pwm控制器和mppt控制器的区别

pwm控制器和mppt控制器的区别

pwm 控制器和mppt 控制器的区别

pwm 控制器脉宽调制(PWM)是指用微处理器的数字输出来对模拟电路进行控制,是一种对模拟信号电平进行数字编码的方法。以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。许多微控制器内都包含PWM 控制器。

mppt 控制器MPPT 控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最大功率输出对蓄电池充电。应用于太阳能光伏系统中,协调太阳能电池板、蓄电池、负载的工作,是光伏系统的大脑。那幺我们来看看关于pwm 控制器和mppt 控制器的区别。

pwm 控制器和mppt 控制器的区别

在离网光伏系统中,用来保护蓄电池过充过放,延长蓄电池寿命的太阳能充放电控制器是必不可缺的。经过多年的发展,脉宽调制(PWM)型充电控制器的技术已经非常成熟。但是我们发现,在实际案例中,光伏电站在运行之后的发电量往往都会低于建造当初的设计值,这不仅造成系统的浪

PWM控制电路的基本构成及工作原理

基于DSP的三相SPWM变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28 335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如 图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可 靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.360docs.net/doc/9b10149339.html, 查询1203P60供应商

基于FPGA的PWM控制器设计

FPGA实验报告

基于FPGA勺PWM控制器设计 1设计任务与要求 1.1掌握PWM fe术原理;了解PWM控制方法及应用;完成基于FPGA勺PWM控制器设计。 1.2通过课程设计的实践,进一步理解和掌握硬件描述语言(VHDL或VerilOg )和TOP-DOWN设计流程,提高对实际项目的分析和设计能力,体会FPGA项目的过程,熟悉实验报告的编写规范。 2设计原理分析 2.1利用FPGA语言编写程序实现对50MHZ勺硬件晶振进行分频和调节占空比。对硬件晶振的上升沿就行计数,当2nHZ频率利用高低电平进行分频时,当计数到n-1是对原电平进行反向就可以实现分频。占空比是对上升沿的计数是两个不同的数值时进行反向。 2.2脉宽调制(PWM基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。 例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于∏∕n ,但幅值不等,且脉冲顶 部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM fe形。可以看出,各脉冲宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。对于正弦的负半周,也可以用同样的方法得到PWM波形。 在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交一直一交变频器中,PWM 逆变电路输出的脉冲电压就是直流侧电压的幅值。

PWM控制原理要点

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

PWM控制电路设计

PWM控制电路设计 CYBERNET 应用系统事业部 LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学方面阐述了如何运用LED特性进行设计。 在上一期的“LED驱动电路设计-基础篇”中,介绍了LED的电子特性和基本的驱动电路。遗憾的是,阻抗型驱动电路和恒电流源型驱动电路,大围输入电压和大电流中性能并不强,有时并不能发挥出LED的性能。相反,用脉冲调制方法驱动LED电路,能够发挥LED的多个优点。这次主要针对运用脉冲调制的驱动电路进行说明。 PWM是什么? 脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time) Tsw(一周期)可以是开关周期,也可以是Fsw=1/Tsw的开关频率。

图1 Pulse Width Modulation (PWM) 在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。这就是接下来要介绍的PWM控制。PWM信号的应用 PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。图2的降压电路帮助理解PWM的控制原理。在这个电路中,将24V的输入电压转换成12V,需要增加负载。负载就是单纯的阻抗。电压转换电路的方法有很多,运用PWM信号的效果如何呢?

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

PWM的含义

脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM 进行编码。 多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:

* 设置提供调制方波的片上定时器/计数器的周期 * 在PWM控制寄存器中设置接通时间 * 设置PWM输出的方向,这个输出是一个通用I/O管脚 * 启动定时器 * 使能PWM控制器 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC 网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 如果您认为本词条还有待完善,需要补充新内容或修改错误内容

PWM控制原理教学教材

P W M控制原理

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处: 4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波

基于PWM控制器芯片的AC-DC电源设计

基于PWM控制器芯片的AC/DC电源设计 目前,在100W以下电源方案中,一般都使用脉冲宽度调制(PWM)控制芯片来实现PWM的调制,开关控制模式相对直流工作模式有很高的工作效率,使用反激离线工作模式,提高了系统工作的安全性,非常适合应用在便携式充电设备及电源适配器,比如,手机充电器,电源适配器等,因此,AC/DC PWM开关电源芯片在市场上的需求量非常大。不过传统的AC/DC电源方案都是使用变压器次级线圈反馈模式(SSR),变压器次级反馈工作模式都需要低压端的恒压-恒流控制芯片协助完成电压的转换和实现恒流,此类应用方案增加了系统应用复杂程度,同时还增加系统方案的设计成本,本文要介绍的AC/DC电源控制芯片是思旺电子的SE3910,这是一款变压器原边线圈反馈模式(PSR)的PWM控制芯片。 SE3910技术特点 SE3910是一款绿色模式PWM控制器芯片,适用于小功率AC/DC充电器,适配器及LED驱动方案;该芯片为SOP-8封装,PWM模式工作时开关频率固定在40KHz,其内部集成了恒压恒流控制模块,应用方案使用PSR模式,省略了传统方案中的光耦合器、恒压/恒流控制芯片及其周围电路,大大简化了芯片的应用成本,降低了系统应用的复杂度。 芯片设计时特别考虑了EMI,对开关频率模块特别设计有频率抖动功能,每3.2ms 的周期内按所设计的顺序出现8种不同的开关频率,将电磁干扰频谱转移到一个相对较宽的频率带宽,从而达到优化系统EMI的目的。 同时SE3910的工作状态使用多模式调节功能,在空载或轻负载时,芯片会自动进入PFM工作模式,保证电源系统输入能量和输出能量精确守恒,防止了轻载或空载时能量过大,当负载升高到芯片所设置的重载设计值时,芯片会控制系统自动进入PWM工作模式,大幅度的优化了系统的工作效率,使系统效率能够达到80%以上,也减小了空载和轻载工作状态下的输出纹波。 芯片设计有软启动功能,很好的抑制了系统上电时的大电流,保护了电路板的损坏,减小了系统启动时的大电流对系统功耗的影响;芯片还具有电源欠压保护功能,LEB 功能、过温度保护功能等,最大程度的提高了芯片工作时的可靠性和安全性;芯片适合应用在5W及5W以下的电源方案中。 典型应用方案 SE3910能广泛应用在各种低功率AC/DC开关电源方案中,比如手机充电器,电源适配器等,除此之外,由于芯片集成有恒流功能,所以也可广泛应用在小功率LED驱动方案中。 图1是SE3910基本的应用电路,其中由变压器/输出级/R3/R4/SE3910等组成负反馈通路,通过调整GATE端的开关信号占空比来控制变压器的转换能量,使系统稳定在设置的工作状态。交流电压先经过一个桥式整流电路将交流转换成高压直流信号,R1和C2组成系统启动电路,VIN是SE3910的启动PIN,COMV PIN上的R5、C6和C7组成系统补偿电路,确保系统具有稳定的频率响应,FB是输出电压检测PIN,通过设置R3/R4就可以调整变压器副边上的电压,根据变压器电压比与匝数比成正比的原理,来实现对直流输出电压的调整;GATE是PWM输出PIN,它用来控制功率管13003来实现控制变压器原边的峰值电流,来达到对变压器转换能量的控制,CS PIN用来检测变压器峰值电流,当系统工作在恒流模式时,CS PIN上的电压会被固定在设置的最大值,也就确定了变压器原边最大峰值电流,从而实现输出也恒流,通过调整R6电阻就可以灵活调整输出恒流值。

PWM控制直流电机(重要资料)

PWM调速原理 PWM的原理: PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 1.PWM控制的基本原理 (1)理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 (2)面积等效原理: 分别将如图1所示 电压窄脉冲加在一阶惯性环节(R-L电路)上,如图a所示。其输出电流I(t)对不同窄脉冲时的响应波形如图b所示。从波形可以看出,在I(t)的上升段,I(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各I(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应I(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 2. PWM相关概念 占空比:就是输出的PWM中,高电平保持的时间与该PWM的时钟周期的时间之比 如,一个PWM的频率是1000Hz,那么它的时钟周期就是1ms,就是1000us,如果高电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空比就是200:1000,也就是说PWM的占空比就是1:5。

PWM控制原理(精编文档).doc

【最新整理,下载后即可编辑】 PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM 整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。

图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图6-2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。

PWM控制器的设计—课程设计.doc

前言 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。习惯上,DC-DC变换器包括以上两种情况。 直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。 利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET的优点,具有良好的特性。目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。 MATLAB是矩阵实验室Matrix Laboratory的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,SIMULINK是MATLAB软件的扩展它是实现动态系统建模和仿真的一个软件包,本课程设计的仿真即需要在SIMULINK中来完成电路的仿真与计算。通过系统建模和仿真,掌握和运用MATLAB/SIMULINK工具分析系统的基本方法。

PWM的工作原理

PWM得工作原理 脉宽调制PWM就是开关型稳压电源中得术语。这就是按稳压得控制方式分类得,除了PWM型,还有PFM型与PWM、PFM混合型。脉宽宽度调制式(PWM)开关型稳压电路就是在控制电路输出频率不变得情况下,通过电压反馈调整其占空比,从而达到稳定输出电压得目得。 随着电子技术得发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用得脉宽PWM法,它就是把每一脉冲宽度均相等得脉冲列作为PWM波形,通过改变脉冲列得周期可以调频,改变脉冲得宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM得周期、PWM 得占空比而达到控制充电电流得目得。 pwm得定义 脉宽调制(PWM)就是利用微处理器得数字输出来对模拟电路进行控制得一种非常有效得技术,广泛应用在从测量、通信到功率控制与变换得许多领域中. 模拟信号得值可以连续变化,其时间与幅度得分辨率都没有限制.9V电池就就是一种模拟器件,因为它得输出电压并不精确地等于9V,而就是随时间发生变化,并可取任何实数值。与此类似,从电池吸

收得电流也不限定在一组可能得取值范围之内。模拟信号与数字信号得区别在于后者得取值通常只能属于预先确定得可能取值集合之内,例如在{0V,5V}这一集合中取值. 模拟电压与电流可直接用来进行控制,如对汽车收音机得音量进行控制。在简单得模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻得电流也随之增加或减少,从而改变了驱动扬声器得电流值,使音量相应变大或变小。与收音机一样,模拟电路得输出与输入成线性比例. 尽管模拟控制瞧起来可能直观而简单,但它并不总就是非常经济或可行得。其中一点就就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题得精密模拟电路可能非常庞大、笨重(如老式得家庭立体声设备)与昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流得乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值得大小。 通过以数字方式控制模拟电路,可以大幅度降低系统得成本与功耗.此外,许多微控制器与DSP已经在芯片上包含了PWM控制器,这使数字控制得实现变得更加容易了。 pwm得工作原理 脉冲宽度调制波通常由一列占空比不同得矩形脉冲构成,其占空比与信号得瞬时采样值成比例.图1所示为脉冲宽度调制系统得原理

高性能电流模式PWM控制器MXT7208

High Precision CC/CV Primary-Side PWM Power Switch GENERAL DESCRIPTION is a high performance offline PWM Power switch for low power AC/DC charger and adapter applications. It operates in primary-side sensing and regulation. Consequently, opto-coupler and TL431 could be eliminated. Proprietary Constant Voltage (CV) and Constant Current (CC) control is integrated as shown in the figure below. In CC control, the current and output power setting can be adjusted externally by the sense resistor Rs at CS pin. In CV control, multi-mode operations are utilized to achieve high performance and high efficiency. In addition, good load regulation is achieved by the built-in cable drop compensation. Device operates in PFM in CC mode as well at large load condition and it operates in PWM with frequency reduction at light/medium load. offers power on soft start control and protection coverage with auto-recovery features including Cycle-by-Cycle current limiting, VDD OVP, VDD clamp and UVLO. Excellent EMI performance is achieved with Power-Source proprietary frequency shuffling technique. High precision constant voltage (CV) and constant current (CC) can be achieved by FEATURES ?±5% Constant Voltage Regulation at Universal AC input ?High Precision Constant Current Regulation at Universal AC input ?Primary-side Sensing and Regulation Without TL431 and Opto-coupler ?Programmable CV and CC Regulation ?Adjustable Constant Current and Output Power Setting ?Built-in Secondary Constant Current Control with Primary Side Feedback ?Built-in Adaptive Current Peak Regulation ?Built-in Primary winding inductance compensation ?Programmable Cable drop Compensation ?Power on Soft-start ?Built-in Leading Edge Blanking (LEB)?Cycle-by-Cycle Current Limiting ?VDD Under Voltage Lockout with Hysteresis (UVLO)?VDD OVP ?VDD Clamp APPLICATIONS ?Low Power AC/DC offline SMPS for ?Cell Phone Charger ?Digital Cameras Charger ?Small Power Adapter ?Auxiliary Power for PC, TV etc.?Linear Regulator/RCC Replacement is offered in SOT23-6 package. Product Specification TYPICAL APPLICATION MXT7208MXT7208MXT7208 MXT7208 MXT7208

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理 脉冲宽度调制脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 多数负载(无论是电感性负载还是电容性负载)

需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM 控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作: * 设置提供调制方波的片上定时器/计数器的周期 * 在PWM控制寄存器中设置接通时间 * 设置PWM输出的方向,这个输出是一个通用I/O管脚 * 启动定时器 * 使能PWM控制器 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将

PWM 电机控制介绍

脉冲宽度调制 百科名片 ?? 脉冲宽度调制 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 目录 简介 基本原理 具体过程 脉冲宽度调制优点 控制方法 1. 等脉宽PWM法 2. 随机PWM 3. SPWM法 4. 等面积法 5. 硬件调制法 6. 软件生成法 7. 自然采样法 8. 规则采样法 9. 低次谐波消去法 10. 梯形波与三角波比较法 11. 线电压控制PWM 12. 马鞍形波与三角波比较法 13. 单元脉宽调制法 14. 电流控制PWM 15. 滞环比较法 16. 三角波比较法 17. 预测电流控制法 18. 空间电压矢量控制PWM 19. 矢量控制PWM 20. 直接转矩控制PWM 21. 非线性控制PWM 22. 谐振软开关PWM 脉冲宽度调制相关应用领域 具体应用 1. 简介 2. PWM软件法控制充电电流 3. PWM在推力调制中的应用 简介 基本原理 具体过程 脉冲宽度调制优点

控制方法 1. 等脉宽PWM法 2. 随机PWM 3. SPWM法 4. 等面积法 5. 硬件调制法 6. 软件生成法 7. 自然采样法 8. 规则采样法 9. 低次谐波消去法 10. 梯形波与三角波比较法 11. 线电压控制PWM 12. 马鞍形波与三角波比较法 13. 单元脉宽调制法 14. 电流控制PWM 15. 滞环比较法 16. 三角波比较法 17. 预测电流控制法 18. 空间电压矢量控制PWM 19. 矢量控制PWM 20. 直接转矩控制PWM 21. 非线性控制PWM 22. 谐振软开关PWM 脉冲宽度调制相关应用领域 具体应用 1. 简介 2. PWM软件法控制充电电流 3. PWM在推力调制中的应用 展开 编辑本段简介 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。编辑本段基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟

相关文档
最新文档