水通道蛋白的基本结构与特异性通透机理王晶桑建利北京师范大学

水通道蛋白的基本结构与特异性通透机理王晶桑建利北京师范大学
水通道蛋白的基本结构与特异性通透机理王晶桑建利北京师范大学

水通道蛋白的基本结构与特异性通透机理

王晶桑建利

(北京师范大学生命科学学院北京 100875)

摘要水通道蛋白是一个具有跨膜运输水分子功能的蛋白家族。从1988 年Agre 等发现水通道蛋白起,目前在不同物种中已经发现了200 余种水通道蛋白,其中存在哺乳动物体内的有13 种。概述了水通道蛋白的结构、组织特异性分布及特异性通透机理。

关键词水通道蛋白水分跨膜转运

水分子的跨膜转运对维持不同区域的液体平衡和内环境稳态非常重要。水分子作为一种不带电荷且半径极小的极性分子,很早被证实能通过自由扩散穿透脂质双分子层。在发现水通道蛋白以前,人们一直认为这是水分子透过质膜的唯一方式。但通过实验发现,红细胞和肾小管细胞中水的通透速率之快远非简单扩散强度所能提供的,因此猜测,质膜上可能存在某种通道介导水的转运。

1 水通道蛋白的发现

1988年,Agre 等从人类红细胞膜上纯化分离分子量为32×106的Rh 多肽时,偶然鉴定到一种新的分子量为28×106的整合膜蛋白,并且通过免疫印迹发现这类蛋白也存在于肾脏的近端肾小管中[1],把它称为类通道整合膜蛋白(channel-like integralmembrane protein, CHIP28)。随后,在1991 年Agre 和Preston 成功克隆得到了CHIP28 的cDNA,通过分析其编码的氨基酸序列,发现CHIP28 含有6个跨膜区域、2个N-糖基化位点、且N 端和C 端都位于膜的胞质一侧。另外,对比CHIP28 与早期从牛晶体纤维中克隆得到的主要内源性蛋白(major intrinsicprotein,MIP)的DNA 序列,发现二者具有高度同源性。由于很早以前就证实了MIP 家族的成员蛋白参与形成允许水和其他小分子通透的膜通道,因此,推测CHIP28 可能也具有类似功能[2]。1992 年,Preston 等通过在非洲爪蟾的卵母细胞中表达CHIP28,首次证实它是一种水通道蛋白。非洲爪蟾的卵母细胞对水具有极低的渗透性,当向其中显微注射体外转录的CHIP28 的RNA后,卵母细胞在低渗溶液中迅速膨胀,并于5 min内破裂。这一现象表明注射CHIP28 的RNA 后卵母细胞膜的水通透性有了明显提高。为了进一步确定CHIP28 的功能,将提纯的CHIP28 构建在蛋白磷脂体中,构建后的蛋白磷脂体对水的通透性增长了50 倍,但对尿素却不具备通透性[3]。这些结果最终证实了CHIP28 为水通道蛋白,后来它被命名为水通道蛋白-1(aquaporin-1,AQP1)。水通道蛋白的发现,开辟了一个崭新的领域。随着更多亚型的发现,水通道蛋白相关研究成为了膜转运方向的研究热点,Agre 也因其对水通道蛋白做出的突出贡献而获得2003 年诺贝尔化学奖。

2 水通道蛋白的分子结构

水通道蛋白分布广泛,目前已在哺乳动物、两栖类、植物、酵母、细菌以及各种各样的有机体中发现水通道蛋白的存在。水通道蛋白是一类高度保守的疏水小分子膜整合蛋白,各种亚型之间蛋白序列及三维结构非常相似。哺乳动物水通道蛋白的分子大小在26×106~34×106之间,氨基酸序列同源性为19%~52%[4]。因水通道蛋白的三维结构相似,一般以AQP1的结构作为代表。AQP1 是一条由269 个氨基酸残基构成的单肽链,对比AQP1 分子前后半段的氨基酸序列,发现2 段序列具有相关性,推测AQP1在进化上可能是通过基因复制而来。单肽链

在细胞膜上往返折叠形成6 个α螺旋的跨膜区域,并且肽链的N 端和C 端都位于质膜内侧;6 个跨膜区域由5 条环(A~E loop)相连。目前,被人们广为接受的水通道蛋白三维结构是“沙漏模型(hourglassmodel)”[4],模型指出:肽链中的B 环和E 环具有高度保守的天冬酰胺- 脯氨酸- 丙氨酸(Asn -Pro - Ala,NPA)特征性序列,B 环和E 环折返进入膜双分子层,2个保守的NPA 序列在膜的磷脂双层中间位置相互结合,6 条跨膜区域在四周包围,共同构成了一个供水分子通过的亲水通道(图1)。

通过对AQP1 的三维结构进一步研究发现,B环和E 环折返入膜后分别形成短螺旋B(HB)和短螺旋E(HE),中心孔道处起稳定作用的2 条NPA基序几乎呈90°交叉,所形成的亲水通道的直径约为2.8×10-10 m,刚好能容纳单个水分子通过,外围6 条跨膜区域呈现右手螺旋包围。构成中心孔道表面的除B 环和E 环外,还有螺旋2、5 以及螺旋1、4 的C 端部分。有研究指出,将B 环和E 环联系在一起的作用力主要是2 条NPA 基序中脯氨酸残基间的范德华力,同时也受到离子键和氢键的稳定。几乎所有AQP 分子的B 环和E 环上都有高度保守的NPA 特征性序列。但也有少数例外:在AQP11 和AQP12 中仅发现E 环上具有NPA 序列,另一个在B 环上的NPA 序列分别由天冬酰胺-脯氨酸-半胱氨酸(Asn-Pro-Cys,NPC)和天冬酰胺-脯氨酸-苏氨酸(Asn-Pro-Thr,NPT)替代[6]。在体内,AQP1 主要以同源四聚体的形式存在。研究发现,四聚体中某个水通道蛋白单体发生突变并不会影响其他3 个蛋白单体的功能,即每一个水通道蛋白单体是一个独立的功能单位。水分子的跨膜渗透是通过水通道蛋白单体的中心通道完成的,而无法通

过中聚体的中央孔洞(4 个单体衔接处的中心缝隙)[7]。每个单体通过跨膜的α螺旋与邻近的2 个单体相互作用。这些相互作用很有可能受到一些氨基酸残基之间的氢键的稳固。

3 水通道蛋白的种类

迄今为止,已有200 余种水通道蛋白在不同物种中被发现,其中存在于哺乳动物体内的水通道亚型有13 种,即AQP0-AQP12(见下表)。根据它们的基因结构和通透性,这13 种水通道蛋白可划分为3 组:传统水通道蛋白(orthodox aquaporins)(包括AQP0、1、2、4、5、6、10)、甘油水通道蛋白(aquaglyceroporins)(包括AQP3、7、9)和未明确分类的AQP8、11、12。目前对哺乳动物中较早发现的10 个水通道蛋白AQP0~AQP9 研究较为透彻,它们的功能也通过人类疾病的鉴定及对基因缺失小鼠的研究而被鉴定;而较近发现的3 个成员AQP10~AQP12 则相对研究较少,它们的胞内定位及表达异常导致的人类疾病都还未被鉴定[8]。

4 水分子特异性通透机理

水通道蛋白对水分子具有高度选择性。大部分水通道蛋白严格排斥除水分子

O+)、甘油以外的所有物质通过,包括结合水分子的氢离子(水合氢离子,H

3

和各种离子等,但也有部分水通道蛋白对甘油等小分子中性溶质具有通透性。AQP1膜蛋白的密度可达到大于109 个/μm2,。这一密度远远高于普遍的离子通道的密度(除突触后膜上的乙酰胆碱受体外,大多小于1 个/μm2)。

水通道蛋白是怎样对水分子进行严格筛选的呢?首先,通道的空间大小只能容纳单个水分子,限制了比水分子大的分子通过。以对水分子具有专一通透性的AQP1 为例,AQP1 的中心通道呈哑铃状,狭口处在脂双层中央B 环和E 环相互作用的NPA 序列位置附近。构成中心孔道表面的氨基酸残基中,亲水和疏水的残基数量基本是对等的。这些亲水残基在对水分子去水化过程中有重要作用。另外,中心孔道最窄处由4 个残基构成,包括亲水的His180、Arg195、Cys189 和疏水的Phe56。虽然这一缩口只有1 个氨基酸残基的跨度,但是它2.8×10-10 m 的直径仍然阻断了比水分子大的离子和溶质的通过。因此,这4 个残基的变化都可以对水通道的选择性产生影响。根据已有研究可知,His180 在只对水具有通透性的水通道蛋白中高度保守,但在一些对甘油也具通透性的水通道蛋白,如GlpF 中则被甘氨酸残基代替[11]。

另一个困扰人们已久的问题是何种机制阻断了水道蛋白对质子的跨膜运输。早在短杆菌肽中的研究就已表明,水可以以连续不断的方式通过膜上的开放孔,这种水分子排列成一条直线、质子由一个水分子传递到另一个水分子、并伴随着氢键的断裂和重建的过程,被研究者称为“Grotthus 效应”。既然水通道蛋白对水具有特异通透性, 那么可通过“Grotthus效应”传递的质子运输又是怎样被阻断的呢?

目前被较多人接受的另一个机制是在NPA 序列处有1对偶极子对水分子起着定向作用。在每个水通道的中心位置,NPA 序列上的Asn76 和Asn192 的氨基向孔道最窄处延伸。此时,位于此处的水分子与其邻近的水分子之间的氢键发生断裂,其氧原子替代性地与Asn76 和Asn192 的氨基形成氢键。这一变化重排了水的分子轨道,使最窄处水分子的2 个氢原子定向到与通道轴线垂直的方向(图2)。因此,中心处水分子的2 个氢原子无法与周围邻近的水分子形成氢键;另外,在通道最窄处的残基附近的氨基酸残基都是疏水的,因此不会有另外的残基与水分子的2 个氢原子形成氢键。这一模式使得位于通道上下2 部分中的水分子在取向上相反,不利于形成氢键链,从而也阻断了质子通过“Grotthus 效应”完成连续传输,同时,因为疏水氨基酸不参与形成氢键,也保证了水分子在通过孔道时只需要跨越一个相当低的能量障碍[7,12]。

a:NPA 基序上的偶极矩改变了中心水分子的定向,使通道

上下水分子取向相反。b,c:水分子与Asn192、Asn76 的氨基形成

氢键,水分子的2 个氢原子重定向至与通道轴线垂直[7]

据已有研究,水通道蛋白几乎严格排斥其他所有离子。从理论上来说,水合化的离子直径为7.16×10-10 m,而去水合化的离子只有1.9×10-10 m的直径,是可以通过最窄处为2.8×10-10 m 的中心通道的。孔道狭窄的阳离子通道

就具有使离子去水合化的能力,如KcsA 钾通道中就有16 个羰基氧以4 个每环的结构垛叠排列,这一结构具有分离与离子水合的水分子的能力。而AQP1 中孔道中的羰基氧的结构虽然足以分离体相水中的水分子,但是只能使水合离子部分去水合化,而后者则因直径仍大于狭口直径而无法通过水通道[13]。

主要参考文献

1 Denker B.M., Smith B.L., Kuhajda F.P. et al . Identification,purification, and partial characterization of a novel Mr 28000 integral membrane protein from erythrocytes and renal tubules.

J Biol Chem,1988,263(3):15634.

2 Preston G. M., Agre P.. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons:member of an ancient channel family. Proc Natl Acad Sci USA, 1991, 88:

11110—11114.

3 Preston G.M.,Carroll T.P., Guggino W.B.et al . Appearance of

water channels in Xenopus oocytes expressing red cell CHIP28 protein.Science,1992, 256(5055):385—387.

摘自《生物学通报》2011年第2期

脂多糖对人肠微血管内皮细胞水通道蛋白1表达及功能的影响陈信浩

[6] Si ML,Zha S,Wu H,et al.miR-21-mediated tumor growth[J].Oncogene,2007,26(19):2799-2803. [7] AsanganiI A,Rasheed SA,Nikolova DA,et al.MicroRNA-21(mir-21)post-transcriptionally downregulates tumorsuppressor PDCD4and stimulates invasion and metastasis incolorectal cancer[J].Oncogene,2008,27(15):2128-2136.[8] Zhu S,Wu H,Wu F,et al.MicroRNA-21targets tumorsuppressor genes in invasion and metastasis[J].Cell Res,2008,18(3):350-359. [9] Meng F,Henson R,Wehbe-Janek H,et al.MicroRNA-21regulates expression of the PTEN tumor suppressor gene inhuman hepatocellular cancer[J].Gastroenterology,2007,133 (2):647-658. [10] Gabriely G,Wurdinger T,Kesari S,et al.MicroRNA-21promotes glioma invasion by targeting matrix metalloproteinase regulators[J].Mol Cell Biol,2008,28(17):5369-5380. [11] Selaru FM,Olaru AV,Kan T,et al.MicroRNA-21isoverexpressed in human cholangiocarcinoma and regulates programmed cell death 4and tissue inhibitor of metalloproteinase 3[J].Hepatology,2009,49(5):1595-1601. [12] 史春梅,陈玲,徐广峰,等.人miR-17-92cluster慢病毒载体构建及其在人脂肪细胞的表达验证[J].江苏医药,2012,38(6):624-627. (收稿日期:2012-06-11)(供稿编辑:单晓光) ·论著· 脂多糖对人肠微血管内皮细胞水通道 蛋白1表达及功能的影响 陈信浩 纪俊标 吕纯业 戴存才 【摘要】 目的 研究脂多糖(LPS)对人肠微血管内皮细胞(HIMEC)水通道蛋白(AQP)1表达及功能的影响。方法 40份HIMEC均分为A、B、C、D四组。A、B、C组分别经浓度为0.1、1、10mg/L的LPS作用;D组为对照组,只加培养基。各组细胞培养12h。Western blot法检测HIMEC AQP-1的表达;RT-PCR检测HIMEC AQP-1mRNA的表达;放射法测定HIMEC的摄水功能。结果 随着作用于HIMEC的LPS浓度增加,AQP-1蛋白及其mRNA表达和HIMEC的摄水功能均逐步减少(P<0.05)。结论 HIMEC AQP-1表达与LPS浓度呈负性相关。 【关键词】 细菌内毒素;内皮细胞;水通道蛋白1;脂多糖 【中图分类号】 R329 【文献标识码】 A 【文章编号】 0253-3685(2012)22-2649-03 Effects of lipopolysaccharide on aquaporin 1expression and function in human intestinal microvascularendothelial cell CHEN Xinhao,JI Junbiao,LV Chunye,et al.Department of General Surgery,FirstAffiliated Hospital,Nanjing Medical University,Nanjing 210029,CHINA 【Abstract】 Objective To study the effects of lipopolysaccharide(LPS)on aquaporin 1(AQP-1)expression and function in human intestinal microvascular endothelial cells(HIMEC).MethodsFourty pieces of HIMEC were equally randomized into 4groups of A(treated with LPS 0.1mg/L for12h),B(with LPS 1mg/L),C(with LPS 10mg/L)and D(blank control).The expressions of AQP-1protein and mRNA in HIMEC were detected by Western blot and RT-PCR,respectively.Water intakeof HIMEC was measured by radioactive method.Results As the concentration of LPS increased,theexpressions of AQP-1protein and mRNA in HIMEC were decreased(P<0.05).So did the ability ofwater intake of HIMEC(P<0.05).Conclusion AQP-1expression is negatively correlated to LPSconcentration. 【Key words】 Lipopolysaccharide;Human intestinal microvascular endothelial cell;Aquaporin 1;lipopolysaccharide [Jiangsu Med J,November 2012,38(22):2649-2651.] 基金项目:南京市科技计划项目(201201085);南京市青卫工程资助项目 作者单位:210029 江苏省,南京医科大学第一附属医院普通外科 (陈信浩、戴存才);南京医科大学附属江宁医院(陈信浩、纪俊标、吕纯业) 通讯作者:戴存才 E-mail:daicuncaidy@sina.com · 9 4 6 2 · 江苏医药2012年11月第38卷第22期 Jiangsu Med J,November 2012,Vol 38,No.22

水通道蛋白

水通道蛋白 水通道蛋白是介导水跨膜转运的一大 膜蛋白家族,分布于高等脊椎动物上皮细胞或内皮细胞。结构上由28-KDa 亚单位组成 四聚体,每个亚单位构成孔径约的水孔通道,在渗透压驱动下实现水双向跨膜转运【1】。目前11 种亚型已经在哺乳动物中被确定, 各种亚型的体内分布具有组织特异性,其中水通道蛋白-4 (Aquaporin 4,AQP4)以极化 形式集中分布于中枢神经系统脑毛细血管 周边的星形胶质细胞足突或室管膜细胞【2】。血脑屏障为脑内另一调控水平衡的复合体,由无窗孔的脑毛细血管内皮细胞及细胞间 紧密连接、基底膜、星形胶质细胞等组成,介于血液和中枢神经系统之间,限制血液中某些离子、大分子物质转移到脑实质,此屏障作用为维持CNS 内环境稳定、保障脑功能正常行使提供了重要保障。BBB 分化发育过程中脑毛细血管内皮细胞间紧密连接的形 成虽被认为是其成熟的标志,但BBB 生理功

能的实现有赖于各组成成分间的相互作用。近来对星形胶质细胞调控BBB 物质交换和 脑内水平衡方面的作用日益受到重视,并认为与AQP4 表达有关。 本文就AQP4 与血脑屏障发育及其完整性关系的研究进展作一综述。 分化发育过程中AQP4 的表达 目前由于对鸡胚视顶盖中血管及BBB 分化的研究已较完善,因此常被用于BBB 的研究模型。Nico 及其同事【3】采用免疫细胞化学、分子生物学技术研究了鸡胚视顶盖AQP4 在BBB 分化发育过程的动态表达。免疫电镜显示鸡胚视顶盖发育第9 d,BBB仅由不规则的内皮细胞组成,内皮细胞间紧密连接尚未形成,AQP4 未见表达。待发育至第14 d,Western blot 技术首次在约30 kDa 链附近检测出AQP4 的免疫活性,电镜下显示短的内皮细胞间紧密连接已形成,并串联构成BBB 的微血管,星形胶质细胞间断黏附于血管壁,AQP4 不连续地表达于血管周边,血管周围仍然存在小空隙。发育第20 d BBB 成熟,内皮细胞间紧密连接形成,BBB 微血管

水通道蛋白

水通道蛋白 水通道蛋白(Aquaporin),又名水孔蛋白,是一种位于细胞膜上的蛋白质(内在膜蛋白),在细胞膜上组成“孔道”,可控制水在细胞的进出,就像是“细胞的水泵”一样。 水通道是由约翰霍普金斯大学医学院的美国科学家彼得·阿格雷所发现,他与通过X射线晶体学技术确认钾离子通道结构的洛克斐勒大学霍华休斯医学研究中心的罗德里克·麦金农共同荣获了2003年诺贝尔化学奖。 水分子经过Aquaporin时会形成单一纵列,进入弯曲狭窄的通道内,内部的偶极力与极性会帮助水分子旋转,以适当角度穿越狭窄的通道,因此Aquaporin的蛋白构形为仅能使水分子通过之原因 水通道蛋白的发现 编辑 Agre等(1988)在分离纯化红细胞膜上的Rh多肽时,发现了一个28 kD的疏水性跨膜蛋白,称为形成通道的整合膜蛋白28(channel-forming inte—gral membrane protein,CHIP28),1991年完成了其cDNA克隆(Verkman,2003)。但当时并不知道该蛋白的功能,在进行功能鉴定时,将体外转录合成的CHIP28 mDNA 注入非洲爪蟾的卵母细胞中,发现在低渗溶液中,卵母细胞迅速膨胀,并于5 min 内破裂。为进一步确定其功能,又将其构于蛋白磷脂体内,通过活化能及渗透系数的测定及后来的抑制剂敏感性等研究,证实其为水通道蛋白。从此确定了细胞膜上存在转运水的特异性通道蛋白,并称CHIP28为Aquaporinl(AQPl)。 水通道蛋白分类 编辑 AQP0 AQP0最初称之为主体内在蛋白(major intrinsic protein,MIP),在晶状体纤维中细胞中表达丰富,与晶状体的透明度有关.AQpo的突变可能导致晶状体水肿和白内障。小鼠缺乏AQPO将患先天性白内障[61]。 AQP1 AQP1是1988年发现的,开始将这种蛋白称为通道形成整合蛋白(CHIP),是人的红细胞膜的一 种主要蛋白。它可以使红细胞快速膨胀和收缩以适应细胞间渗透性的变化。AQP1蛋白也存在于

水通道蛋白4在中枢神经系统疾病中的研究进展

四综述四 通信作者:曹磊,E m a i l :C a o _L e i 1988@163.c o m 水通道蛋白4在中枢神经系统疾病中的研究进展 吝 娜1,曹 磊2 (1.石家庄心脑血管病医院神经内二科,河北石家庄050000;2.河北医科大学第三医院放射科,河北石家庄050051 ) 摘 要:水通道蛋白(a q u a p o r i n s ,A Q P s )是一跨膜蛋白家族,主要调节体内水的转运,A Q P 4是水通道蛋白家族成员,在中枢神经系统主要表达于星形胶质细胞终足三近年来,A Q P 4在多种神经系统疾病发生发展中的作用机制备受关注,通过深入研究A Q P 4在中枢神经系统疾病中的变化,有助于在分子层面阐明疾病的发生机制,从而为中枢神经系统疾病的诊疗提供新的思路和方法三 关键词:水通道蛋白质4;脑水肿;视神经脊髓炎;阿尔茨海默病;帕金森病;癫痫中图分类号:R 742 文献标志码:A 文章编号:1004-583X (2019)06-0567-05 d o i :10.3969/j .i s s n .1004-583X.2019.06.017 水通道蛋白(A Q P s )是一种膜转运蛋白,它可以转运水分子通过细胞膜,可根据渗透梯度促进双向 水转运三在哺乳动物中,已经有13个水通道蛋白 (A Q P 0-A Q P 12)被发现[1] 三A Q P 的相对分子质量约30000[2],其中A Q P 4是中枢神经系统A Q P s 家 族的主要成员,参与了多种神经系统疾病三 A Q P 4于1994年在同源克隆大鼠的肺组织中发 现三在结构上,A Q P 4存在8个膜嵌入域, 其中包括6个跨膜结构和面向胞质的氨基酸与羧基端三A Q P 4在所有表达的细胞中,主要表现为两种亚型,包括以选择性拼接产生的较长的M 1亚基型,其含有M e t -1位点翻译起始区,由323个氨基酸残基构成; 以及较短的M 23亚型,其含有M e t -23位点翻译起始区,由301个氨基酸残基构成[1] 三A Q P 4分子密集聚集形成正交粒子阵列(O A P s ),其大小取决于A Q P 4-m 1 与A Q P 4-m 23的比例,而A Q P 4-m 23则来稳定O A P 以及促进形成更宽的阵列[3] 三A Q P 4在侧脑室 和导水管的室管膜细胞二脉络丛上皮二软脑膜二下丘脑二视上核二海马齿状回和小脑浦肯野细胞均有显著表达,与神经兴奋二神经元兴奋后细胞外K +清除二细胞迁移和水运动等有关[ 1 ]三1 A Q P 4与脑水肿1.1 脑水肿 脑水肿的特征在于脑组织中水的净增加引发组织肿胀三在头骨的有限空间中脑组织体积的增加直接导致血液灌注减少,导致缺血事件和 颅内压增加[4 ]三目前脑水肿分为3类:细胞毒性脑 水肿,离子性脑水肿,血管源性脑水肿三细胞毒性脑水肿的特点为细胞内水分子聚集而不伴有血脑屏障 破坏三离子性脑水肿是内皮功能障碍的早期阶段,其仍保持血脑屏障的完整三血管源性脑水肿是离子性脑水肿之后内皮功能障碍的第二阶段,其伴有血脑屏障的破坏[ 3 ]三1.2 A Q P 4与脑水肿 尽管在各种脑部疾病中经常观察到脑水肿,但是目前仍然不完全了解水肿形成和消退的分子和细胞机制三虽然脑水肿定义很简单,但脑水肿形成的过程非常复杂,取决于脑部疾病 的类型二严重程度和大脑的发育阶段[5] ,作为位于星形胶质细胞上的水通道,A Q P 4可能在脑水肿过程中起到相关作用,然而,A Q P 4的作用在很大程度上取 决于损伤后的时间和大脑区域等[ 3 ]三在啮齿类动物卒中模型中,A Q P 4早期表达增加与离子性脑水肿和 星形胶质细胞肿胀相一致[ 3] 三在系统性低渗应激后,A Q P 4敲除小鼠显示大脑水摄取减少了31%[6] 三 在大脑中动脉(M C A O )短暂闭塞的卒中小鼠模型中,血管周围星形胶质细胞的A Q P 4表达迅速上调, 其中位于梗死核心和缺血半暗带中的A Q P 4在卒中后1小时达到峰值三但在更严重的卒中模型中没有 观察到A Q P 4表达的增加, 说明在严重缺血情况下,大脑在再灌注早期不能合成A Q P 4[3] 三A k d e m i r 等[7]对全脑缺血模型进行的研究显示,在全脑缺血 后第3天和第5天A Q P 4基因敲除小鼠脑脑含水量显著低于野生型小鼠三说明A Q P 4的表达促进了脑水肿的形成三此外,有研究表明,给予A Q P 4基因敲除大鼠脑内注入生理盐水可以导致颅内压显著升 高[8 ]三然后,增加的A Q P 4表达的时间分布与体内 水肿的消退相关三在大多数脑损伤模型研究中,在损伤发生48小时后检测到A Q P 4表达增加,同时发现A Q P 4表达增多的部位位于损伤部位附近血管周 四 765四‘临床荟萃“ 2019年6月20日第34卷第6期 C l i n i c a l F o c u s ,J u n e 20,2019,V o l 34,N o .6

水通道蛋白的发现及对人体的作用

水通道蛋白的发现及对人体的作用 刘彦成 (渭南师范学院环境与生命科学系陕西渭南 714000)摘要:水通道蛋白(aquaporin,AQP) 是一种对水专一的通道蛋白。具有介导水的跨膜转运和调节体内水代谢平衡的功能。水通道蛋白调节失控与水平衡紊乱等一系列疾病密切相关。 关键词:细胞膜;水通道蛋白(AQP);跨膜转运;疾病;调节 Abstract:The pass of water protein (aquaporin, AQP) is one kind of adding water single-minded channel protein.Has lies between leads the water the cross membrane transportation and the adjustment body domestic waters metabolism balance function.Pass of water protein adjustment out of control and level balance disorder and so on a series of disease close correlation. Key word:Cell membrane pass of water protein (AQP) cross membrane transportation disease adjusts 1 水通道蛋白的发现 1.1 细胞膜的运输方式 细胞是构成生物的基本单位,细胞与细胞之间则是通过细胞膜来沟通和实现基本的生命活动。细胞膜的主要成分为磷脂和蛋白质,其结构为磷脂双分子层,磷脂双分子层上有糖蛋白,糖蛋白所在一侧为细胞外侧。物质跨膜运输可分为自 图1 细胞膜的立体结构 由扩散(不需能量、载体),协助扩散(不需要能量、需载体),主动运输(要能量、需载体)三种。还有一些大分子物质是通过胞吞、胞吐方式通过细胞膜,它们需要能量、不要载体。另外还有一种很主要的方式就是通道蛋白。 1.2 生物膜水通道的发现【1】 长期以来对于水的运输方式研究者普遍认为主要有两种:即简单的扩散方式和借助离子通道通过磷脂双分子层。 近些年研究者发现某些细胞在低渗溶液中对水的通透性很高, 很难用简单扩散来解释。如将红细胞移入低渗溶液后,很快吸水膨胀而溶血,而水生动物的

水通道蛋白的基本结构与特异性通透机理

水通道蛋白的基本结构与特异性通透机理 王晶桑建利 (北京师范大学生命科学学院北京 100875) 摘要水通道蛋白是一个具有跨膜运输水分子功能的蛋白家族。从1988 年Agre 等发现水通道蛋白起,目前在不同物种中已经发现了200 余种水通道蛋白,其中存在哺乳动物体内的有13 种。概述了水通道蛋白的结构、组织特异性分布及特异性通透机理。 关键词水通道蛋白水分跨膜转运 水分子的跨膜转运对维持不同区域的液体平衡和内环境稳态非常重要。水分子作为一种不带电荷且半径极小的极性分子,很早被证实能通过自由扩散穿透脂质双分子层。在发现水通道蛋白以前,人们一直认为这是水分子透过质膜的唯一方式。但通过实验发现,红细胞和肾小管细胞中水的通透速率之快远非简单扩散强度所能提供的,因此猜测,质膜上可能存在某种通道介导水的转运。 1 水通道蛋白的发现 1988年,Agre 等从人类红细胞膜上纯化分离分子量为32×106的Rh 多肽时,偶然鉴定到一种新的分子量为28×106的整合膜蛋白,并且通过免疫印迹发现这类蛋白也存在于肾脏的近端肾小管中[1],把它称为类通道整合膜蛋白(channel-like integralmembrane protein, CHIP28)。随后,在1991 年Agre 和Preston 成功克隆得到了CHIP28 的cDNA,通过分析其编码的氨基酸序列,发现CHIP28 含有6个跨膜区域、2个N-糖基化位点、且N 端和C 端都位于膜的胞质一侧。另外,对比CHIP28 与早期从牛晶体纤维中克隆得到的主要内源性蛋白(major intrinsicprotein,MIP)的DNA 序列,发现二者具有高度同源性。由于很早以前就证实了MIP 家族的成员蛋白参与形成允许水和其他小分子通透的膜通道,因此,推测CHIP28 可能也具有类似功能[2]。1992 年,Preston 等通过在非洲爪蟾的卵母细胞中表达CHIP28,首次证实它是一种水通道蛋白。非洲爪蟾的卵母细胞对水具有极低的渗透性,当向其中显微注射体外转录的CHIP28 的RNA后,卵母细胞在低渗溶液中迅速膨胀,并于5 min内破裂。这一现象表明注射CHIP28 的RNA 后卵母细胞膜的水通透性有了明显提高。为了进一步确定CHIP28 的功能,将提纯的CHIP28 构建在蛋白磷脂体中,构建后的蛋白磷脂体对水的通透性增长了50 倍,但对尿素却不具备通透性[3]。这些结果最终证实了CHIP28 为水通道蛋白,后来它被命名为水通道蛋白-1(aquaporin-1,AQP1)。水通道蛋白的发现,开辟了一个崭新的领域。随着更多亚型的发现,水通道蛋白相关研究成为了膜转运方向的研究热点,Agre 也因其对水通道蛋白做出的突出贡献而获得2003 年诺贝尔化学奖。 2 水通道蛋白的分子结构 水通道蛋白分布广泛,目前已在哺乳动物、两栖类、植物、酵母、细菌以及各种各样的有机体中发现水通道蛋白的存在。水通道蛋白是一类高度保守的疏水小分子膜整合蛋白,各种亚型之间蛋白序列及三维结构非常相似。哺乳动物水通道蛋白的分子大小在26×106~34×106之间,氨基酸序列同源性为19%~52%[4]。因水通道蛋白的三维结构相似,一般以AQP1的结构作为代表。AQP1 是一条由269 个氨基酸残基构成的单肽链,对比AQP1 分子前后半段的氨基酸序列,发现2 段序列具有相关性,推测AQP1在进化上可能是通过基因复制而来。单肽链

水通道蛋白的发现

人类对水通道蛋白的研究 自然界很多包括人类在内的各种生物都是由细胞组成的。细胞如同一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。早年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允许特定的分子或离子出入。而很久以前人们就知道人体重量的70%是水,水是构成生物体最重要的物质之一。水是构成人体的重要物质,那么水是如何进入细胞的呢一直以来,人们都以为水分子进入细胞膜是靠自由扩散,但后来研究中发现细胞膜的主要成分是蛋白质和磷脂,其中磷脂双分子层构成细胞的结构骨架,而水是很难通过脂溶性物质的,那么水是很难进入细胞的,而细胞中含有大量水分那么那么水分子是如何进入细胞的呢 早在100多年前,人们就猜测细胞中存在特殊的输送水分子的通道。20世纪50年代中期,科学家发现,细胞膜中存在着某种通道只允许水分子出入,人们称之为水通道。因为水对于生命至关重要,可以说水通道是最重要的一种细胞膜通道。尽管科学家发现存在水通道,但水通道到底是什么却一直是个谜。 20世纪80年代中期,美国翰霍普金斯大学医学院的科学家彼得·阿格雷研究了不同的细胞膜蛋白,经过反复研究,他发现一种被称为水通道蛋白的细胞膜蛋白就是人们寻找已久的水通道。为了验证自己的发现,阿格雷把含有水通道蛋白的细胞和去除了这种蛋白的细胞进行了对比试验,结果前者能够吸水,后者不能。为进一步验证,他又制造了两种人造细胞膜,一种含有水通道蛋白,一种则不含这种蛋白。他将这两种人造细胞膜分别做成泡状物,然后放在水中,结果第一种泡状物吸收了很多水而膨胀,第二种则没有变化。这些充分说明水通道蛋白具有吸收水分子的功能,就是水通道。2000年,阿格雷与其他研究人员一起公布了世界第一张水通道蛋白的高清度立体照片。照片揭示了这种蛋白的特殊结构只允许水分子通过。水通道的发现开辟了一个新的研究领域。目前,科学家发现水通道蛋白广泛存在于动物植物和微生物中,它的种类很多,仅人体内就有11种。它具有十分重要的功能,比如在人的肾脏中就起着关键的过滤作用。通常一个成年人每天要产生170升的原尿,这些原尿经肾脏肾小球中的水通道蛋白的过滤,其中大部分水分被人体循环利用,最终只有约1升的尿液排出人体。。阿格雷于2003年被授予诺贝尔化学奖。诺贝尔奖评选委员会说,这是个重大发现,开启了细菌、植物和哺乳动物水通道的生物化学、生理学和遗传学研究之门。 水通道蛋白的发现 1988年,Agre等从人类红细胞膜上纯化分离分子量为32x10 的Rh多肽时,偶然鉴定到一种新的分子量为28x10 的整合膜蛋白,并且通过免疫印迹发现这类蛋白也存在于肾脏的近端肾小管中?,把它称为类通道整合膜蛋白(channel—like integralmembrane protein,CHIP28)。随后,在1991年Agre和Preston成功克隆得到了CHIP28的eDNA.通过分析其编码的氨基酸序列,发现CHIP28含有6个跨膜区域、2个N一糖基化位点、且N端和C端都位于膜的胞质一侧。另外,对比CHIP28与早期从牛晶体纤维中克隆得到的主要内源性蛋白(major in—trinsie protein,NIP)的DNA序列,发现二者具有高度同源性。由于很早以前就证实了MIP 家族的成员蛋白参与形成允许水和其他小分子通透的膜通道,因此,推测CHIP28可能也具有类似功能‘。1992年,Preston等通过在非洲爪蟾的卵母细胞中表达CHIP28,首次证实它是一种水通道蛋白。非洲爪蟾的卵母细胞对水具有极低的渗透性,当向其中显微注射体外转录的CHIP28的RNA后,卵母细胞在低渗溶液中迅速膨胀,并于5 min内破裂这一现象表明注射CHIP28的RNA后卯母细胞膜的水通透性有了明显提高。为了进一步通讯作者确定CHIP28的功能.将提纯的CHIP28构建在蛋白磷脂体中,构建后的蛋白磷脂体对水的通透性增长了50倍.但对尿素却不具备通透性[ 。这些结果最终证实了CHIP28为水通道蛋白,后来它被命名

水通道蛋白1在哺乳动物体内的分布及功能_蔡倩倩

解剖科学进展 Progress of Anatomical Sciences 2012 Sep,18(5):469~472 水通道蛋白1在哺乳动物体内的分布及功能 *蔡倩倩,高俊英,谭美芸,肖 明 (南京医科大学人体解剖学系,江苏 南京 210029) 【摘要】 水通道蛋白1(aquaporins1,AQP1)是参与水分子跨膜转运的重要膜通道蛋白家族成员之一,广泛分布于各组织中,在机体物质代谢和水平衡中起着重要的作用。本文就AQP1在哺乳动物各组织中的表达和分布及其参与脑脊液的产生、细胞生物学特性的调节和感觉传导等方面相关功能的研究现况和进展作一综述。 【中图分类号】 Q 469 【文献标识码】 A 【文章编号】 1006-2947(2012)05-0469-04 【收稿日期】 2011-12-05 【基金项目】国家自然科学基金资助项目 ( Ky1010121091111127 )*通讯作者(To whom correspondence should be addressed) Distribution and function of aquaporin 1 in the mammalian body *CAI Qian-qian, GAO Jun-ying , TAN Mei-yun, XIAO Ming ( Department of Anatomy, Nanjing Medical University, Nanjing 210029, China ) 【Abstract】 Aquaporin1 (AQP1), one of the most important water-transport membrane channel protein family members, is extensively distributed in various tissue and contributes to the maintenance of metabolism and water balance. In this review, we summarized the localization and expression of AQP1 in different tissues in the mammalian body and recent progress of its role in the cerebrospinal fluid production, cellular biological characteristic modulation and sensory transduction. Agre研究小组(1988)在分离红细胞膜、纯化RT-PCR、原位杂交,组织化学、免疫电镜、Rh多肽时发现了一个28kDa的疏水性跨膜蛋白,并Western blot等方法的研究从基因和蛋白水平证实于1991年完成了对该蛋白的cDNA克隆,分析得出其AQP1在哺乳动物体内的分布。结果表明AQP1广泛是由269个氨基酸组成的多肽序列,他们将之命名为分布于直接参与液体平衡调节的组织和细胞,如肾[1,2]单位的近端小管和髓袢降支细段上皮细胞的顶质CHIP28(28kDa的通道样整合膜蛋白)。由于其在膜、红细胞膜、肺泡上皮细胞、毛细血管内皮细红细胞膜表面的表达量较高,而红细胞对水分子有胞、肝胆管、胆囊、睫状体和晶状体上皮以及角膜高度通透性,因而推测该蛋白可能参与水分子的跨内皮细胞的顶侧和基底侧膜以及脉络丛上皮细胞的膜转运。为此,他们将非洲爪蟾的卵母细胞转染[4, 5]CHIP28 RNA后发现其对水的通透性增加,从而证实顶膜。不仅如此,在神经组织中也发现了AQP1的[3]表达与分布。如鼠类的三叉神经节、背根神经节中CHIP28参与水分子的跨膜转运。1997年国际基因组[6]将这种蛋白正式命名为水通道蛋白1(aquaporin 1, 部分初级感觉神经元;人类的脑内星形胶质细胞除[7]AQP1)。Arge也因此获得2003年的诺贝尔化学奖。了表达AQP1 外,也表达AQP4。人类内脏神经丛内[8]的胶质细胞和坐骨神经轴突亦表达AQP1。1 AQP1在组织中的表达与分布 2 AQP1在脑脊液的产生过程中起重要作用 AQP1作为第一个被发现的水通道蛋白,在机体多种组织细胞上均有表达,在与体液产生和循环密大量的研究表明AQP1在脑脉络丛上皮细胞上特切相关的上皮细胞与内皮细胞中含量尤其丰富,在异性分布,并参与脑脊液的产生和循环过程。来自[9]水转运和平衡方面起重要作用。一系列基于免疫、 Oshio等的研究表明AQP1基因敲除小鼠脑脊液的生成较野生型小鼠有所减少,减少量为20%-25%。这一数据表明,脉络丛参与60%-80%脑脊液的生成,脉络丛外的脑实质细胞辅助这一过程,当前者结构

水通道蛋白相关疾病阅读材料

四.水通道蛋白相关疾病 当水通道蛋白的调节出现紊乱的时候,则可能引起多种疾病。 (一)肾脏水通道蛋白和相关疾病 研究表明,水通道蛋白基因突变将引起尿崩症(diabetesinsipidus,DI)。尿崩症广义上讲是指多饮、低比重尿和低渗尿为特征的一组综合征。目前报道的多数遗传性肾性尿崩症病例是以X连锁方式遗传的,由编码V2 受体的基因突变引起,另外的病例则是由于编码AQP2基因的突变引起,以常染色体显性或隐性方式遗传[11]。 (二)肺部水通道蛋白和相关疾病 肺水通道蛋白的异常与肺疾病的关系已有诸多实验报道。AQP可能参与肺水肿的发病机制。在各种肺损伤中,存在着大量的水的异常跨膜转运及在肺组织中的异常聚集等情况,这些情况均可能与水通道蛋白有关。在小鼠病毒性肺炎模型中,发现AQP1和AQP5在鼠肺中的表达降低,这说明肺水在肺间质中聚集的重要原因就是水通道蛋白的减少,导致水不能及时排出而出现水肿。 哮喘发作时,水分子运动在气道阻塞中起重要作用,特别在冷哮喘或运动哮喘时, 上皮黏膜下血管(含AQP1) 、气管及支气管(含AQP3 和AQP4) 的肿胀是形成气道阻塞的重要原因[1]。从而说明了水通道蛋白和哮喘的发生也有密切关系。 (三)水通道蛋白及癌症 水通道蛋白在肿瘤组织的表达及其与肿瘤细胞转移的关系可能将会是今后研究的热门。 多年研究表明,为满足快速增殖、分裂和侵袭转移的需要,肿瘤细胞内一系列酶的活性和表达会发生改变,细胞基本结构成分如蛋白质、脂类和核酸的合成加强。癌细胞的所有生命活动都离不开水的微环境和参与,癌细胞比正常细胞更需要水分子的快速跨膜转运。

目前的研究表明,部分AQPs在肿瘤组织中表达明显增高或降低。在脑胶质瘤中水通道蛋白的表达明显增多,脑胶质瘤多伴有脑水肿的发生。经证实,AQP 1和AQP4在脑胶质瘤中的表达明显高于正常组织,且在星型细胞的表达量与恶性程度有直接关系[8]。 AQPs同时还可能促进肿瘤血管增生,增强肿瘤血管渗透性,在肿瘤的生长和扩散、侵袭和转移中有重要作用。多数肿瘤有很高的组织间隙液体压力,其新生血管对血浆蛋白及其他循环体系中的高分子物质具有很高的通透性。目前认为这种不正常的通透性是因为许多肿瘤细胞分泌的血管渗透性因子(vascular pe rmeability factor,VPF)和血管内皮生长因子(vascular endothelial growth factor,VEGF)。 目前已知AQP1表达于红细胞膜上,毛细血管内皮细胞,人大、小动脉以及动脉粥样硬化斑的血管平滑肌细胞上。AQP1基因敲除小鼠表明AQP1提供了一定数量的水通路的排出,引起水通过毛细血管内皮细胞的渗透性升高。AQP1通路代表了微血管壁整个通过细胞间的10%~45%的液体渗透性,因此认为AQP1可能与血管渗透性有很大关系。 同时还发现应用AQP抑制剂可以部分抑制肿瘤侵袭和转移。肿瘤侵袭和转移是一个高度选择性的过程,其依赖于肿瘤特性和它们周围独特的微环境之间的复杂反应。据报道恶性肿瘤细胞外环境的酸化可以提高肿瘤的侵袭性,在正常组织,酸性产物可以被碳酸酐酶催化,碳酸酐酶在肿瘤生长和转移中有重要作用,某些碳酸酐酶在特定的肿瘤上有过量表达。大部分肿瘤的高血管渗透性和高组织间隙渗透压可能是由于肿瘤微环境的酸化,以及广泛分布于肿瘤上的水通道蛋白的活性引起。AQP1是唯一表达于肾脏近曲小管上皮细胞的水通道,对尿液的浓缩和稀释过程起重要作用。碳酸酐酶抑制剂是一类作用于肾脏近曲小管的利尿剂,如乙酰唑胺,其作用位点与AQP1的组织分布一致,体外实验表明可以抑制肿瘤细胞的侵袭能力。荷瘤小鼠癌组织中AQP1的蛋白水平显著高于正常组织,用乙酰唑胺治疗后,AQP1表达明显降低,显著抑制肿瘤转移。因此认为乙酰唑胺抑制肿瘤转移的作用是因为下调了AQP1的表达。以上理论为我们提供了一种全新的思路,或许可以开发应用水通道蛋白抑制剂来治疗肿瘤。[8]

水通道蛋白综述与展望

水通道蛋白水通道-从原子结构到临床医学 生物膜的透水性在生理学上是一个长期存在的问题,但负责此类蛋白质的蛋白质仍然未知,直到发现水通道蛋白1(AQP1)水通道蛋白。AQP1由渗透梯度驱动的水选择性渗透。人类AQP1的原子结构最近被定义。四聚体的每个亚基含有允许水分子单文件通过但中断氢键通过质子所需的单独水孔。已经鉴定了至少10种哺乳动物水通道蛋白,并且它们被水(水通道蛋白)或水加甘油(水甘油聚糖)选择性渗透。表达位点与临床表型密切相关,从先天性白内障到肾源性尿崩症。在植物,微生物,无脊椎动物和脊椎动物中发现超过200个水通道蛋白家族成员,并且它们对这些生物体的生理学的重要性正在被揭开。 在20世纪20年代发现脂质双层提供了当沐浴在较低或较高pH或含有毒性浓度的Ca2 +或其他溶质的细胞外液中时细胞如何维持其最佳细胞内环境的解释。从1950年代开始发现离子通道,交换剂和共转运体为溶质的跨膜运动提供了分子解释。然而,长期以来,假定水的输送是由于通过脂质双层的简单扩散。来自具有高膜渗透性的多个实验系统的观察,例如两栖膀胱和哺乳动物红细胞,表明通过脂质双层的扩散不是水跨越膜的唯一途径。虽然提出了各种解释,但直到10年前发现AQP1才能知道分子水 - 特异性转运蛋白(Preston 等,1999)。

现在人们普遍同意扩散和通道介导的水分运动都存在。通过所有生物膜以相对较低的速度发生扩散。水通道蛋白水通道发现于上皮细胞的一部分10至100倍的水渗透能力。值得注意的是,水通道蛋白水通道的选择性非常高,甚至质子(H3O +)被排斥。在大多数组织中,扩散是双向的,因为水进入细胞并从细胞释放,而水通道蛋白介导的体内水流则由渗透或液压梯度引导。扩散的化学抑制剂是未知的,扩散发生在高Ea(Arrhenius活化能)。相比之下,大多数哺乳动物水通道蛋白受汞的抑制,Ea等同于大量溶液中水的扩散(?5 kcal mol_1)。 水通道蛋白的发现说明了偶发性在生物学研究中的重要性,并且引起了上游流体运输过程中水如何穿过生物膜的范式的完全转变。这个话题对正常生理学以及影响人类的多种临床疾病的病理生理学非常重要。水通道蛋白在几乎每一种生物体中被鉴定出来,包括高等哺乳动物,其他脊椎动物,无脊椎动物,植物,真细菌,原细菌和其他微生物,表明这种新认可的蛋白质家族参与了整个自然界的不同生物过程。 一、发现AQP1 红细胞Rh血型抗原不知道参与水运(Heitman&Agre,2000),但是Rh的研究导致了水通道蛋白的偶

水通道蛋白综述与展望

水通道蛋白水通道- 从原子结构到临床医学 生物膜的透水性在生理学上是一个长期存在的问题,但负责此类蛋白质的蛋白质仍然未知,直到发现水通道蛋白1(AQP1)水通道蛋白。AQP1由渗透梯度驱动的水选择性渗透。人类AQP1的原子结构最近被定义。四聚体的每个亚基含有允许水分子单文件通过但中断氢键通过质子所需的单独水孔。已经鉴定了至少10种哺乳动物水通道蛋白,并且它们被水(水通道蛋白)或水加甘油(水甘油聚糖)选择性渗透。表达位点与临床表型密切相关,从先天性白内障到肾源性尿崩症。在植物,微生物,无脊椎动物和脊椎动物中发现超过200个水通道蛋白家族成员,并且它们对这些生物体的生理学的重要性正在被揭开。 在20世纪20年代发现脂质双层提供了当沐浴在较低或较高pH或含有毒性浓度的Ca2 +或其他溶质的细胞外液中时细胞如何维持其最佳细胞内环境的解释。从1950年代开始发现离子通道,交换剂和共转运体为溶质的跨膜运动提供了分子解释。然而,长期以来,假定水的输送是由于通过脂质双层的简单扩散。来自具有高膜渗透性的多个实验系统的观察,例如两栖膀胱和哺乳动物红细胞,表明通过脂质双层的扩散不是水跨越膜的唯一途径。虽然提出了各种解释,但直到10年前发现AQP1才能知道分子水- 特异性转运蛋白(Preston等,1999)。

现在人们普遍同意扩散和通道介导的水分运动都存在。通过所有生物膜以相对较低的速度发生扩散。水通道蛋白水通道发现于上皮细胞的一部分10至100倍的水渗透能力。值得注意的是,水通道蛋白水通道的选择性非常高,甚至质子(H3O +)被排斥。在大多数组织中,扩散是双向的,因为水进入细胞并从细胞释放,而水通道蛋白介导的体内水流则由渗透或液压梯度引导。扩散的化学抑制剂是未知的,扩散发生在高Ea(Arrhenius活化能)。相比之下,大多数哺乳动物水通道蛋白受汞的抑制,Ea等同于大量溶液中水的扩散(?5 kcal mol_1)。 水通道蛋白的发现说明了偶发性在生物学研究中的重要性,并且引起了上游流体运输过程中水如何穿过生物膜的范式的完全转变。这个话题对正常生理学以及影响人类的多种临床疾病的病理生理学非常重要。水通道蛋白在几乎每一种生物体中被鉴定出来,包括高等哺乳动物,其他脊椎动物,无脊椎动物,植物,真细菌,原细菌和其他微生物,表明这种新认可的蛋白质家族参与了整个自然界的不同生物过程。 一、发现AQP1 红细胞Rh血型抗原不知道参与水运(Heitman&Agre,2000),但是Rh的研究导致了水通道蛋白的偶然发现。用于纯化Rh多肽的生物化学技术产生污染的28kDa多肽(Agre等,1987)。基于洗涤剂中的28kDa蛋白质的相对不溶性,N-月桂酰肌氨酸,开发了产生大量蛋白质的简单纯化系统。红细胞和肾近端小管- 具有最高已知水渗透性

水通道蛋白的发现和研究过程

水通道蛋白的发现和研究过程 教学反思:有时让学生熟悉相关的科技发展热点,可以帮助学生理解有关的情境材料,更能解决相关的问题。由于教材的关系,很多学生无法解决2012年北京高考题,因为不熟悉水通道蛋白相关的知识。 (2012年北京高考试题)科学家为了研究蛋白A的功能,选用细胞膜中缺乏此蛋白的非洲爪蟾卵母细胞进行实验,处理及结果见下表。 Ⅱ向卵母细胞注入蛋白A的mRNA 210.0 Ⅲ将部分Ⅱ细胞放入含HgCl2的等渗溶 液中 80.7 Ⅳ将部分Ⅲ细胞放入含试剂M的等渗溶 液中 188.0 (1)将I组卵母细胞放入低渗溶液后,水分子经自由扩散(渗透)穿过膜的____________进入卵母细胞。 (2)将蛋白A的mRNA注入卵母细胞一定时间后,该mRNA____________的蛋白质进入细胞膜,使细胞在低渗溶液中体积____________。

(3)与II组细胞相比,III组细胞对水的通透性____________,说明HgC12对蛋白A的功能有________作用。比较III、IV组的结果,表明试剂M能够使蛋白A的功能____________。推测HgC12没有改变蛋白A的氨基酸序列,而是破坏了蛋白A的____________。 (4)已知抗利尿激素通过与细胞膜上的____________结合,可促进蛋白A插入肾小管上皮细胞膜中,从而加快肾小管上皮细胞对原尿中水分子的 ____________。 (5)综合上述结果,可以得出____________的推论。 【答案】(1)磷脂双分子层(2)翻译迅速增大(3)明显降低抑 制部分恢复空间结构(4)受体重吸收(5)蛋白A是水通道蛋白 一、水通道蛋白的发现过程 1988年Agre(阿格雷)等在分离纯化红细胞膜上的Rh多肽时,发现了一个28 kD的疏水性跨膜蛋白,称为形成通道的整合膜蛋白28(CHIP28),他们很快分离得到了这种蛋白质,并没出了氨基酸序列,1991年完成了其cDNA克隆,并发现这种蛋白质在吸水能力很强的肾脏和红细胞中含量特别高。 Agre将CHIP28的mRNA注入非洲爪蟾的卵母细胞中,在低渗溶液中,卵母细胞迅速膨胀,并于5 分钟内破裂,纯化的CHIP28置入脂质体,也会得到同样的结果。 为进一步确定其功能,又将其构于蛋白磷脂体内,通过活化能及渗透系数的测定及后来的抑制剂敏感性等研究,证实其为水通道蛋白。从此确定了细胞膜上存在转运水的特异性通道蛋白,并称CHIP28为Aquaporinl(AQPl)。 细胞的这种吸水膨胀现象会被Hg2+抑制,而这是已知的抑制水通透的处理措施。这一发现揭示了细胞膜上确实存在水通道,Agre因此与离子通道的研究者Roderick MacKinnon(麦金农)共享2003年的诺贝尔化学奖。

相关文档
最新文档