第1节 光电效应 波粒二象性

第1节 光电效应 波粒二象性
第1节 光电效应 波粒二象性

第十二章 ???

原子物理学

[全国卷5年考情分析](说明:2014~2016年,本章内容以选考题目出现) 氢原子光谱(Ⅰ)

氢原子的能级结构、能

级公式(Ⅰ)

放射性同位素(Ⅰ)

裂变反应和聚变反应、

裂变反应堆(Ⅰ)

射线的危害和防护(Ⅰ)

以上5个考点未曾独立命

题 第1节 光电效应 波粒二象性

一、光电效应

1.光电效应现象:在光的照射下金属中的电子从金属表面逸出的现象 [注1],称为光电效应,发射出来的电子称为光电子。

2.光电效应的四个规律

(1)每种金属都有一个极限频率。

(2)光照射到金属表面时,光电子的发射几乎是瞬时的。

(3)光电子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大。

(4)光电流的强度与入射光的强度成正比。[注2]

3.遏止电压与截止频率

(1)遏止电压:使光电流减小到零的反向电压U c。

(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。

二、爱因斯坦光电效应方程

1.光子说

在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34 J·s。(称为普朗克常量)

2.逸出功W0

使电子脱离某种金属所做功的最小值。[注3]

3.最大初动能

发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.爱因斯坦光电效应方程

(1)表达式:E k=hν-W0。

(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来

克服金属的逸出功W0,剩下的表现为逸出后光电子的最大初动能E k=1

2m e v

2。

三、光的波粒二象性

1.光的干涉、衍射、偏振现象证明光具有波动性。

2.光电效应说明光具有粒子性。

3.光既具有波动性,又具有粒子性,称为光的波粒二象性。

【注解释疑】

[注1] 光电效应现象可认为是光子把原子最外层的电子撞了出来,是一对一的关系,而且是瞬时的。

[注2] 光照强度决定着每秒钟光源发射的光子数,频率决定着每个光子的能量。

[注3] 金属越活跃,逸出功越小,越容易发生光电效应。

[深化理解]

1.每种金属都有一个极限频率,入射光的频率不低于这个极限频率才能使金属产生光电效应。

2.当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。

3.遏止电压U c 与入射光频率ν、逸出功W 0间的关系式:U c =h e ν-W 0e

。 4.截止频率νc 与逸出功W 0的关系:hνc -W 0=0,据此求出截止频率νc 。

[基础自测]

一、判断题

(1)光子和光电子都是实物粒子。(×)

(2)只要入射光的强度足够强,就可以使金属发生光电效应。(×)

(3)要想在光电效应实验中测到光电流,入射光子的能量必须大于金属的逸出功。(√)

(4)光电子的最大初动能与入射光子的频率成正比。(×)

(5)光的频率越高,光的粒子性越明显,但仍具有波动性。(√)

(6)德国物理学家普朗克提出了量子假说,成功地解释了光电效应规律。(×)

(7)美国物理学家康普顿发现了康普顿效应,证实了光的粒子性。(√)

二、选择题

1.[人教版选修3-5 P 30演示实验改编](多选)如图所示,用导线把验电器与锌板相连接,当用紫外线照射锌板时,发生的现象是( )

A .有光子从锌板逸出

B .有电子从锌板逸出

C .验电器指针张开一个角度

D .锌板带负电

答案:BC

2.在光电效应实验中,用波长为λ的光照射光电管阴极,发生了光电效应,下列说法正确的是( )

A .仅增大入射光的强度,光电流大小不变

B .仅减小入射光的强度,光电效应现象可能消失

C .改用波长大于λ的光照射,光电子的最大初动能变大

D .改用波长大于λ的光照射,可能不发生光电效应

解析:选D 当发生光电效应时,增大入射光的强度,则光电流会增大,故A 错误;入射光的频率不低于金属的极限频率,就会发生光电效应,与入射光的强度无关,故B 错

误;在光电效应中,根据光电效应方程知,E km =hc λ-W 0,改用波长大于λ的光照射,光电

子的最大初动能变小,或者可能不发生光电效应,故C 错误,D 正确。

高考对本节内容的考查,主要集中在对光电效应的理解、爱因斯坦的光电效应方程及应用、对波粒二象性的理解,通常以选择题的形式呈现,对这些内容主要靠在理解的基础上进行识记,所以题目难度一般都不大。

考点一对光电效应的理解[基础自修类]

[题点全练]

1.[光电效应的产生条件]

如图所示是光电管的原理图,已知当有波长为λ0的光照到阴极K上时,

电路中有光电流,则()

A.若增加电路中电源电压,电路中光电流一定增大

B.若将电源极性反接,电路中一定没有光电流产生

C.若换用波长为λ1(λ1>λ0)的光照射阴极K时,电路中一定没有光电流

D.若换用波长为λ2(λ2<λ0)的光照射阴极K时,电路中一定有光电流

解析:选D光电流的强度与入射光的强度有关,当光越强时,光电子数目会增多,初始时电压增加光电流可能会增加,当达到饱和光电流后,再增大电压,光电流不会增大,故A错误;将电路中电源的极性反接,电子受到电场阻力,到达A极的数目会减小,则电路中电流会减小,甚至没有电流,故B错误;波长为λ1(λ1>λ0)的光的频率有可能大于极限频率,电路中可能有光电流,故C错误;波长为λ2(λ2<λ0)的光的频率一定大于极限频率,电路中一定有光电流,故D正确。

2.[光电效应现象的理解]

(多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生。下列说法正确的是()

A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大

B.入射光的频率变高,饱和光电流变大

C.入射光的频率变高,光电子的最大初动能变大

D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生

解析:选AC根据光电效应实验得出的结论:保持入射光的频率不变,入射光的光强变大,饱和光电流变大,故A正确,B错误;根据爱因斯坦光电效应方程得:入射光的频率变高,光电子的最大初动能变大,故C正确;遏止电压的大小与入射光的频率有关,与入射光的光强无关,保持入射光的光强不变,若低于截止频率,则没有光电流产生,故D 错误。

[名师微点]

1.与光电效应有关的五组概念对比

(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。光子是因,光电子是果。

(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。

(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。

(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。

(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不是简单的正比关系。

2.光电效应的研究思路

(1)两条线索:

(2)两条对应关系:

入射光强度大→光子数目多→发射光电子多→光电流大;

光子频率高→光子能量大→光电子的最大初动能大。

考点二爱因斯坦的光电效应方程及应用

[师生共研类]

1.三个关系

(1)爱因斯坦光电效应方程E k=hν-W0。

(2)光电子的最大初动能E k可以利用光电管实验的方法测得,即E k=eU c,其中U c是遏止电压。

(3)逸出功W0与极限频率νc的关系是W0=hνc。

2.四类图像

[典例] (2018·全国卷Ⅱ)用波长为300 nm 的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10-19 J 。已知普朗克常量为6.63×10-34 J·s ,真空中的光速为3.00×108 m·s -1。能使锌产生光电效应的单色光的最低频率约为( )

A .1×1014 Hz

B .8×1014 Hz

C .2×1015 Hz

D .8×1015 Hz

[解析] 设单色光的最低频率为ν0,由爱因斯坦光电效应方程得E k =hν-W,0=hν0-W ,又ν=c λ,整理得ν0=c λ-E k h ,代入数据解得ν0≈8×1014 Hz 。

[答案] B

[延伸思考]

(1)求金属锌的逸出功W 0。

(2)求用波长为300 nm 光照射锌板时的遏止电压U c 。

提示:(1)逸出功W 0=hν-E k =5.35×10

-19 J 。 (2)遏止电压U c =E k e =0.80 V 。

[易错提醒]

应用光电效应方程时的注意事项

(1)每种金属都有一个截止频率,入射光频率不低于这个截止频率时才能发生光电效应。

(2)截止频率对应着光的极限波长和金属的逸出功,即hνc =h c λc

=W 0。 (3)应用光电效应方程E k =hν-W 0时,注意能量单位电子伏和焦耳的换算(1 eV =

1.6×10-19 J)。

[题点全练]

1.[光电效应方程的应用]

(多选)(2017·全国卷Ⅲ)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b。h为普朗克常量。下列说法正确的是()

A.若νa>νb,则一定有U a

B.若νa>νb,则一定有E k a>E k b

C.若U a

D.若νa>νb,则一定有hνa-E k a>hνb-E k b

解析:选BC设该金属的逸出功为W,根据爱因斯坦光电效应方程有E k=hν-W,同种金属的W不变,则逸出光电子的最大初动能随ν的增大而增大,B项正确;又E k=eU,则最大初动能与遏止电压成正比,C项正确;根据上述有eU=hν-W,遏止电压U随ν增大而增大,A项错误;又有hν-E k=W,W相同,则D项错误。

2.[光电效应的E k-ν图像]

用如图甲所示的装置研究光电效应现象。闭合开关S,用频率为ν的光照射光电管时发生了光电效应。图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图像,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b)。下列说法正确的是()

A.普朗克常量为h=a b

B.断开开关S后,电流表G的示数不为零

C.仅增加照射光的强度,光电子的最大初动能将增大

D.保持照射光强度不变,仅提高照射光频率,电流表G的示数保持不变

解析:选B由E k=hν-W0,可知图线的斜率为普朗克常量,即h=b

a,故A错误;

断开开关S 后,仍有光电子产生,所以电流表G 的示数不为零,故B 正确;只有增大入射光的频率,才能增大光电子的最大初动能,与光的强度无关,故C 错误;保持照射光强度不变,仅提高照射光频率,单个光子的能量增大,而光的强度不变,那么光子数一定减少,发出的光电子数也减少,电流表G 的示数要减小,故D 错误。

3.[光电效应的I -U 图像]

(多选)用甲、乙两种单色光照射同一金属做光电效应实验,发现光

电流与电压的关系如图所示。已知普朗克常量为h ,被照射金属的逸出

功为W 0,遏止电压为U c ,电子的电荷量为e 。下列说法正确的是( )

A .甲光的强度大于乙光的强度

B .甲光的频率大于乙光的频率

C .甲光照射时产生的光电子初动能均为eU c

D .乙光的频率为W 0+eU c h

解析:选AD 根据光的强度越强,则光电子数目越多,对应的光电流越大,即可判定

甲光的强度较大,选项A 正确;由光电效应方程12m v 2=hν-W 0,12

m v 2=U c e ,结合题图可知,甲、乙的遏止电压相同,故甲、乙的频率相同,选项B 错误;甲光照射时产生的光电

子的最大初动能为eU c ,选项C 错误;根据12

m v 2=hν-W 0=U c e ,可得ν=U c e +W 0h ,选项D 正确。

考点三 对波粒二象性的理解[基础自修类]

[题点全练]

1.[波粒二象性的理解]

(多选)实物粒子和光都具有波粒二象性。下列事实中突出体现波动性的是( )

A .电子束通过双缝实验装置后可以形成干涉图样

B .β射线在云室中穿过会留下清晰的径迹

C .人们利用慢中子衍射来研究晶体的结构

D .人们利用电子显微镜观测物质的微观结构

解析:选ACD 干涉和衍射体现的是波动性,A 、C 正确;β射线在云室中留下清晰的径迹,体现的是粒子性,不能体现波动性,B 错误;电子显微镜利用电子束衍射工作,体现的是波动性,D 正确。

2.[光子的能量]

(2017·北京高考)2017年年初,我国研制的“大连光源”——极紫外自由电子激光装置,发出了波长在100 nm(1 nm =10-

9 m)附近连续可调的世界上最强的极紫外激光脉冲。“大连光源”因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究

中发挥重要作用。一个处于极紫外波段的光子所具有的能量可以电离一个分子,但又不会把分子打碎。据此判断,能够电离一个分子的能量约为(取普朗克常量h=6.6×10-34J·s,真空光速c=3×108 m/s)()

A.10-21 J B.10-18 J

C.10-15 J D.10-12 J

解析:选B光子的能量E=hν,c=λν,联立解得E≈2×10-18 J,B项正确。

[名师微点]

光的波粒二象性的规律

1.从数量上看:个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。

2.从频率上看:频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,贯穿本领越强,越不容易看到光的干涉和衍射现象。

3.从传播与作用上看:光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。

4.波动性与粒子性的统一:由光子的能量E=hν、光子的动量表达式p=h

λ也可以看出,

光的波动性和粒子性并不矛盾,表示粒子性的能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。

[课时跟踪检测]

[A级——基础小题练熟练快]

1.用很弱的光做单缝衍射实验,改变曝光时间,在胶片上出现的图像如图所示,该实验表明()

A.光的本质是波

B.光的本质是粒子

C .光的能量在胶片上分布不均匀

D .光到达胶片上不同位置的概率相同

解析:选C 用很弱的光做单缝衍射实验,改变曝光时间,在胶片出现的图样说明光具有波粒二象性,故A 、B 错误;该实验说明光到达胶片上的不同位置的概率是不一样的,也就说明了光的能量在胶片上分布不均匀,故C 正确,D 错误。

2.(2018·滨州模拟)已知钙和钾的截止频率分别为7.73×1014 Hz 和5.44×1014 Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( )

A .波长

B .频率

C .能量

D .动量

解析:选A 由爱因斯坦光电效应方程12

m v m 2=hν-W 0,又由W 0=hν0,可得光电子的最大初动能12

m v m 2=hν-hν0,由于钙的截止频率大于钾的截止频率,所以钙逸出的光电子的最大初动能较小,因此它具有较小的能量、频率和动量,B 、C 、D 错误;又由c =λf 可知光电子频率较小时,波长较大,A 正确。

3.(多选)如图所示,电路中所有元件完好,但光照射到光电管上,

灵敏电流计中没有电流通过,其原因可能是( )

A .入射光太弱

B .入射光波长太长

C .光照时间短

D .电源正、负极接反

解析:选BD 若入射光波长太长,入射光的频率低于截止频率时,不能发生光电效应,故选项B 正确;电路中电源反接,对光电管加了反向电压,若使该电压超过了遏止电压,也没有光电流产生,故选项D 正确。

4.频率为ν的光照射某金属时,产生光电子的最大初动能为E km 。改为频率为2ν的光照射同一金属,所产生光电子的最大初动能为(h 为普朗克常量)( )

A .E km -hν

B .2E km

C .E km +hν

D .

E km +2hν 解析:选C 根据爱因斯坦光电效应方程得E km =hν-W 0,若入射光频率变为2ν,则E km ′=h ·2ν-W 0=2hν-(hν-E km )=hν+E km ,故选项C 正确。

5.(多选)已知某金属发生光电效应的截止频率为νc ,则( )

A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子

B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc

C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大

D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍

解析:选AB该金属的截止频率为νc,则可知逸出功W0=hνc,故当用频率为2νc的单色光照射该金属时,一定能产生光电子,且此时产生的光电子的最大初动能E k′=2hνc -W0=hνc,故A、B正确;逸出功由金属自身的性质决定,与照射光的频率无关,故C错误;由光电效应方程E k=hν-W0可知,D错误。

6.(多选)(2019·鞍山调研)关于光电效应和康普顿效应的规律,下列说法正确的是() A.光电效应中,金属板向外发射的光电子又可以叫做光子

B.用光照射金属不能发生光电效应是因为该入射光的频率小于金属的截止频率

C.对于同种金属而言,遏止电压与入射光的频率无关

D.石墨对X射线散射时,部分X射线的散射光波长会变长,这个现象称为康普顿效应

解析:选BD光电效应中,金属板向外发射的电子叫光电子,光子是光量子的简称,A错误;用光照射金属不能发生光电效应是因为该入射光的频率小于金属的截止频率,B 正确;根据光电效应方程hν=W0+eU c可知,对于同种金属而言(逸出功一样),入射光的频率越大,遏止电压也越大,即遏止电压与入射光的频率有关,C错误;在石墨对X射线散射时,部分X射线的散射光波长会变长的现象称为康普顿效应,D正确。

7.(多选)光电效应实验中,下列表述正确的是()

A.光照时间越长光电流越大

B.入射光足够强就可以有光电流

C.遏止电压与入射光的频率有关

D.入射光频率大于极限频率时一定能产生光电子

解析:选CD光电流的大小只与单位时间流过单位面积的光电子数目有关,而与光照时间的长短无关,选项A错误;无论光照强度多强,光照时间多长,只要入射光的频率小于极限频率就不能产生光电效应,故选项B错误;遏止电压即反向截止电压,eU c=hν-W0,与入射光的频率有关,超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大,则遏止电压越大,故选项C正确;无论光照强度多弱,光照时间多短,光的频率大于极限频率时一定能产生光电子,故选项D正确。

8.某光源发出的光由不同波长的光组成,不同波长的光的强度

如图所示,表中给出了一些材料的极限波长,用该光源发出的光照

射表中材料()

材料钠铜铂

极限波长(nm)541268196

A.

C.仅铜、铂能产生光电子D.都能产生光电子

解析:选D根据爱因斯坦光电效应方程可知,只要光源的波长小于某金属的极限波

长,就有光电子逸出,该光源发出的光的波长最小的小于100 nm ,小于钠、铜、铂三个的极限波长,都能产生光电子,故D 正确,A 、B 、C 错误。

[B 级——保分题目练通抓牢]

9.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能E k 随入射光频率ν变化的E k -ν图像。已知钨的逸出功是3.28 eV ,锌的逸出功是3.34 eV ,若将二者的图线画在同一个E k -ν坐标系中,用实线表示钨、虚线表示锌,则正确反映这一过程的图是( )

解析:选A 依据光电效应方程E k =hν-W 0可知,E k -ν图线的斜率代表普朗克常量h ,

因此钨和锌的E k -ν图线应该平行。图线的横轴截距代表截止频率ν0,而ν0=W 0h ,因此钨的

截止频率小些,综上所述,A 图正确。

10.(多选)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5)。由图可知( )

A.该金属的截止频率为4.27×1014 Hz

B.该金属的截止频率为5.5×1014 Hz

C.该图线的斜率表示普朗克常量

D.该金属的逸出功约为1.8 eV

解析:选ACD由光电效应方程E k=hν-W0可知,题图中横轴的截距为该金属的截止频率,选项A正确,B错误;图线的斜率表示普朗克常量h,C正确;该金属的逸出功W0=hν0=6.63×10-34×4.27×1014 J≈1.8 eV,选项D正确。

11.(多选)如图所示为光电管的工作电路图,分别用波长为λ0、λ1、

λ2的单色光做实验,已知λ2<λ0<λ1。当开关闭合后,用波长为λ0的单色

光照射光电管的阴极K时,电流表有示数。下列说法正确的是()

A.光电管阴极材料的逸出功与入射光无关

B.若用波长为λ1的单色光进行实验,则电流表的示数一定为零

C.若仅增大电源的电动势,则电流表的示数一定增大

D.若仅将电源的正负极对调,则电流表的示数可能为零

解析:选AD光电管阴极材料的逸出功只与材料有关,而与入射光的频率、入射光的强度无关,A正确。用波长为λ0的光照射阴极K时,电路中有光电流,可知波长为λ0的光照射阴极K时,发生了光电效应;若用波长为λ1(λ1>λ0)的光照射阴极K,虽然入射光的频率变小,但仍可能大于阴极的极限频率,仍可能发生光电效应,因此电流表的示数可能不为零,B错误。仅增大电路中电源的电动势,光电管两端电压增大,当达到饱和电流后,电流表的示数不再增大,C错误。将电路中电源的正负极对调,光电子做减速运动,若电子到达不了阳极,则此时电流表的示数为零,D正确。

[C级——难度题目适情选做]

12.(多选)2009年诺贝尔物理学奖得主威拉德·博伊尔和乔治·史密

斯主要成就是发明了电荷耦合器件(CCD)图像传感器。他们的发明利用

了爱因斯坦的光电效应原理。如图所示电路可研究光电效应规律。图中

标有A和K的为光电管,其中A为阳极,K为阴极。理想电流计可检

测通过光电管的电流,理想电压表用来指示光电管两端的电压。现接通

电源,用光子能量为10.5 eV的光照射阴极K,电流计中有示数,若将滑动变阻器的滑片P 缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0 V。现保持滑片P位置不变,以下判断正确的是()

A.光电管阴极材料的逸出功为4.5 eV

B.若增大入射光的强度,电流计的读数不为零

C.若用光子能量为12 eV的光照射阴极K,光电子的最大初动能一定变大

D.若用光子能量为9.5 eV的光照射阴极K,同时把滑片P向左移动少许,电流计的读数一定不为零

解析:选AC由题给电路图可知,图中所加电压为反向减速电压,根据题意可知遏止电压为6 V,由E k=hν-W0=eU c得W0=4.5 eV,选项A正确;当电压达到遏止电压时,所有电子都不能到达A极,无论光强如何变化,电流计示数仍为零,选项B错误;若光子能量增大,根据光电效应方程,光电子的最大初动能一定变大,选项C正确;若用光子能量为9.5 eV的光照射阴极K,则遏止电压为5 V,滑片P向左移动少许,电流计的读数可能仍为零,选项D错误。

13.(2019·菏泽六校联考)如图所示,当一束一定强度某一频率的黄光

照射到光电管阴极K上时,此时滑片P处于A、B中点,电流表中有电

流通过,则()

A.若将滑动触头P向B端移动,电流表读数有可能不变

B.若将滑动触头P向A端移动,电流表读数一定增大

C.若用红外线照射阴极K,电流表中一定没有电流通过

D.若用一束强度相同的紫外线照射阴极K,电流表读数不变

解析:选A所加的电压,使光电子加速到达阳极,则灵敏电流表中有电流流过,且可能处于饱和电流,当滑片向B端移动时,电流表读数有可能不变;当滑片向A端移动时,所加电压减小,则光电流可能减小,也可能不变,故A正确,B错误。若用红外线照射阴极K,因红外线频率小于可

见光,但是不一定不能发生光电效应,电流表不一定没有电流,故C错误。若用一束强度相同的紫外线照射阴极K时,紫外线的频率大于可见光的频率,则光子数目减小,电流表读数减小,故D错误。

14.(多选)1905年,爱因斯坦把普朗克的量子化概念进一步推广,成功地解释了光电效应现象,提出了光子说。在给出与光电效应有关的四个图像中,下列说法正确的是()

A.图1中,当紫外线照射锌板时,发现验电器指针发生了偏转,说明锌板带正电,验电器带负电

B.图2中,从光电流与电压的关系图像中可以看出,电压相同时,光照越强,光电流越大,说明遏止电压和光的强度有关

C.图3中,若电子电量用e表示,ν1、νc、U1已知,由U c-ν图像可求得普朗克常量的

表达式为h=U1e

ν1-νc

D.图4中,由光电子最大初动能E k与入射光频率ν的关系图像可知该金属的逸出功为E或hνc

解析:选CD用紫外线灯发出的紫外线照射锌板,锌板失去电子带正电,验电器与锌板相连,则验电器的金属球和金属指针带正电,故选项A错误;由题图可知电压相同时,光照越强,光电流越大,只能说明光电流强度与光的强度有关,遏止电压只与入射光的频率有关,与入射光的强度无关,故选项B错误;根据爱因斯坦光电效应方程U c e=hν-W0,

可知U c=h

eν-

W0

e,图像U c-ν的斜率表示

h

e,即

h

e=

U1

ν1-νc,解得h=

U1e

ν1-νc,故选项C正确;

根据光电效应方程E k=hν-W0知E k-ν图线的纵轴截距的绝对值表示逸出功,则逸出功为E,当最大初动能为零,入射光的频率等于金属的极限频率,则金属的逸出功等于hνc,故选项D正确。

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

对光的波粒二象性的理解与认识(毕业论文)

2013届本科毕业论文 对波粒二象性的理解与认识 学院:物理与电子工程学院 专业班级:物理 08-8班 学生姓名:努尔麦麦提·阿不都克热木指导老师:巴哈迪尔老师 答辩日期:2013年5月11日 新疆师范大学教务处

对波粒二象性的理解与认识 摘要:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。现代观察认为微观粒子,无论是光子,电子以及其它所有基本粒子,在极微小的空间内作高速运动时有时显示出波动性(这时粒子性不显著),有时显示出粒子性(这时波动性不显著).这种在不同条件下分别表现为波动和粒子的性质,或者说既具有波动性又具有粒子性,就称为波粒二象性(简称象性)。 波粒二象性理论的提出在物理学的发展史上具有重要意义,本文从人们对光本性的认识出发,到把波粒二象性推广到一切物质,比较系统地阐述了波粒二象性理论的产生和发展过程。在这个过程中探索物理学与哲学的联系,并对其中所体现的哲学观点做了尝试性总结 关键词:波粒二象性,波动性,粒子性,电子衍射,德布罗意波

目录 1.引言 (4) 2.光的波粒二象性 (5) 2.1光的波动性. (5) 2.2光的粒子性. (6) 2.3光的波粒二象性. (8) 3电子衍射实验 (10) 3.1.电子衍射实验 (10) 3.2实验数据与处理. (14) 4.波粒二象性的意义和后期成果 (15) 5.结论 (16) 参考文献 (17) 致谢 (18)

引言 1801年,杨氏进行了著名的杨氏双缝干涉实验。实验所使用的白屏上明暗相间的黑白条纹证明了光的干涉现象,从而证明了光是一种波。 1882年德国物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明! 二十世纪初,普朗克和爱因斯坦提出了光的量子学说 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖 在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。即:光既是一种波又是一种粒子!光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。 二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

光电效应与光的波粒二象性.pdf

光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v =0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV C.5.0 eV D.6.5 eV 解析:本题考查光电效应方程及逸出功. 由W hv E k ?= 得W =hv -k E =5.0 eV-1.5 eV=3.5 eV 则入射光的最低能量为h min v =W =3.5 eV

高考物理一轮复习 专题60 光电效应 波粒二象性(练)(含解析)1

专题60 光电效应波粒二象性(练) 1.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加 电压U的关系如图.下列说法中正确 ..的是:() U I a b A.a光光子的频率大于b光光子的频率,a光的强度小于b光的强度; B.a光光子的频率小于b光光子的频率,a光的强度小于b光的强度; C.如果使b光的强度减半,则在任何电压下,b光产生的光电流强度一定比a光产生的光电流强度小; D.另一个光电管加一定的正向电压,如果a光能使该光电管产生光电流,则b光一定能使该光电管产生光电流。 【答案】D 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关;对于本题解题的关键是通过图象判定a、b两种单色光谁的频率大,反向截止电压大的则初动能大,初动能大的则频率高,故b光频率高于a 光的.逸出功由金属本身决定。 2.(多选)已知钙和钾的截止频率分别为14 7.7310Hz ?和14 5.4410H ?z,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钾逸出的光电子具有较大的:() A.波长 B.频率 C.能量 D.动量 【答案】BCD 【解析】根据爱因斯坦光电效应方程得:E k=hγ-W0,又 W0=hγc;联立得:E k=hγ-hγc,据题钙的截止频率比钾的截止频率大,由上式可知:从钾表面逸出的光电子最大初动能较大,

由2 k P mE =,可知钾光电子的动量较大,根据 h P λ= 可知,波长较小,则频率较大.故A 错误,BCD正确.故选BCD. 【名师点睛】解决本题的关键要掌握光电效应方程E k=hγ-W0,明确光电子的动量与动能的关 系、物质波的波长与动量的关系 h P λ= . 3.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加电压U的关系如图所示.则这两种光:() A.照射该光电管时a光使其逸出的光电子最大初动能大 B.从同种玻璃射入空气发生全反射时,b光的临界角大 C.通过同一装置发生双缝干涉,a光的相邻条纹间距大 D.通过同一玻璃三棱镜时,a光的偏折程度大 【答案】C 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关。 4.某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV,用波长为2.5×10- 7 m的紫外线照射阴极,已知真空中的光速为3.0×108 m/s,元电荷为1.6×10-19 C,普朗克常量为6.63×10-34 J·s。则钾的极限频率是Hz,该光电管发射的光电子的最大初动能是J。(保留二位有效数字) 【答案】5.3×1014 ,4.4×10-19 【解析】(1)根据据逸出功W0=hγ0,得: 19 14 034 2.21 1.610 5.310 6.6310 W Hz h γ - - ?? ===? ? ; (2)根据光电效应方程:E k=hγ-W0…①

对波粒二象性的理解和认识_光学小论文

对波粒二象性的理解 和认识 电子工程与信息科学系 黄金 PB11210054

从我们出生的那一刻起,光就伴随着我们。我们的生活离不开阳光,有了光,才有了我们色彩斑斓的生活。人们对光学最初的研究,也是从“人类为何能看到周围的物体开始”。经历了半个多学期的光学学习我对光又有了全新的认识。 大学以前,我们接触到的主要是几何光学,它让我们对光有了最初的认识。它让我们知道光是沿直线传播的,同时又引出了光的反射、折射等基本性质。费马定理更是让我们对光有了更为全面的认识。我们似乎觉得这好像就是光的全部。其实不然,大学又为我们开启了一扇全新的大门,让我们更进一步的认识光,了解光。 光的干涉衍射让我们知道了光是一种波。而对于光电效应和黑体辐射等问题的研究又让我们看到了光的电磁性!既能像波浪一样向前传播,又表现出粒子的特征,我们称光具有“波粒二象性”。 从光的波粒二象性的发现到发展经历了相当长的时间,也是一段无比辉煌的阶段。光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。17 世纪以前,人们对光的认识只停留在简单的几何光学的层面上,例如光的反射、折射等光的直线传播现象,这也是光学的初期发展。十七世纪初期,人们逐渐发现了与光的直线传播不完全符合的事实,意大利人格里马第率先观察到了光的衍射现象,接着1672-1675 年间胡克也观察到了光的衍射现象,并且和波意耳互相独立地研究了薄膜所产生的彩色干涉条纹,衍射现象,简而言之,就是光波遇到小障碍物或小孔时,绕过障碍物进入几何

阴影区继续传播,并在障碍物后的观察屏上呈现出光强的不均匀分布的现象。所有这些现象的发现都为光的波动理论的萌芽奠定了坚实的基础。17 世纪下半叶,英国物理学家牛顿以极大的兴趣和热情开始了对光学的研究。通过白光实验并根据光的直线传播的性质,他提出了光是微粒流的理论,然而他的这一理论因无法解释光在绕过障碍物之后所发生的衍射现象,遭到了以惠更斯为代表的波动学说的强烈反对。光的研究在18 世纪实际上并没有什么发展,由于牛顿在学术界的权威和盛名,大多数科学家仍在支持光的微粒学说,不过笛卡儿学派中瑞士的欧拉和法国的伯努利却捍卫并发展了光的波动理论。 人们探索的脚步永不停息。到了十九世纪,初步发展起来的波动光学的体系已经形成。杨氏(托马斯?杨)和菲涅耳的著作对光学的发展起到了决定性的作用,著名的“杨氏双缝干涉试验”还第一次成功地测定了光的波长,光学界沉闷的空气再次活跃起来。后来菲涅耳用杨氏干涉原理补充了惠更斯原理,形成人们所熟知的惠更斯--菲涅耳原理,1800年光的偏振现象的发现,更证明了光是横波的事实。1845年,法拉第发现光的振动面在强磁场中的旋转,从而揭示了光现象和电磁现象的内在联系,同时使人们认识到在研究光学现象的时候必须把光学现象同其他物理现象联系起来考虑。后来麦克斯韦在1865 年的理论研究中指出:光是一种电磁波。这一结论后来被赫兹用试验所证实。19 世纪末到20 世纪初,光的研究深入到光的发生,光和物质的相互作用的微观体系中,然而光的电磁理论却不能解释光和物质的相互作用的某些现象,例如黑体辐射中能量按波长的分布的问题;赫兹发现的光电效应等。

第十三章第三节 光电效应 波粒二象性

第三节光电效应波粒二象性 [学生用书P243]) 一、黑体和黑体辐射 任何物体都具有不断辐射、吸收、发射电磁波的本领.辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布.这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射.为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体,以此作为热辐射研究的标准物体. 二、光电效应 1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子). 2.产生条件:入射光的频率大于极限频率. 3.光电效应规律 (1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多. (2)存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应. (3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s. 1.判断正误 (1)我们周围的一切物体都在辐射电磁波.() (2)光子和光电子都是实物粒子.() (3)能否发生光电效应取决于光的强度.() (4)光电效应说明了光具有粒子性,证明光的波动说是错误的.() (5)光电子的最大初动能与入射光的频率有关.() (6)逸出功的大小与入射光无关.() 答案:(1)√(2)×(3)×(4)×(5)√(6)√ 三、光电效应方程 1.基本物理量 (1)光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量). (2)逸出功:使电子脱离某种金属所做功的最小值. (3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸

18届高考物理一轮复习专题光电效应波粒二象性导学案2

光电效应波粒二象性 知识梳理 知识点一、光电效应 1.定义 照射到金属表面的光,能使金属中的电子从表面逸出的现象。 2.光电子 光电效应中发射出来的电子。 3.研究光电效应的电路图(如图1): 图1 其中A是阳极。K是阴极。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10-9s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 知识点二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量) 2.逸出功W0 使电子脱离某种金属所做功的最小值。 3.最大初动能 发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c 。 (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。 5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用 来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。 知识点三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 2.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。 (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量。 考点精练 考点一 光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率。 (2)光电效应中的“光”不是特指可见光,也包括不可见光。 (3)逸出功的大小由金属本身决定,与入射光无关。 (4)光电子不是光子,而是电子。 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大;

光电效应与光的波粒二象性

高中精品试题 高中精品试题 光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v 0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV

2020届高三高考物理复习知识点复习卷:光电效应波粒二象性

光电效应 波粒二象性 1.(多选)(2019·西安检测)关于物质的波粒二象性,下列说法中正确的是( ) A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B .运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C .波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D .实物的运动有特定的轨道,所以实物不具有波粒二象性 2.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定相同的是( ) A .遏止电压 B .饱和光电流 C .光电子的最大初动能 D .逸出功 3.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝。实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间够长,底片上就会出现如图丙所示规则的干涉条纹。对于这个实验结果的认识正确的是( ) 甲 乙 丙 A .单个光子的运动没有确定的轨道 B .曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子 C .干涉条纹中明亮的部分是光子到达机会较多的地方 D .大量光子的行为表现为波动性 4.(多选)下列说法正确的是( ) A .光子不仅具有能量,也具有动量 B .光有时表现为波动性,有时表现为粒子性 C .运动的实物粒子也有波动性,波长与粒子动量的关系为λ=p h D .光波和物质波,本质上都是概率波 5.(多选)已知某金属发生光电效应的截止频率为νc ,则( ) A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子 B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大 D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍

光的波粒二象性

光的波粒二象性 作为被列入世界上十大经典物理实验之一的双缝实验,让很多物理学家和科学家们伤透脑筋。双缝实验是一种光学实验,大家一起往下看吧。 在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。 这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。双缝实验还被列入了世界十大经典物理实验之中,但是有人却认为双缝实验十分的难以理解。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 试验本身没什么问题,证明了光有波粒二象性,但是科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。单光子双缝干涉实验现在有一种仪器,每次只发射出一个光子,这时如果遮板上仍然有两个缝隙A和B(遮板与上述传统实验一样)。依照传统理论,该光子每次有且仅有以下三种情况中的一种:被遮板挡住、通过A缝、通过B缝。 因为要观察投射面的光斑分布,所以不必考虑第一种情况。也就是说,只要光子通过了遮板,要么从A缝通过,要么从B缝通过。按照这种传统理论推导,在投射面会形

光的波粒二象性

1.了解事物的连续性与分立性是相对的. 2.了解光既具有波动性,又具有粒子性. 3.了解光是一种概率波. 【教材内容全解】 光电效应以及以后发现的康普顿效应都证明了光是一种粒子,但光的干涉现象和光的衍射现象又表明光是一种波.我们可以看出,光既具有波动性,又具有粒子性,即光具有波粒二象性. 光是一种粒子,它和物质作用是“一份一份”的,但我们无法用宏观世界的规律来描述这些粒子的运动规律,当光子数很少时,可以清楚地看到光子的痕迹,但光子的数量很多时,我们就无法把它们区分开,看起来就是连续的,正如沙堆是一颗颗沙粒组成的,但是建筑工地上的一堆沙子包含的沙子太多了,测量沙堆的体积可以认为它们是连续的.从波动性来看,单个光子的运动无法预测,但大量的光子就有了规律,它们出现在某个区域内的可能性就能看出来,这是微观世界具有的特殊规律.这样的现象表明,大量光子运动的规律表现出光的波动性,单个光子的运动表现出光的粒子性,光子在空间各点出现的可能性大小(概率)可以用波动的规律来描述,物理学中把光波叫做概率波. 光既然是一种概率波,但它和水波、绳子上的波等机械波在本质上完全不同,决定光子在空间不同位置出现概率的规律表现为波的规律.课本图21-3的实验中,光子在和感光胶片作用时的表现和通常的粒子一样,在通过狭缝时却和我们印象中的波一样,正如光子的能量E=hv 和动量λ h c hv p ==,等式的左边表示粒子性,等式右边表示波动的性质,这两种性质通过普朗克常量h 定量地联系起来,这是光的波粒二象性的体现,但不能把它简单地理解为光子以波浪式前进.从波的特性可以看出,光子波长越长,越容易看到光的干涉和衍射现象,波动性越明显;光波的频率越高,粒子性越明显,穿透本领越强. 【难题巧解点拨】 例 关于光的本性,下列说法中正确的是 ( ) A .光子说并没有否定光的电磁说 B .光电效应现象反映了光的粒子性 C .光的波粒二象性是综合了牛顿的微粒说和惠更斯的波动说得出来的 D .大量光子产生的效果往往显示出粒子性,个别光子产生的效果往往显示出波动性 解析 光既有粒子性,又有波动性,但这两种特性并不是牛顿所支持的微粒说和惠更斯提出的波动说,它体现出的规律不在是宏观粒子和机械波所表现出的规律,而是自身体现的一种微观世界特有的规律.光子说和电磁说各自能解释光特有的现象,两者构成一个统一的整体,而微粒说和波动说是互相对立的. 答案 A 、B 点拨 本章主要是对微观世界的规律进行了讲解,要对微观世界了解,就不能再以宏观世界的规律进行理解.我们的经验局限于宏观物体的运动,微观世界的某些属性与宏观世界

2019年高考人教版高三物理光电效应、光的波粒二象性练习题 (含答案)

2019年高考人教版高三物理光电效应、光的波粒二象性练习题 一、选择题 1.当用一束紫外线照射装在原不带电的验电器金属球上的锌板时,发生了光电效应,这时发生的现象是[ ] A.验电器内的金属箔带正电 B.有电子从锌板上飞出来 C.有正离子从锌板上飞出来 D.锌板吸收空气中的正离子 2.一束绿光照射某金属发生了光电效应,对此,以下说法中正确的是[ ] A.若增加绿光的照射强度,则单位时间内逸出的光电子数目不变 B.若增加绿光的照射强度,则逸出的光电子最大初动能增加 C.若改用紫光照射,则逸出光电子的最大初动能增加 D.若改用紫光照射,则单位时间内逸出的光电子数目一定增加 3.在光电效应实验中,如果需要增大光电子到达阳极时的速度,可采用哪种方法?[ ] A.增加光照时间 B.增大入射光的波长 C.增大入射光的强度 D.增大入射光频率 4.介质中某光子的能量是E,波长是λ,则此介质的折射率是[ ] A.λE/h B.λE/ch C.ch/λ E D.h/λ E

5.光在真空中的波长为λ,速度为c,普朗克常量h,现让光以入射角i由真空射入水中,折射角为r,则[ ] A.r>i D.每个光子在水中能量为hc/λ 6.光电效应的四条规律中,波动说仅能解释的一条规律是[ ] A.入射光的频率必须大于或等于被照金属的极限频率才能产生光电效应 B.发生光电效应时,光电流的强度与人射光的强度成正比 C.光电子的最大初动能随入射光频率的增大而增大 D.光电效应发生的时间极短,一般不超过10-9s 7.三种不同的入射光A、B、C分别射在三种不同的金属a、b、c表面,均恰能使金属中逸出光电子,若三种入射光的波长λA>λB>λC,则[ ] A.用入射光A照射金属b和c,金属b和c均可发出光电效应现象 B.用入射光A和B照射金属c,金属c可发生光电效应现象 C.用入射光C照射金属a与b,金属a、b均可发生光电效应现象 D.用入射光B和C照射金属a,均可使金属a发生光电效应现象 8.下列关于光子的说法中,正确的是[ ] A.在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子 B.光子的能量由光强决定,光强大,每份光子的能量一定大 C.光子的能量由光频率决定,其能量与它的频率成正比

对波粒二象性的理解

量子力学 题目: 专题理解:波粒二象性 学生姓名 专业 学号 班级 指导教师 成绩 工程技术学院 2016 年 1 月

专题理解:波粒二象性 前言: 波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在量子力学里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性,是微观粒子的基本属性之一。但从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。那么究竟自由理解波粒二象性呢?通过对量子力学课程的学习以及查阅相关资料,我对其有了更深的理解并做了以下整理与总结。 一、波粒二象性理论的发展简述 较为完全的光理论最早是由克里斯蒂安·惠更斯发展成型,他提出了一种光波动说。稍后,艾萨克·牛顿提出了光微粒说。光的波动性与粒子性的争论从未平息。十九世纪早期,托马斯·杨完成的双缝实验确切地证实了光的波动性质。到了十九世纪中期,光波动说开始主导科学思潮,因为它能够说明偏振现象的机制,这是光微粒说所不能够的。同世纪后期,詹姆斯·麦克斯韦将电磁学的理论加以整合,提出麦克斯韦方程组。应用电磁波方程计算获得的电磁波波速等于做实验测量到的光波速度。麦克斯韦于是猜测光波就是电磁波。1888年,海因里希·赫兹做实验发射并接收到麦克斯韦预言的电磁波,证实麦克斯韦的猜测正确无误。从这时,光波动说开始被广泛认可。 为了产生光电效应,光频率必须超过金属物质的特征频率,称为其“极限频率”。根据光波动说,光波的辐照度或波幅对应于所携带的能量,因而辐照度很强烈的光束一定能提供更多能量将电子逐出。然而事实与经典理论预期恰巧相反。1905年,爱因斯坦对于光电效应给出解释。他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”。1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。 在光具有波粒二象性的启发下,法国物理学家德布罗意在1924年提出一个“物质波”假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都有波粒二象性。他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h 跟粒子动量mv 的比,即λ= h/(mv)。这个关系式后来就叫做德布罗意公式。根据德布罗意假说,电子是应该会具有干涉和衍射等波动现象。1927年,克林顿·戴维森与雷斯特·革末设计与完成的戴维森-革末实验成功证实了德布罗意假说。 2015年瑞士洛桑联邦理工学院科学家成功拍摄出光同时表现波粒二象性的照片。

3.20光电效应 波粒二象性(作业)

光电效应波粒二象性 (建议用时:40分钟) [基础对点练] 1.(2016·山西太原质检)关于光电效应,下列说法正确的是() A.截止频率越大的金属材料逸出功越大 B.只要光照射的时间足够长,任何金属都能发生光电效应 C.从金属表面出来的光电子的最大初动能越大,这种金属的逸出功 越小 D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就 越多 2.(2019·南宁模拟)下列说法错误的是() A.黑体辐射电磁波的强度按波长分布,与黑体的温度无关 B.德布罗意提出了实物粒子也具有波动性的猜想,而电子衍射实验证实了他的猜想 C.用频率一定的光照射某金属发生光电效应时,入射光越强,单位时间发出的光电子数越多 D.光电效应和康普顿效应都揭示了光具有粒子性 3.(2019·大庆检测)关于光电效应及波粒二象性,下列说法正确的是() A.光电效应揭示了光的粒子性 B.光的波长越大,能量越大 C.紫外线照射锌板,发生光电效应,锌板带负电 D.光电效应中,光电子的最大初动能与金属的逸出功无关 4. (2016·甘肃兰州质检)(多选)如图所示的光电管的实验中,发现用一定频率的M单色光照射光电管时,电流表指针会发生偏转,而用另一频率的N单色光照射时不发生光电效应,那么() A.N光的频率一定大于M光的频率 B.M光的频率一定大于N光的频率 C.用M光照射光电管时流过电流表G的电流方向是a流向b D.用M光照射光电管时流过电流表G的电流方向是b流向a

5.(多选)(2019·日照模拟)某种金属发生光电效应时,光电子的最大初动能E k与入射光频率ν的关系如图所示,E、ν0为已知量。由图线信息可知() A.逸出功W0=E B.图象的斜率表示普朗克常量的倒数 C.图中E与ν0的值与入射光的强度、频率均无关 D.若入射光频率为3ν0,则光电子的最大初动能为3E 6.(多选)(2019·郑州模拟)如图甲所示,在光电效应实验中,某同学用相同频率的单色光,分别照射阴极材料为锌和铜的两个不同的光电管,结果都能发生光电效应。图乙为其中一个光电管的遏止电压U c随入射光频率ν变化的函数关系图象。对于这两个光电管,下列判断正确的是() 甲乙 A.因为材料不同逸出功不同,所以遏止电压U c不同 B.光电子的最大初动能不同 C.因为光强不确定,所以单位时间逸出的光电子数可能相同,饱和光电流也可能相同 D.两个光电管的U c-ν图象的斜率可能不同 7.(2016·山东青岛模拟)关于光的本性,下列说法正确的是() A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的 B.光的波动性类似于机械波,光的粒子性类似于质点 C.大量光子才具有波动性,个别光子只具有粒子性 D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性 8.(2016·河北秦皇岛模拟)(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度,使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片上只能出现一些不规则的点;如果曝光时间足够长,底片上就会出现规则的干涉条纹.对这个实验结果下列认识正确的是

对波粒二象性的理解和认识

对波粒二象性的理解与认识 摘要:光的波粒二象性被发现之后,德布罗意由此得到启发,大胆地把这二象性推广 到物质客体上去,提出了实物粒子也具有波粒二象性的理论。本文结合所学知识,通过对波粒二象性发展的简单梳理,阐述了目前自己对其的理解与认识。 引言 量子论和相对论是近代物理学的两大支柱, 两者都改变了人们对物质世界的根 本认识并对20世纪的科学技术、生产实践起到了决定性的推动作用。相对论以相对时空观取代源于常识的绝对空观, 量子力学则用以物质粒子的波粒二象性为基础的 概率来描述物质粒子的行为, 使物质粒子的行为具有了神秘的不确定性。经过课本 上的知识的学习,我进行了进一步的了解总结与思考。 1.光的波粒二象性 光究竟是粒子还是波?这个问题涉及对光的本性的不同认识。1672年,牛顿向英国皇家学会递交了一篇《关于光和色的新理论》的论文。他认为光是由许多机械微粒组成的,提出了光的微粒说。19世纪托马斯·扬和其他一些人决定性的证明了, 光的粒子理论是错误的。他们认为,光更应该是一种波。关于波,我们熟悉的一种特性是,干涉。托马斯·扬利用他的著名的双缝实验装置制造出两个光波源, 并观察到光也 有类似的干涉图案。这样,在19世纪下半叶,光的波动说占了统治地位。 但是,没有过多久,19世纪末进行的一些实验,发现了一些新的实验现象,不能用光 的波动理论解释。这些实验里面最著名的就是光电效应和康普顿效应,。而爱因斯坦在普朗克的量子假说基础上提出的光量子假说,对光电效应成功地解释,又复兴了以前的光的粒子论。但这一次并没有否定波动说, 而是由此得出了光的波粒二象性的 结论。 2.物质波 1923 年, 德布罗意在光有波粒二象性的启示下, 提出实物粒子也具有波动性的 假说。德布罗意认为, 任何运动着的物体都伴随着一种波动, 而且不可能将物体的运动和波的传播分开, 这种波称为相位波。存在相位波是物体的能量和动量同时满足 量子条件和相对论关系的必然结果。后来薛定愕解释波函数的物理意义时称为,物 质波,。 德布罗意的物质波理论是在没有得到任何已知事实支持的情况下提出来的, 所 以还只能是一种假说。1 927 年初, 戴维孙和革末通过电子束在镍单晶体表面上散射的实验,观察到了和X射线衍射类似的电子衍射图像,首先证实了德布罗意假说的正确性。同年G. P. 汤姆逊用多晶体薄膜做电子衍射实验,也观察到了和X射线衍射类似的电子衍射图像,实验观测和由德布罗意理论得到的结果非常一致, 这充分证明 了电子具有波动性, 再一次用无可辩驳的事实向人们展示了德布罗意理论是正确的。 以后, 人们通过实验又观察到原子、分子等微观粒子都具有波动性。实验证明了物质具有波粒二象性, 不仅使人们认识到德布罗意的物质波理论是正确的, 而且为

光电效应波粒二象性

《光电效应 波粒二象性》(人教版) 一、选择题(每小题7分,共70分) 1.下列说法中正确的是( ) A .实物粒子只具有粒子性,不具有波动性 B .卢瑟福通过α粒子散射实验现象,提出了原子的核式结构模型 C .光波是概率波,光子在前进和传播过程中,其位置和动量能够同时确定 D .在工业和医疗中经常使用激光,是因为其光子的能量远大于γ光子的能量 解析:电子通过晶格的衍射现象表明实物粒子也具有波动性,A 错误.卢瑟福的原子核式结构模型理论的基础就是α粒子散射实验,B 正确.由不确定性关系知微观粒子的位置和动量是不能同时准确测量的,C 错误,在工业和医疗中常使用激光的原因是由于其平行性好、亮度高,但亮度高不是由于光子能量高,而是单位时间内通过单位面积的总能量大,D 错误. 答案:B 2. 对于光电效应的解释正确的是( ) ①金属内的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属 ②如果入射光子的能量小于金属表面的电子克服原子核的引力逸出时需要做的最小功,光电子便不能逸出来,即光电效应便不能发生了 ③发生光电效应时,入射光越强,光子的能量越大,光电子的最大初动能就越大 ④由于不同的金属逸出功是不相同的,因此不同金属产生光电效应的入射光的最低频率也不相同. A. ①④ B. ①②④ C. ②④ D. ②③④ 解析:实验证明,入射光强度不论多大,只要频率不够高,是不会发生光电效应的. 而光电子的最大初动能与入射光频率和金属材料有关,材料不同,逸出功不同,由爱因斯坦光电效应方程,有 12 mv 2 max =hν-W 当v max =0时,ν0=W /h ,W 不同则ν0不同.最大初动能12mv 2 max 与光强无关.①③不正确. 答案:C 3.用同一光电管研究a 、b 两种单色光产生的光电效应,得到光电流I 与光电管两极间所加电压U 的关系如图.则这两种光(

相关文档
最新文档