三片主桁钢桁梁,主桁上下弦杆均为箱型截面,上弦杆内高1000mm,内宽1200mm,板厚20~48mm。下弦杆内高1400mm,宽1200mm,板厚20~56mm。下弦杆顶板向桁内侧加宽700mm与整体桥面板焊接。腹杆主要采用H型截面。H型杆件宽1200mm,高720和760mm,板厚20~48mm。根据不同的受力区段选用不同的杆件截面,在辅助墩附近的压重区梁段,腹杆采用箱型截面杆件。主桁采用焊接杆件,整体节点。在节点外以高强度螺栓拼接的结构形式,上下弦杆四面等强对接拼装。H 型腹杆采用插入式连接。箱型腹杆采用四面与主桁节点对拼的连接形式。主桁拼接采用M30高强螺栓。 项目进展 2005年元月,安庆长江铁路大桥项目前期工作协调领导小组办公室委托铁道第四勘察设计院编制《安徽省铁路总体规划安庆过江通道深化研究及大桥选址报告》,随后铁四院专家组来宜现场勘察,采集相关资料,并于2月份完成该报告。 2005年8月,安徽省发改委主持召开“安庆长江铁路大桥桥位专家咨询会”,邀请中国工程院院士陈新等知名专家对大桥桥位进行咨询研究,并对选址报告进行评审。 2005年10月,经省部协商,铁道部将沿江城际铁路及安庆长江铁路大桥项目补列入国家“十一五”规划,并向铁四院下达前期工作任务书。 2005年12月,铁道部主持召开了宁安城际铁路及安庆长江铁路大桥项目预可研报告审查会。 2006年元月,宁安城际铁路及安庆长江铁路大桥项目列入国家“十一五”规划。 2006年7月5日,安庆长江铁路大桥设计竞标工作会议在北京举行,经研究、审核、竞标,铁四院与中铁大桥院联合体中标。 2006年9月,中铁大桥院和铁四院正式启动工程可行性研究报告的编制程序,同时编制了桥梁建设对长江航道的影响书,河势分析,桥位所在枯、中水流影响、流速及航迹图。 2006年10月9日,安庆市与铁四院、中铁大桥院联合举行了宁安城际铁路及安庆长江

基于ANSYS的钢筋混凝土梁的裂纹损伤分析

题目:基于ANSYS的钢筋混凝土梁的裂纹损伤分析 学院: 理学院 专业: 工程力学 学号: 200907152008 学生姓名: 张帅磊 指导教师: 李明 日期: 二〇一三年六月

摘要 钢筋混凝土结构在设计荷载作用下,在其受拉区出现裂缝是难以避免的,过大的裂缝不仅影响结构的安全性还影响结构的耐久性,必须通过配筋来限制裂缝开展宽度。ANSYS中的SOLID65是专门为分析混凝土结构定义的单元,可以显示结构的应力应变,还可以显示裂缝的分布情况,为钢筋混凝土梁的设计提供了理论依据。 本文主要使用有限元分析软件ANSYS对钢筋混凝土梁进行分析,通过选择适当的单元,简化建模过程,获得在位移荷载作用下,梁的变形数据,和裂纹分布同时。为钢筋混凝土梁在工程实际应用中提供适当的数据参考,以便更快捷地进行施工材料的选取,缩短工期。 关键字:钢筋混凝土梁;有限元分析;ANSYS;裂缝

Abstract Under design load, the reinforced concrete structures in the cracks in tensile area is difficult to avoid excessive cracks not only affects the safety of the structure also affect the durability of the structure, must through the reinforcement to limit the crack width in the ANSYS SOLID65 is defined specifically for analysis of reinforced concrete structure unit, can display the structure of the stress and strain, can also represent the distribution of cracks, provides a theoretical basis for the design of the reinforced concrete beam。 In this paper, we use finite element analysis software ansys analysis of reinforced concrete beams, by selecting the appropriate cell, simplify the modeling process, obtained under displacement load and deformation of the beam, and crack distribution for reinforced concrete beam at the same time to provide the appropriate data in the practical engineering application, in order to more quickly for the selection of construction materials, shorten the construction period Keywords:reinforced concrete beam;finite element analysis;ansys; crack

钢筋混凝土梁的ansys分析

摘要 本文介绍ANSYS 模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS 中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变形和裂缝的发展过程。 关键词 Ansys 混凝土梁 分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用ANSYS 对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys 中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为200400b h mm mm ?=?,梁的跨度为3.0L m =,支座宽度为250mm 采用C20混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12, 箍筋采用φ6@150,钢筋保护层厚度为25mm 。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为5 2.110MPa ?,抗拉强度设计值210MPa , 密度33 7.810/kg m ?,泊松比为0.3。

基于ANSYS的连续刚构桥分析操作篇

目录 一、工程背景 (1) 二、工程模型 (1) 三、ANSYS分析 (2) (一)前处理 (2) (1)定义单元类型 (2) (2)定义材料属性 (3) (3)建立工程简化模型 (3) (4)有限元网格划分 (5) (二)模态分析 (5) (1)选择求解类型 (5) (2)建立边界条件 (6) (3)输出设置 (6) (4)求解 (6) (5)读取结果 (6) (6)结果分析 (8) (三)结构试验载荷分析 (8) (1)第二跨跨中模拟车载分析 (8) (2)边跨跨中模拟车载分析 (9) 四、结果分析与强度校核 (10) (一)结果分析 (10)

(二)简单强度校核 (10) 参考文献 (11)

连续刚构桥分析 一、工程背景: 随着我国经济的发展,对交通运输的要求也不断提高;高速路,高铁线等遍布全国,这就免不了要架桥修路。截至2014年年底,我国公路桥梁总数已达万座,万延米i。进百万的桥梁屹立在我国交通线上,其安全便是头等大事。随着交通运输线的再扩大,连续刚构桥跨越能力大,施工难度小,行车舒顺,养护简便,造价较低等优点将被广泛应用。 二、工程模型: 现有某预应力混凝土连续刚构桥,桥梁全长为184m,宽13m,其中车行道宽,两侧防撞栏杆各主梁采用C50混凝土。桥梁设计载荷为公路—— 级。 图2-1桥梁侧立面图 上部结构为48m+88m+48m三跨预应力混凝土边界面连续箱梁。箱梁为单箱双室箱形截面,箱梁根部高5m,中跨梁高,边跨梁端高。箱梁顶板宽,底板宽,翼缘板悬臂长,箱梁高度从距墩中心处到跨中合龙段处按二次抛物线变化。0号至3号块长3m(4x3m),4、5号块长,6号块到合龙段长4m(6x4m),合龙段长2m。边跨端部设横隔板,墩顶0号块设两道厚横隔板。0号块范围内箱梁底板厚度为,1号块范围内底板厚度由线性变化到,2号块到合龙段范围内底板厚度由线性变化到。全桥顶板厚度为。0到5号块范围内腹板厚度为,6至7号块范围内腹板厚度由线性变化到,8号块到合龙段范围内夫板厚度为。 下部结构桥采用C50混凝土双薄壁墩,横向宽,厚,高25m双壁间设系梁,下设10mX10m矩形承台,厚。ii 图2-2主梁纵抛面图 图2-3 箱梁截面图 三、ANSYS分析: (一)前处理

Ansys桥梁计算

桥梁计算(常用的计算方法) 在Ansys单元库中,有近200种单元类型,在本章中将讨论一些在桥梁 工程中常用到的单元,包括一些单元的输人参数,如单元名称、节点、自由度、实常数、材料特性、表面荷载、体荷载、专用特性、关键选项KEYOPl等。***关于单元选择问题 这是一个大问题,方方面面很多,主要是掌握有限元的理论知识。首先 当然是由问题类型选择不同单元,二维还是三维,梁,板壳,体,细梁,粗梁,薄壳,厚壳,膜等等,再定义你的材料:各向同性或各向异性,混凝土的各项?参数,粘弹性等等。接下来是单元的划分与网格、精度与求解时间的要求等 选择,要对各种单元的专有特性有个大概了解。 使用Ansys,还要了解Ansys的一个特点是笼统与通用,因此很多东西 被掩盖到背后去了。比如单元类型,在Solid里面看到十几种选择,Solid45,Solidl85,Solid95等,看来区别只是节点数目上。但是实际上每种类型里还 有Keyopt分成多种类型,比如最常用的线性单元Solid45,其Keyopt(1):in●cludeorexclude extradisplacement shapes,就分为非协调元和协调元,Keyopt (2):fullintegration。rreducedintegration其实又是两种不同的单元,这样不同 组合一下这个Solid45实际上是包含了6种不同单元,各有各的不同特点和 用处。因此使用Ansys要注意各单元的Keyopt选项。不同的选项会产生不 同的结果。· 举例来说:对线性元例如Solid45,要想把弯曲问题计算得比较精确,必 须要采用非协调模式。采用完全积分会产生剪切锁死,减缩积分又会产生 零能模式(ZEM),非协调的线性元可以达到很高的精度,并且计算量比高阶 刷、很多,在变形较大时,用Enhanced Strain比非协调位移模式(Enhaced Displacement)更好(Solidl85)。但是这些非协调元都要求网格比较规则才 行,网格不规则的话,精度会大大下降,所以如何划分网格也是一门实践性 很强的学问。 采用高阶单元是提高精度的好办法,拿不定主意时采用高阶元是个比 较保险的选择,但是高阶单元在某些情况下也会出现剪切锁死,并且很难发 现,因此用减缩积分的高阶元通常是最保险的选择,但是在大位移时,网格 扭曲较大,减缩积分就不适用。 不同结构形式的桥梁具有不同的力学行为,必须针对性地创建其模型,? 选择维数最低的单元去获得预期的效果(尽量做到能选择点而不选择线,能 选择线而不选择平面,能选择平面而不选择壳,能选择壳而不选择三维实 体)。下面的几节介绍一下桥梁工程计算中经常会用到的单元。 ***桥梁仿真单元类型

用ANSYS对钢筋混凝土梁进行计算模拟

一、用钢筋混凝土简支梁的数值模拟为实例,对ANSYS的使用方法进行说明 钢筋混凝土简支梁,尺寸为长2000mm,宽150mm,高300mm。混凝土采用C30,钢筋全部采用HRB335,跨中集中荷载P作用于一刚性垫板上,垫板尺寸为长150mm,宽100mm。 建立分离式有限元模型,混凝土采用SOLID65单元,钢筋采用LINK8单元,不考虑钢筋和混凝土之间的粘结滑移。创建分离式模型时,将几何实体以钢筋位置切开,划分网格时将实体的边线定义为钢筋即可。加载点以均布荷载近似代替钢垫板,支座处则采用线约束和点约束相结合。单元尺寸以50mm左右为宜。 二、命令流 !钢筋混凝土简支梁数值分析 !分离式模型 FINISH /CLEAR /PREP7 !1.定义单元与材料属性 ET,1,SOLID65,,,,,,,1 ET,2,LINK8 MP,EX,1,13585 !混凝土材料的初始弹模以及泊松比 MP,PRXY,1,0.2 FC=14.3 !混凝土单轴抗压强度和单轴抗拉强度 FT=1.43 TB,CONCR,1 TBDA TA,,0.5,0.95,FT,-1 !定义混凝土材料及相关参数,关闭压碎 TB,MISO,1,,11 !定义混凝土应力应变曲线,用MISO模型 TBPT,,0.0002,FC*0.19 TBPT,,0.0004,FC*0.36 TBPT,,0.0006,FC*0.51 TBPT,,0.0008,FC*0.64 TBPT,,0.0010,FC*0.75 TBPT,,0.0012,FC*0.84 TBPT,,0.0014,FC*0.91 TBPT,,0.0016,FC*0.96 TBPT,,0.0018,FC*0.99 TBPT,,0.002,FC TBPT,,0.0033,FC*0.85 MP,EX,2,2.0E5 !钢筋材料的初始弹模以及泊松比 MP,PRXY,2,0.3 TB,BISO,2 TBDA TA,,300,0 !钢筋的应力应变关系,用BISO模型

(完整版)ansys钢筋混凝土梁的建模方法约束方程法

用约束方程法模拟钢筋混凝土梁结构问题描述 建立钢筋线 对钢筋线划分网格后形成钢筋单元 b h P 位移载荷

建立混凝土单元 对钢筋线节点以及混凝土节点之间建立约束方程

后施加约束以及位移载荷 进入求解器进行求解;钢筋单元的受力云图 混凝土的应力云图

混凝土开裂

fini /clear,nostart /config,nres,5000 /filname,yue su fang cheng 5 jia mi hun nin tu /prep7 /title,rc-beam b=150 h=300 a=30 l=2000 displacement=5 !定义单元类型 et,1,solid65 et,2,beam188 et,3,plane42 !定义截面类型 sectype,1,beam,csolid,,0 secoffset,cent secdata,8,0,0,0,0,0,0,0,0,0 sectype,2,beam,csolid,,0 secoffset,cent secdata,4,0,0,0,0,0,0,0,0,0

!定义材料属性,混凝土材料属性mp,ex,1,24000 mp,prxy,1,0.2 tb,conc,1,1,9 tbdata,,0.4,1,3,-1 !纵向受拉钢筋 mp,ex,2,2e5 mp,prxy,2,0.3 tb,bkin,2,1,2,1 tbdata,,350 !横向箍筋,受压钢筋材料属性mp,ex,3,2e5 mp,prxy,3,0.25 tb,bkin,3,1,2,1 tbdata,,200 !生成钢筋线 k,, k,,b kgen,2,1,2,,,h k,,a,a k,,b-a,a kgen,2,5,6,,,h-2*a

梁结构应力分布ANSYS分析

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062

2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相

_ANSYS桥梁工程应用实例分析

本章介绍桥梁结构的模拟分析。桥梁是一种重要的工程结构,精确分析桥梁结构在各种受力方式下的响应有较大的工程价值。模拟不同类型的桥梁需要不同的建模方法,分析内容包括静力分析、动荷载响应分析、施工过程分析等等。在本章中着重介绍桁架桥、刚架桥和斜拉桥三种类型桥梁。 内容 提要 第6章 ANSYS 在桥梁工程应用实例分析 本章重点 结构分析具体步骤 结构静力分析 桁架结构建模方法 结构模态分析 本章典型效果图

6.1 引言 ANSYS通用有限元软件在土木工程应用分析中可发挥巨大的作用。我们用它来分析桥梁工程结构,可以很好的模拟各种类型桥梁的受力、施工工况、动荷载的耦合等。 ANSYS程序有丰富的单元库和材料库,几乎可以仿真模拟出任何形式的桥梁。静力分析中,可以较精确的反应出结构的变形、应力分布、内力情况等;动力分析中,也可精确的表达结构的自振频率、振型、荷载耦合、时程响应等特性。利用有限元软件对桥梁结构进行全桥模拟分析,可以得出较准确的分析结果。 本章介绍桥梁结构的模拟分析。作为一种重要的工程结构,桥梁的精确分析具有较大的工程价值。桥梁的种类繁多,如梁桥、拱桥、钢构桥、悬索桥、斜拉桥等等,不同类型的桥梁可以采用不同的建模方法。桥梁的分析内容又包括静力分析、施工过程模拟、动荷载响应分析等。可以看出桥梁的整体分析过程比较复杂。总体上来说,主要的模拟分析过程如下:(1)根据计算数据,选择合适的单元和材料,建立准确的桥梁有限元模型。 (2)施加静力或者动力荷载,选择适当的边界条件。 (3)根据分析问题的不同,选择合适的求解器进行求解。 (4)在后处理器中观察计算结果。 (5)如有需要,调整模型或者荷载条件,重新分析计算。 桥梁的种类和分析内容众多,不同类型桥梁的的分析过程有所不同,分析侧重点也不一样。在这里仅仅给出大致的分析过程,具体内容还要看具体实例的情况。 6.2 典型桥梁分析模拟过程 6.2.1 创建物理环境 建立桥梁模型之前必须对工作环境进行一系列的设置。进入ANSYS前处理器,按照以下6个步骤来建立物理环境: 1、设置GUT菜单过滤 2、定义分析标题(/TITLE) 3、说明单元类型及其选项(KEYOPT选项) 4、设置实常数和单位制 5、定义材料属性

钢筋混凝土梁ansys非线性分析大作业

钢筋混凝土非线性分析2015大作业 1、参数选择 梁的截面宽度为200mm,上部配置2Φ8受压筋,混凝土的净保护层厚度为25 mm(从纵向钢筋外边缘算起),箍筋两端区采用8@100的双肢箍,中间区取8@200 双肢箍 1)梁的截面高度选300mm; 2)两加载间的距离选1000mm; 3)混凝土选C30; ; 4)纵向受拉钢筋配筋选218 2、描述选用的有限元模型及单元的特点 采用ansys软件进行模拟计算,钢筋混凝土模型采用分离式模型,不考虑钢筋与混凝土之间的相对滑移。 混凝土采用solid65单元模拟,solid65用于模拟三维有钢筋或无钢筋的混凝土模型。该单元能够计算拉裂和压碎。在混凝土应用中,该单元的实体功能可以用于建立混凝土模型,同时,还可用加筋功能建立钢筋混凝土模型。另外,该单元还可以应用于加强复合物和地质材料。该单元由八个节点定义,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。至多可以定义三种不同规格的钢筋。 钢筋单元采用link180单元模拟,link180是一个适用于各类工程应用的三维杆单元。根据具体情况,该单元可以被看作桁架单元、索单元、链杆单元或弹簧单元等等。本单元是一个轴向拉伸一压缩单元,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。本单元是一种顶端铰接结构,不考虑单元弯曲。本单元具有塑性、蠕变、旋转、大变形和大应变功能。缺省时,当考虑大变形时任何分析中LINK180单元都包括应力刚化选项。 3、描述选用的混凝土与钢筋粘结滑移本构关系的具体形式、参数等。

钢筋的应力应变关系曲线 考虑到极限塑性应变最大值为0.01,钢筋本构模型采用多线性模型kinh,初始弹性模量为Es=200000Mpa,强化系数为0.001。 混凝土的应力应变关系曲线 混凝土选用各向同性的miso模型,当计入下降端时,程序报错,所以只取了前面的上升段,用5段折线模拟混凝土应力应变曲线。 不考虑混凝土与钢筋之间的相对滑移 4、迭代方法和收敛标准。 使用修正的Newton-Raphson迭代方法进行求解。收敛标准采用位移来控制

ANSYS桥梁建模经验1讲课教案

第4章连续刚构桥参数化有限元模型建立 4.1 引言 众所周知,有限元分析的最终目的是通过模型来反映实际工程的力学特性,建模的过程是将工程特性转化为数学行为特征,而建立一个能准确反应物理原形的有限元模型对正确分析结构,得到正确的结果来说是至关重要的。当然建立一个完全与物理模型吻合,面面俱到的模型,对于一个庞大的复杂的工程来说也是不太可能的。从实用角度来说,模型的求解费用也是一个相当重要的指标。因此,有限元模型的建立尽量做到有的放矢。 本文分析的重点在于大跨度预应力混凝土梁桥箱形截面抗弯抗剪的效率研究,通过研究箱梁顶底板和腹板的匹配对弯曲应力和剪切应力的影响,以及不同荷载情况下连续刚构各区段弯曲应力和剪切应力的增长速率规律,来揭示预应力混凝土箱梁腹板开裂的本质。因此需要建立一个通用性强的参数化实体模型。同时为了进行分析对比,以及其他相关参数的概略获取,需要建立与实体模型对应的空间梁元模型。通过大型通用有限元分析程序ANSYS的APDL(ANSYS parametric design language)功能,建立了一个合理的连续刚构桥参数化实体有限元模型,为本文有限元分析提供了坚实的基础,为刚构桥桥梁分析设计工作提供了有力的保障。本章就连续刚构桥参数化实体有限元模型的建立的方法、必要的简化、实际工程力学特性在有限元模型中的实现做概要介绍。 4.2 APDL特点简介 APDL也就是ANSYS参数化设计语言,是一种类似FORTRAN的解释性语言。它具有一般程序语言所具有的功能,如参数、宏、标量、向量及矩阵运算、分支、循环、重复以及访问ANSYS有限元数据库等功能。是优化设计的基础,也是参数化设计的最高技术[52]。APDL命令流通常具有以下优点:1.模型文件小,不同版本间通用性强。 2.可以通过简单编程实现重复计算,减少人工干预,降低分析成本。 3.通过对ANSYS有限元数据库的访问,可以通过不同的手段控制模型的

钢筋混凝土梁ansys分析附命令流

钢筋混凝土非线性分析2015大作业 上海交通大学陈明1、参数选择 梁的截面宽度为200mm,上部配置2Φ8受压筋,混凝土的净保护层厚度为25 mm(从纵向钢筋外边缘算起),箍筋两端区采用8@100的双肢箍,中间区取8@200 双肢箍 1)梁的截面高度选300mm; 2)两加载间的距离选1000mm; 3)混凝土选C30; 4)纵向受拉钢筋配筋选218 ; 2、描述选用的有限元模型及单元的特点 采用ansys软件进行模拟计算,钢筋混凝土模型采用分离式模型,不考虑钢筋与混凝土之间的相对滑移。 混凝土采用solid65单元模拟,solid65用于模拟三维有钢筋或无钢筋的混凝土模型。该单元能够计算拉裂和压碎。在混凝土应用中,该单元的实体功能可以用于建立混凝土模型,同时,还可用加筋功能建立钢筋混凝土模型。另外,该单元还可以应用于加强复合物和地质材料。该单元由八个节点定义,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。至多可以定义三种不同规格的钢筋。 钢筋单元采用link180单元模拟,link180是一个适用于各类工程应用的三维杆单元。根据具体情况,该单元可以被看作桁架单元、索单元、链杆单元或弹簧单元等等。本单元是一个轴向拉伸一压缩单元,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。本单元是一种顶端铰接结构,不考虑单元弯曲。本单元具有塑性、蠕变、旋转、大变形和大应变功能。缺省时,当考虑大变形时任何分析中LINK180单元都包括应力刚化选项。

3、描述选用的混凝土与钢筋粘结滑移本构关系的具体形式、参数等。 钢筋的应力应变关系曲线 考虑到极限塑性应变最大值为0.01,钢筋本构模型采用多线性模型kinh,初始弹性模量为Es=200000Mpa,强化系数为0.001。 混凝土的应力应变关系曲线 混凝土选用各向同性的miso模型,当计入下降端时,程序报错,所以只取了前面的上升段,用5段折线模拟混凝土应力应变曲线。 不考虑混凝土与钢筋之间的相对滑移

ANSYS钢筋混凝土梁实例(流畅收敛)

!------------------------------------------------------ !EX8.26 钢筋混凝土简支梁数值分析 !分离式模型,关闭压碎,keyopt(1)=0,keyopt(7)=1 !力加载,位移收敛准则,误差1.5%,1/4模型分析!-------------------------------------------- finish /clear /config,nres,2000 /prep7 !1.定义单元与材料性质-------------------- et,1,solid65,,,,,,,1 !K1=0,k7=1 et,2,link8 mp,ex,1,30000 mp,prxy,1,0.2 fc=30 ft=3 tb,concr,1 tbdata,,0.5,0.95,ft,-1 tb,miso,1,,10 tbpt,,0.0002,fc*0.2 tbpt,,0.0004,fc*0.36 tbpt,,0.0006,fc*0.51 tbpt,,0.0008,fc*0.64 tbpt,,0.001,fc*0.75 tbpt,,0.0012,fc*0.84 tbpt,,0.0014,fc*0.91 tbpt,,0.0016,fc*0.96 tbpt,,0.0018,fc*0.99 tbpt,,0.002,fc mp,ex,2,2.0e5 mp,prxy,2,0.3 tb,biso,2 tbdata,,300,0 pi=acos(-1) r,1,0.25*pi*22*22 r,2,0.25*pi*22*22/2 r,3,0.25*pi*10*10 r,4,0.25*pi*10*10/2 !2.创建几何模型 blc4,,,150/2,300,2000/2 *do,i,1,9 wpoff,,,100 vsbw,all *enddo

简单桁架桥梁ANSYS分析

下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。背景素材选自位于密执 安的"Old North Park Bridge" (1904 - 1988),见图3-22。该桁架桥由型钢组成,顶梁及侧梁, 桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。桥长L=32m,桥高 H=5.5m。 桥身由8段桁架组成,每段长4m。该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间 位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1, P2和P3,其中P1= P3=5000 N, P2=10000N,见图3-23。 图3-22位于密执安的"Old North Park Bridge" (1904 - 1988) 图3-23桥梁的简化平面模型(取桥梁的一半) 表3-6桥梁结构中各种构件的几何性能参数 构件惯性矩m4横截面积m2 顶梁及侧梁(Beam1) 643.8310m-′322.1910m-′ 桥身弦梁(Beam2) 61.8710-′31.18510-′ 底梁(Beam3) 68.4710-′33.03110-′ 解答以下为基于ANSYS图形界面(Graphic User Interface , GUI)的菜单操作流程。安全提示:如果聊天中有涉及财产的操作,请一定先核实好友身份。发送验证问题或

点击举报 天意11:36:47 (1)进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname (设置工作文件名):TrussBridge →Run →OK (2)设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3)定义单元类型 hhQ?RRN??QQ https://www.360docs.net/doc/9a7257522.html,oomm QM?9NN?} ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam : 2d elastic 3 →OK(返回到Element Types窗口)→Close (4)定义实常数以确定梁单元的截面参数 ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1 Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.1 9E-3,Izz: 3.83e-6(1号实常数用于顶梁和 侧 梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.18 5E-3,Izz: 1.87E-6 (2号实常数用于弦杆) →Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK (back to Real Constants window) →Close (the Real Constants win dow) (5)定义材料参数

钢筋混凝土梁的弹塑性分析ansys命令流

!(1)工作环境设置 /FILENAME,RC-BEAM !指定工作文件名 /TITLE,ALAL YSIS OF A RC-BEAM !指定图形标题 !(2)进行前处理器 /prep7 !(3)定义单元类型 ET,1,LINK8 !定义钢筋单元 ET,2,SOLID65 !定义混凝土单元 ET,3,MESH200 !用于拉伸成体单元KEYOPT,3,1,6 !(4)定义钢筋截面积 r,1,28.3 r,2,50.3 r,3,314.1 !(5)为solid65单元定义一个实参数组 r,4, !(6)定义混凝土材料 MP,EX,2,2.55E10 MP,PRXY,2,0.3 TB,CONC,2,1,9, !定义混凝土的破坏参数TBDA TA,,0.3,0.55,1.55E6,-1,, TBDA TA,,,,0.6 !(7)定义钢筋材料模型及参数 mp,ex,2,2e5 !纵向受拉钢筋材料 mp,prxy,2,0.3 tb,bkin,2,1,2,1 tbdata,,350 mp,ex,3,2e5 !横向箍筋,架立钢筋材料mp,prxy,3,0.25 tb,bkin,3,1,2,1 tbdata,,200 !(8) 创建以及复制节点 /pnum,node,1 /pnum,elem,1 n,1 n,9,200 fill,1,9 ngen,11,9,1,9,1,,30 ngen,11,99,1,99,1,,,-150 /view,1,1,1,1

!(9)建立箍筋单元 type,1 real,1 mat,3 !水平箍筋 *do,i,11,16,1 e,i,i+1 e,i+(83-11),i+(83-11)+1 *enddo !坚直箍筋 *do,i,11,74,9 e,i,i+9 e,i+6,i+6+9 *enddo !产生整个模型的箍筋 egen,11,99,all !(10)建立架立筋以及纵筋单元 !创建上部的架立钢筋单元 *do,i,83,node(25,270,-1500+150),99 e,i,i+99 e,i+6,i+6+99 *enddo !纵向受拉钢筋单元的属性 type,1 real,3 mat,2 !创建纵筋单元 *do,i,11,node(25,30,-1500+150),99 e,i,i+99 e,i+3,i+3+99 e,i+6,i+6+99 *enddo /view,1,1,1,1 /pnum,elem,0 /pnum,node,0 /eshape,1 eplot !(11)建立混凝土剖面并划分网格

ansys桥梁模型建立

在桥梁用ansys建立模型时,可参照以下建议的单元进行桥梁模型的建立。 1、梁(配筋)单元:桥墩、箱梁、纵横梁。 2、板壳(配筋)单元:桥面系统。 3、实体(配筋)单元:桥墩系统、基础结构。 4、拉杆单元:拱桥的系杆、吊杆。 5、拉索单元:斜拉桥的索、悬索桥的钢丝绳。 6、预紧单元:索力控制、螺栓铆钉连接。 7、连接单元:支座、地基。 连接部分解决方法: ansys在解决桥梁不同的连接部位时可选用如下的方法: 1、Combin7、Combin40、Link11、Combin5 2、Combin38弹簧(阻尼、间隙元):可用来模拟支座、绳索、拉杆等桥梁部位。 2、预紧单元可解决螺栓、铆钉连接的问题。 3、二力杆拉杆、索可解决拉索问题。 4、耦合与约束方程可解决梁与塔横梁的边界约束关系。 5、接触单元如Contact152可模拟滑动支座、销接等部件的真实情况。 常见桥梁接触问题: 1、滑动连接:点点接触 2、绑定连接:点面接触 3、转动连接:面面接触 基础的处理方式: 1、基础平台与桩基:用实体模型、预应力配筋 2、基础与岩土系统:有限区域实体模型、预应力配筋 桥梁中常见的模型可以用相应的单元 1、刚构桥、拱桥:梁与杆单元组合模型 2、钢管砼:复合截面梁模型 3、连续梁:梁模型 4、斜拉桥、悬索桥:梁、板壳、索或杆单元组合模型 5、立交桥:实体墩、板壳桥面和加强梁混合模型 6、局部详细计算:实体(考虑配筋)或板模型,以便考虑模型细节特征,如结构尺寸构造倒角、厚薄或粗细过度、凹凸部分及其配筋 、

/prep7 et,1,beam4 et,2,link10 et,3,shell63 r,1,2,,,1,2 r,2,, r,3,,,, mp,ex,1,2e11 mp,nuxy,1, mp,dens,1,7800 mp,ex,2,3e10 mp,nuxy,2, mp,dens,2,3000 k,1,-60,-10,0 k,2,-50 k,3,-30,15 k,4,-10,20 k,5,10,20 k,6,30,15 k,7,50 k,8,60,-10 k,9,-70 k,10,-60

钢筋混凝土梁的ansys分析

基于ANSYS的钢筋混凝土力学分析摘要本文介绍ANSYS模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变 形和裂缝的发展过程。 关键词Ansys 混凝土梁分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹 性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基 于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重 要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用 ANSYS对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进 行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为 b h 200 mm 400 m m ,梁的跨度为 L 3.0 m ,支座宽度为250 m m 采用C20 混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12,箍筋采用φ6@150,钢筋保护层厚度为25mm。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为 5 2.1 10 MPa ,抗拉强度设计值210 M P a ,

相关文档
最新文档