陶瓷轴承的优缺点

陶瓷轴承的优缺点
陶瓷轴承的优缺点

陶瓷:

陶瓷是陶器与瓷器的统称,同时也是我国的一种工艺美术品,远在新石器时代,我国已有风格粗犷、朴实的彩陶和黑陶。陶与瓷的质地不同,性质各异。陶,是以粘性较高、可塑性较强的粘土为主要原料制成的,不透明、有细微气孔和微弱的吸水性,击之声浊。瓷是以粘土、长石和石英制成,半透明,不吸水、抗腐蚀,胎质坚硬紧密,叩之声脆。我国传统的陶瓷工艺美术品,质高形美,具有高度的艺术价值,闻名于世界。

陶瓷轴承:

普通轴承钢AISI52100、不锈钢AISI440、氮化硅和氧化锆四种轴承材料性能对照情况,陶瓷轴承作为一种重要的机械基础件,由于其具有金属轴承所无法比拟的优良性能,抗高温、超强度等在新材料世界一马当先。

主要用途:

陶瓷轴承具有耐高温、耐寒、耐磨、耐腐蚀、抗磁电绝缘、无油自润滑、高转速等特性。可用于极度恶劣的环境及特殊工况,可广泛应用于航空、航天、航海、石油、化工、汽车、电子设备,冶金、电力、纺织、泵类、医疗器械、科研和国防军事等领域,是新材料应用的高科技产品。

陶瓷轴承的套圈及滚动体采用全陶瓷材料,有氧化锆(ZrO2)、氮化硅(Si3N4)、碳化硅(Sic)三种。保持器采用聚四氟乙烯、尼龙66,聚醚酰亚氨,氧化锆、氮化硅,不锈钢或特种航空铝制造,

从而扩大陶瓷轴承的应用面。

应用领域:

医疗器械、低温工程、光学仪器、高速机床、高速电机、印刷机械、食品加工机械。

在航空航天、航海、核工业、石油、化工、轻纺工业、机械、冶金、电力、食品、机车、地铁、高速机床及科研国防军事技术等领域需要在高温、高速、深冷、易燃、易爆、强腐蚀、真空、电绝缘、无磁、干摩擦等特殊工况下工作,陶瓷轴承不可或缺的替代作用正在被人们逐渐地认识。

随着加工技术的不断进步,工艺水平的日益提高,陶瓷轴承的成本不断下降,已经从过去只在一些高、精、尖领域小范围内应用,逐步推广到国民经济各个工业领域,产品市场价格也逐渐接近实用化,达到用户可接受的程度,陶瓷轴承大面积应用的浪潮已经涌来!

陶瓷轴承的优缺点

陶瓷轴承的优缺点 陶瓷轴承是一个总称呼,大分两种,全陶瓷轴承和半陶瓷轴承(混合陶瓷轴承),若是在不考虑其它(如转速、寿命、使用环境等)前提条件下,单独就陶瓷轴承的负荷(载荷、承重)来说:同一型号的轴承,轴承钢6204ZZ,基本额定动载荷13.5kN,混合陶瓷轴承 6204ZZC:基本额定动载荷大概在27kN左右,若是全氧化锆陶瓷轴承6204CE,基本额定动载荷大概在2kN左右,单独的陶瓷轴承负荷(载荷、承重)来说是比不上同型号规格的轴承钢轴承或是混合陶瓷轴承。 但若是综合使用环境来说,陶瓷轴承有以下几点明显优势: 陶瓷轴承的优缺点: 陶瓷轴承原子结构,非金属固有的共价键。这意味着它们共享电子,此原子有强烈的吸附力,由于这个原因,陶瓷轴承提供一些好的性能比金属轴承。它们通常有很高的硬度,有弹性,轻巧。这意味着在形状改变时,负荷与提高耐磨特性一起应用。 陶瓷轴承运行免润滑。这是因为陶瓷材料不微焊接。微焊接发生时,通常与金属,当滚动元件和滚道表面上的瑕疵与另一种引起电弧相互作用。这降低了表面并大大降低了轴承的寿命。陶瓷材料不具有这样的问题,这使得它们适合于需要一个自由润滑油环境的各种应用。他们通常在高温下这意味着有较少的热膨胀以稳定的方式行事。

它需要大量的更多的能量,以增加一个共价键的键长相比,金属离子键。 陶瓷是非金属的,非铁材料。当暴露于水和其它有害化学品它们不以同样的方式作为金属腐蚀。它们的高的耐蚀性的允许它们在潮湿和化学腐蚀环境中优异的性能。许多工程陶瓷也具有低的密度,导致在轴承'工作速度,这是改善由于低向心力和减少摩擦。由于缺乏在大多数陶瓷自由电子,它们是非磁性和优良的绝缘体。研究陶瓷轴承,当人们可能会注意到的第一件事情是,他们基本上比金属更加昂贵。有许多原因。 有与以达到高档原料烧结过程所需要的温度所需要的大量的能量有关极高能量和加工成本。由于陶瓷是这么辛苦,加工和磨削成本制造精密轴承时迅速增加。所有这一切都必须在一个干净的环境中具有熟练的劳动力来完成。陶瓷是在他们的毛孔杂质难以置信的敏感,所以任何污染物可能会导致过早失效。随着尺寸的增加,价格也增加了指数,因为成本高,加工方法的要求。这些包括,以克服在生坯的温度梯度,均匀施加压力的量在较大体积和所得机器成本需要较慢的烧结过程。 陶瓷轴承具有较低的承载能力相比,金属和对热冲击敏感。热冲击是当材料内的温度梯度会导致不同的膨胀,这会导致内部应力。这种压力可以超过这样的材料形成裂纹的实力。

第四章 流体润滑原理

第四章流体润滑原理 概述 用具有润滑性的一层膜把相对运动的两个表面分开,以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是润滑。 根据分隔固体表面的材料不同,润滑可分为以下三类: ①流体润滑:摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。 ②边界润滑:摩擦界面上存在着一层具有良好润滑性的边界膜,但不是介质的膜。相对于干摩擦来说,边界润滑具有比较低的摩擦系数,能有效地减轻接触表面的磨损。 ③固体润滑:广义来说,固体润滑也是一种边界润滑。就是用摩擦系数比较低的材料(固体润滑剂或固体润滑材料),在摩擦界面上形成边界膜,以降低接触表面的磨损和摩擦系数。 对于流体润滑的系统研究约在19世纪末逐渐展开。 1883年塔瓦(Tower)发现了轴承中的流体动压现象。彼得洛夫(Петров)研究了同心圆柱体的摩擦及润滑。随即雷诺(Reynold)应用了数学和流体力学的原理对流体动压现象进行了分析,发表了著名的雷诺方程。为流体动力润滑奠定了基础。后来一些科学家,在求解雷诺方程,以及将雷诺方程应用于工程实际中作出了贡献,并解决了很多雷诺方程假设以外的问题,。 对于线接触及点接触的滚动件,在重载条件下的润滑问题,考虑了接触零件表面间的弹性变形及润滑剂的粘-压效应。于20世纪中叶,格鲁宾(Грубин)提出了著名的弹性流体动力润滑的计算公式。以后的道松(Dowson)郑绪云(Cheng)温诗铸等的进一步发展,使弹性流体动力润滑理论日趋成熟。 随着科学技术的发展,流体润滑中的紊流、惯性、热效应等以及非牛顿流体润滑等问题也展开了研究。 流体润滑定义:在适当条件下,摩擦副的摩擦表面由一层具有一定厚度的粘性流体完全分开,由流体的压力来平衡外载荷。流体层中的分子大部分不受金属表面离子、电子场的作用而可以自由地移动。这种状态称为流体润滑。流体润滑

动压、静压、动静压轴承的工作原理及装配知识

动压、静压、动静压轴承的工作原理及装配知识 一、静动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑和冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修. 利用润滑油的粘性和轴颈的高速旋转,把润滑油带进轴承的楔形空间建立起压力油膜隔开。这种轴承称为动压滑动轴承。靠液体润滑剂动压力形成液膜隔开两摩擦表面并承受载荷滑动轴承。液体润滑剂是被两摩擦面相对运动带入两摩擦面之间。产生液体动压力条件是﹕两摩擦面有足够相对运动速度﹔润滑剂有适当黏度﹔两表面间间隙是收敛。 二、动压滑动轴承的安装 动压轴承结构图 1 装配前的准备 (1)准备所需的量具和工具。 (2)按照图纸要求检查轴套和轴承座的表面情况及配合过盈是否符合要求,然后按轴颈

液体静压轴承原理

液体静压轴承 靠外部供给压力油、在轴承内建立静压承载油膜以实现液体润滑的滑动轴承。液体静压轴承从起动到停止始终在液体润滑下工作,所以没有磨损,使用寿命长,起动功率小,在极低(甚至为零)的速度下也能应用。此外,这种轴承还具有旋转精度高、油膜刚度大、能抑制油膜振荡等优点,但需要专用油箱供给压力油,高速时功耗较大。 简史 1862年,法国的L.D.吉拉尔发明液体静压轴承,指出摩擦系数可小至1/500。1917年,英国科学家瑞利发表求解液体静压推力轴承的承载能力、流量和摩擦力矩方程。1938年,美国在大型天文望远镜上应用液体静压轴承,承载总重量500吨,每昼夜转动一周,驱动功率仅1/12马力。1948年法国开始把液体静压轴承用于磨床上。现代液体静压轴承已成功地用于重型、精密、高效率的机器和设备上。 分类液体静压轴承分径向轴承、推力轴承和径向推力轴承(图1[液体静压轴承的类型] )。它有供油压力恒定和供油流量恒定两种系统。供油压力恒定系统较为常用。

作用原理图2 [供油压力恒定系统的液体静压轴承]为供油压力恒定系 统的液体静压轴承和轴瓦的构造。外部供给的压力油通过补偿元件后从供油压力降至油腔压力,再通过封油面与轴颈间的间隙从油腔压力降至环境压力。多数轴承在轴不受外力时,轴颈与轴承孔同心,各油腔的间隙、流量、压力均相等,这称为设计状态。当轴受外力时轴颈位移,各油腔的平均间隙、流量、压力均发生变化,这时轴承外力与各油腔油膜力的向量和相平衡。补偿元件起自动调节油腔压力和补偿流量的作用,其补偿性能会影响轴承的承载能力、油膜刚度等。供油压力恒定系统中的补偿元件称为节流器,常见的有毛细管节流器小孔节流器滑阀节流器、薄膜节流器等多种。供油流量恒定系统中的补偿元件有定量泵和定量阀补偿元件不同,轴承载荷-位移性能也不同(图3[不同补偿元件液体静压径向轴承的载荷-位移性能比较] )由于轴的旋转,在轴承封油面上有液体动压力产生,有利于提高轴承的承

五大进口轴承品牌排名,轴承型号大全

轴承型号大全 混合陶瓷球轴承 陶瓷球特别是氮化硅球具有高硬度、低密度、低摩擦系数,耐磨、自润滑、抗磁电绝缘及刚性好等特点,特别适合做高精度、高速以及长寿命混合陶瓷球轴承的滚动体(内外圈为金属)。一般内圈、外圈采用轴承钢(GCr15)或者不锈钢(AISI440C或316304),陶瓷球可选用Si3N4,ZrO2或SiC材料。 混合陶瓷球轴承特性: 1、自润滑:即使润滑条件很差或在无润滑状态下,陶瓷轴承独特的自润滑功能也可以保证轴承的正常工作。 2、高速:由于相对滑动、磨损量和发热量大大减少,油雾润滑最高可达到350万DN,脂润滑最高可达到120万DN。 3、高刚性:陶瓷材料的弹性模量比轴承钢约高50%,从而大大提高了轴承的刚性。

4、耐腐蚀:具有很好的耐腐蚀性能,在腐蚀性条件下也能够正常工作。 5、重量轻:陶瓷材料比钢轻60%,从而大大减少了离心力和轴承的整体重量。 6、长寿命:在适宜的工作环境下陶瓷轴承的寿命是全钢轴承的3到5倍。 7、耐磨损:陶瓷材料硬度高达HV1700,从而大大提高了轴承耐磨损的性能。 混合陶瓷球轴承主要用途: 混合陶瓷球轴承主要应用于低温工程、印刷机械、医疗器械、光学仪器、高速电机、高速机床、食品加工机械。 氮化硅全陶瓷轴承 氮化硅全陶瓷轴承套圈以及滚动体采用的是氮化硅(Si3N4)陶瓷材料,保持器使用的是聚四氟乙烯(PTFE)作为标准配置,一般也可使用PEEK,PI,GRPA66-25以及酚醛夹布胶木管等。SiN4制全陶瓷轴承与ZrO2材料相比可适用于更高转速及负荷能力,以及更高的环境温度。同时还可提供用于高速高精度高刚性主轴的精密陶瓷轴承,最高制造精度达P4至UP级。 特性: 1、高速:具有受力弹性小、抗压力大、耐寒性、导热性能差、摩擦系数小、自重轻等优点,可应用在12000转/分~75000转/分的高速主轴以及其它高精度设备中。 2、防磁:因无磁不吸粉尘,可以减少轴承提前剥落、噪声大等问题。可用在精密仪器、退磁设备等领域。 3、耐高温:材料本身具有耐高温1200℃,且自润滑好,使用温度在100℃-800℃间不会产生因温差造成的膨胀。可应用在炉窑、制钢、制塑等高温设备中。 4、真空:因陶瓷材料独具的无油自润滑特性,在超高真空环境中,氮化硅全陶瓷轴承可克服普通轴承无法实现润滑难题。 5、耐腐蚀:材料本身具有耐腐蚀的特性,可应用在强酸、强碱、有机盐、无机、海水等领域,如:电子设备,电镀设备,船舶制造、化工机械等。 6、电绝缘:因电阻力高,可以免电弧损伤轴承,可用在各种需要绝缘的电力设备中。

滚动轴承和滑动轴承的特点和区别

滚动轴承和滑动轴承的特点和区别 滑动轴承具有以下特点。 1、寿命长,适于高速。 2、能承受冲击和振动载荷。 3、运转精度高,工作平衡,无噪音。 4、结构简单,装拆方便。 5、承载能力大,可用于重载场合。 6、非液体摩擦滑动轴承,摩擦损失大;液体摩擦滑动轴承,摩擦损失与滚动轴承 相差不多,但设计、制造润滑及维护要求较高。 滚动轴承的组成、类型及特点 14.2.1 滚动轴承的组成 滚动轴承一般由内圈、外圈、滚动体和保持架组成。内圈装在轴颈上,外圈装在机座或零件的轴承孔内。多数情况下,外圈不转动,内圈与轴一起转动。(动画演示)当内外圈之间相对旋转时,滚动体沿着滚道滚动。保持架使滚动体均匀分布在 滚道上,并减少滚动体之间的碰撞和磨损

运动动画 拆装动画拆装 拆装 滚动轴承的基本结构 常见的滚动体有 6 种形状,如图所示: 滚动轴承的内外圈和滚动体应具有较高的硬度和接触疲劳强度、良好的耐磨性和冲击韧性。一般用特殊轴承钢制造,常用材料有GCrl5、GCrl5SiMn、GCr6、GCr9等,经热处理后硬度可达60-65HRC滚动轴承的工作表面必须经磨削抛光,以提高其接触疲劳强度。保持架多用低碳钢板通过冲压成形方法制造,也可采用有色金属或塑料等材料。为适应某些特殊要求,有些滚动轴承还要附加其他特殊元件或采用特殊结构,如轴承无内圈或外圈、带有防尘密封结构或在外圈上加止动环等。滚动轴承具有摩擦阻力小、启动灵敏、效率高、旋转精度高、润滑简便和装拆方便等优点,被广泛应用于各种机器和机构中。滚动轴承为标准零部件,由轴承厂批量生产, 设计者可以根据需要直接选用

14.2.2 滚动轴承的类型及特点 根据滚动体的形状,滚动轴承分为球轴承与滚子轴承。按照滚动轴承所能承受的主要负荷方向,又可分为向心轴承(主要承受径向载荷)、推力轴承(承受轴向载荷)、向心推力轴承(能同时承受径向载荷和轴向载荷)。 1. 调心球轴承1000(实物) 2. 调心滚子轴承2000(实物) 3. 圆锥滚子轴承3000(实物) 4. 双列深沟球轴承4000(实物) 5. 推力球轴承5000(实物) 6. 深沟球轴承6000(实物) 7. 角接触球轴承7000(实物) 8. 推力圆柱滚子轴承8000(实物)

液体静压轴承

液体静压轴承 yeti jingya zhoucheng 液体静压轴承 hydrostatic beari ng 靠外部供给压力油、在轴承内建立静压承载油膜以实现液体润滑的滑动轴承。液体静压轴承从起动到停止始终在液体润滑下工作,所以没有磨损,使用寿命长,起动功率小,在极低(甚至为零)的速度下也能应用。此外,这种轴承还具有旋转精度高、油膜刚度大、能抑制油膜振荡等优点,但需要专用油箱供给压力油,高速时功耗较大。 简史1862年,法国的L.D.吉拉尔发明液体静压轴承,指出摩擦系数可小至1/500。1917年,英国科学家瑞利发表求解液体静压推力轴承的承载能力、流量和摩擦力矩方程。1938年,美国在大型天文望远镜上应用液体静压轴承,承载总重量500吨,每昼夜转动一周,驱动功率仅1/12马力。1948年法国开始把液体静压轴承用于磨床上。现代液体静压轴承已成功地用于重型、精密、高效率的机器和设备上。 分类液体静压轴承分径向轴承、推力轴承和径向推力轴承(图1[液体静压轴承的类型]田丄.蚁4"上细求的'匹)。它有供油压力恒定和供油流量恒定两种系统。供油压力

恒定系统较为常用。

)由于轴的旋转,在轴承封油面上有液体动压力产生 ,有利于提高轴承的承 统的液体静压轴承和轴瓦的构造。外部供给的压力油通过补偿元件后从供油压力降至油腔压力,再通过封油 面与轴颈间的间隙从油腔压力降至环境压力。多数轴承在轴不受外力时 ,轴颈与轴承孔同心,各油腔的间隙、 流量、压力均相等,这称为设计状态。当轴受外力时轴颈位移,各油腔的平均间隙、流量、压力均发生变化, 这时轴承外力与各油腔油膜力的向量和相平衡。补偿元件起自动调节油腔压力和补偿流量的作用,其补偿性 能会影响轴承的承载能力、油膜刚度等。供油压力恒定系统中的补偿元件称为节流器,常见的有毛细管节流 器?小孔节流器?滑阀节流器、薄膜节流器等多种。供油流量恒定系统中的补偿元件有定量泵和定量阀 补偿 元件不同,轴承载荷-位移性能也不同(图3[不同补偿元件液体静压径向轴承的载荷-位移性能比较] 作用原理图2 [供油压力恒定系统的液体静压轴承 为供油压力恒定系 KJtW tfl 3俱笛匹労區定藝呢 二匚圖*卜栏无件池“體世铉直 晁术的就幕-代护扛隹比较

陶瓷轴承中国市场可行性分析

陶瓷轴承在中国市场的可行性分析 一、引言 陶瓷轴承作为一种重要的机械基础件,由于具有金属轴承所无法比拟的优异性能,近年来,在国计民生的各个领域中得到了日益广泛的应用。在航空航天、核工业、石油工业、化学工业、轻纺工业、食品工业、高速机床等高温、高速、耐腐蚀、真空、电绝缘、无磁、干摩擦的特殊环境下,陶瓷轴承不可或缺的替代作用正在被人们逐渐地认识。随着加工技术的不断进步,工艺水平的日益提高,陶瓷轴承的成本不断下降,已经从过去中在一些高精尖类领域小范围内应用,逐步推广到可以接受的程度,陶瓷轴承大面积应用的时代已经到来。 二、陶瓷轴承在国外的发展历程 六十年代初,研究者发现工程陶瓷具有作为轴承材料的优良性能,如耐高温、耐腐蚀、耐磨、硬度高、密度小、热膨胀系数小、自润滑性好等,但陶瓷材料的弹性模量大,会增加轴承滚动体作用在内外圈上的接触应力,降低了轴承的使用寿命。研究者对陶瓷材料的各种性能进行了大量的试验研究,认为在所有的陶瓷材料中热压氮化硅最适于作为轴承材料。 七十年代,材料专家们把探索新型轴承材料的注意力由全部陶瓷材料集中到氮化硅陶瓷材料上。Scot t 、Dalal 等人认为:氮化硅是一种可湿润且能使润滑油在轴承中形成适当厚度油膜的材料,在不润滑时热压氮化硅陶瓷是最耐磨的材料, 在高温下使用固体润滑剂可消除热压氮化硅材料的磨损,在重载润滑条件下热压氮化硅作为轴承材料不比轴承钢好。在相同应力条件下,氮化硅混合轴承的使用寿命L 10比其他陶瓷混合轴承寿命L 10要大许多倍。氮化硅陶瓷球的疲劳破坏形式与轴承钢疲劳破坏形式相似,都为疲劳剥落,而非断裂破碎。在混合轴承性能方面,Parker 等人认为由于氮化硅弹性模量高、密度小,分别对内、外圈影响,这样混合轴承内圈使用寿命的减小值大于其外圈使用寿命的增加值,最终使混合陶瓷轴承总的使用寿命降低;混合轴承在轻载和高速下其使用寿命相对于钢轴承会有所改善;对于氮化硅滚动体来说,滚动体表面加工质量的好坏对其疲劳寿命、耐腐蚀性和耐磨性有很大影响,同时,混合陶瓷轴承的寿命也受到钢制套圈滚道寿命的限制。 进入八十年代,对陶瓷轴承的研究日益加深、加宽。1982 年美国润滑工程协会的Mo rrison 等人对混合轴承的使用寿命进行研究,认为混合陶瓷轴承的寿命仍然是载荷的指数函数,寿命指数的最大似然估计值为4 .29,而钢轴承寿命公式中寿命指数值为3,这说明混合轴承的寿命比钢轴承对外载荷的依赖性大。日本机械部的菊地滕男等人在1983 年对混合陶瓷轴承和全陶瓷轴承作了疲劳试验,得出如下结论:①常压烧结碳化硅、氮化硅和热压碳化硅不适合作轴承材料;②热压氮化硅陶瓷寿命相当于或好于轴承钢的寿命,如果保证陶瓷材料具有良好的微观结构和表面质量可提高其性能,轴承的破坏形式是疲劳剥落;③常压和热压材料的损伤形状无明显区别,和寿命长短也没有联系;④在运行中,陶瓷套圈滚道表面变形极小,特别是热压氮化硅陶瓷材料几乎没有变形。他们 同时得出热压氮化硅陶瓷球疲劳寿命L 与赫兹应力P 的关系: n mox L P -∞ , 其中n =16 .0。 1987年日本的藤原孝志在轴承材料的疲劳试验中研究了氮化硅陶瓷材料的额定静负荷,结果表明氮化硅陶瓷材料的额定静载荷比轴承钢的额定静载荷要大,同时藤原孝志讨论了陶瓷材料和轴承钢的接触应力,认为在接触区内的应力都是压应力,而在接触区外, 沿接触区的径向上产生的是拉应力, 最大拉应力产生在接触界线上。1989 年Zaretsky 又在总结前人试验成果的基础上,对陶瓷轴承做了进一步研究,得出如下结论:①氮化硅陶瓷轴承的寿命比钢轴承的寿命长,但全氮化硅陶瓷轴承的额定动负荷仅为同型号钢轴承的5~20%;②对大部分陶瓷来说,混合轴承的寿命比同型号钢轴承寿命低,原因是其弹性模量比轴承钢的大;③轴承能量的损失和热量的产生不仅依赖于轴承材料本身的性质,更主要的是依赖于单个轴承的设计和运行状态;④陶瓷滚动体的寿命与温度指数函数的倒数成正比(L ∞1/△T m )。对氧化铝来说,当试验温度在1366K 时, m =1.8;⑤全陶瓷轴承在无润滑剂和664K

滚动轴承和滑动轴承的区别首先表象在结构上

滚动轴承和滑动轴承的区别首先表象在结构上,滚动轴承是靠滚动体的转动来支撑转动轴的,因而接触部位是一个点,滚动体越多,接触点九越多;滑动轴承是靠平滑的面来支撑转动轴的,因而接触部位是一个面。其次是运动方式不同,滚动轴承的运动方式是滚动;滑动轴承的运动方式是滑动,因而摩擦形势上也就完全不相同。 轴瓦是滑动轴承和轴接触的部分,非常光滑,一般用青铜、减摩合金等耐磨材料制成,在特殊情况下,可以用木材、塑料或橡皮制成。也叫“轴衬”,形状为瓦状的半圆柱面。 滑动轴承工作时,轴瓦与转轴之间要求有一层很薄的油膜起润滑作用。如果由于润滑不良,轴瓦与转轴之间就存在直接的摩擦,摩擦会产生很高的温度,虽然轴瓦是由于特殊的耐高温合金材料制成,但发生直接摩擦产生的高温仍然足于将器烧坏。轴瓦还可能由于负荷过大、温度过高、润滑油存在杂质或黏度异常等因素造成烧瓦。烧瓦后滑动轴承就损坏了。 所谓刮轴瓦,就是将精车后的瓦片与所装配的轴手板研合(轴要涂上色粉),用三角刮刀刮去瓦片上所附上的粉色,随研随刮,直到瓦片上附色面积超过全瓦面的85% ,完成刮瓦。 瓦片上存在的刀痕是瓦片储存润滑油的微型储槽。 滑动轴承(sliding bearing),在滑动摩擦下工作的轴承。滑动轴承工作平稳、可靠、无噪声。在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。轴瓦和轴承衬的材料统称为滑动轴承材料。常用的滑动轴承材料有轴承合金(又叫巴氏合金或白合金)、耐磨铸铁、铜基和铝基合金、粉末冶金材料、塑料、橡胶、硬木和碳-石墨,聚四氟乙烯(PTFE)、改性聚甲醛(POM)、等。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。 滚动轴承(rolling bearing)一般由外圈,内圈,滚动体和保持架组成。其中内圈的作用是与轴相配合并与轴一起旋转,外圈作用是与轴承座相配合,起支撑作用,滚动体是借助于保持架均匀的将滚动体分布在内圈和外圈之间,其形状大小和数量直接影响着滚动轴承的使用性能和寿命,保持架能使滚动体均匀分布,防止滚动体脱落,引导滚动体旋转起润滑作用。 滚动轴承使用维护方便,工作可靠,起动性能好,在中等速度下承载能力较高。与滑动轴承比较,滚动轴承的径向尺寸较大,减振能力较差,高速时寿命低,声响较大。滚动轴承中的向心轴承(主要承受径向力)通常由内圈、外圈、滚动体和滚动体保持架4部分组成。内圈紧套在轴颈上并与轴一起旋转,外圈装在轴承座孔中。在内圈的外周和外圈的内周上均制有滚道。当内外圈相对转动时,滚动体即在内外圈的滚道上滚动,它们由保持架隔开,避免相互摩擦。推力轴承分紧圈和活圈两部分。紧圈与轴套紧,活圈支承在轴承座上。套圈和滚动体通常采用强度高、耐磨性好的滚动轴承钢制造,淬火后表面硬度应达到HRC60~65。保

陶瓷球轴承介绍

陶瓷球轴承介绍 在工程陶瓷产品的开发应用中,陶瓷球轴承是工程陶瓷在工业领域广泛应用的典型范例,受到很多国家的高度重视.在高速精密轴承中,应用最多的是混合陶瓷球轴承,即滚动体使用热压Si3N4陶瓷球,轴承圈仍为钢圈。这种轴承标准化程度高,对机床结构改动小,便于维护保养,特别适合于高速运行场合.其组装的高速电主轴,具有高速、高刚度、大功率、长寿命等优点。1.轴承配置:内外圈轴承钢/不锈钢+陶瓷球+PA66/不锈钢保持器 +2RS/ZZ2.高温油脂,3.采用陶瓷球轴承和普通轴承相比的优势: 陶瓷球轴承的优点 (1)耐温高 陶瓷球热膨胀系数小,在高温环境下不会因为温度的原因导致轴承球膨胀,这样大大提高了整个轴承的使用温度,普通轴承的温度在160度左右,陶瓷球的可以达到220度以上. (2)转速高 陶瓷球具有无油自润滑属性,陶瓷球摩擦系数小,所以陶瓷球轴承具有很高的转速.据统计采用陶瓷球的轴承是一般轴承的转速1.5倍以上的转速. (3)寿命长 陶瓷球可以不加任何油脂,也就是说即使油脂干掉,轴承还是可以运作的,这样就避免了普通轴承中因为油脂干掉导致的轴承过早损坏现象的发生.据我们测试以及一些客户的反馈使用陶瓷球后的轴承的使用寿命是普通轴承的2-3倍. (4)绝缘 最后一点也是最重要的一点,绝缘,采用陶瓷球的轴承,可以使轴承的内外圈之间绝缘,因为陶瓷球是绝缘体,在轴承的内外圈之间用陶瓷球,就可以达到绝缘的效果.这样就使轴承能够在导电的环境下使用了.滚动轴承由套圈、滚动体、保持器、润滑脂、密封件组成,当滚动体采用陶瓷材料后,此滚动轴承就定义为陶瓷球轴承。

因为陶瓷球本身具有自润滑性能,所以润滑可以按使用要求,可以有润滑脂也可以不加润滑脂。密封件也是可以按使用要求,决定陶瓷球轴承是否带密封件。保持器也是可以按使用要求是否采用。那么套圈、滚动体是轴承两个不可缺少的要素,当这两个要素不是同一种材料时,就有了混合轴承(Hybrid construction bearing)的说法。当滚动体采用陶瓷材料时就定义为混合陶瓷球轴承(Hybrid construction ceramic ball bearing)。常用的陶瓷球材料有氧化锆(ZRO2)和氮化硅(SI3N4);常用的套圈材料有轴承钢(GCR15)和不锈铁(440、440C)及不锈钢(304、316、316L)。 按照使用环境、转速、负荷、温度,及使用时的要求,陶瓷球轴承的套圈和滚动体可以由以上材料互相组合,并起到不同的使用效果。 陶瓷球轴承的代号: HY +套圈材料+轴承型号+密封型式——球的材料——保持器材料——润滑脂 套圈材料:S表示不锈铁 SS表示不锈钢具体用什么材料可以用挂号标注说明 实践证明,作为轴承材料还必须具有在不同温度下的尺寸稳定性,以保证轴承在温度变化的工作环境下,保持精密的尺寸和精确的配合,在特殊环境下还必须具备抗腐蚀、抗分解能力.总之,用以制造滚动轴承零件的陶瓷材料应具备以下性能特点: 1)低密度.由于滚动体密度减小,高速工作时其离心载荷也减小,从而可在更高转速下工作. 2)中等弹性模量.弹性模量太大会因应力集中而降低轴衬的承载能力.3)热膨胀系数小.减小对温度变化的敏感性,使轴承工作温度范围更宽. 4)高抗压强度.抗压强度高是滚动轴承承受高应力的需要. 5)高硬度和高韧性.这两个特性相结合可获得较好的表面粗糙度;而且能防止外界粒子和冲击的损伤. 6)良好的抗滚动接触疲劳性和具有剥落失效模式. 7)特殊场合应具有耐高温、耐腐蚀和稳定性. 套圈和滚动体接触点受到外加负荷和旋转的作用,因而反复产生接触压力和变形。由于钢制轴承自身材料性能特点,轴承失效的主要形式是疲劳剥落,疲劳寿命短,应用范围受到很大限制。而陶瓷材料具有低密度,中等弹性模量,热膨胀系数小,硬度高,耐高温,耐腐蚀,无磁等优点,以氮化硅陶瓷球为滚动体的陶瓷球轴承可显著提高轴承接触疲劳寿命,极大拓展了滚动轴承的应用领域,已广泛应用于各种高精度、高转速机床,汽车、赛车、地铁、电机、航空发动机、石油化工机械、冶金机械等领域。 氮化硅陶瓷材料在轴承中的应用 陶瓷轴承的应用领域日益广泛,但在工业领域中成功应用的还是陶瓷球轴承.目前,应用较多的为氮化硅陶瓷球轴承.它的优点是:极限转速高、精度保持性好、启动力矩小、刚度高、干运转性好、寿命长,非常适

滚动轴承与滑动轴承的区别

滚动轴承与滑动轴承的区别 滚动轴承 是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件。滚动轴承一般由外圈,内圈,滚动体和保持架组成。 定义 将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件,叫滚动轴承。 组成 滚动轴承一般由内圈、外圈、滚动体和保持架四部分组内圈的作用是与轴相配合并与轴一起旋转;外圈作用是与轴承座相配合,起支撑作用;滚动体是借助于保持架均匀的将滚动体分布在内圈和外圈之间,其形状大小和数量直接影响着滚动轴承的使用性能和寿命;保持架能使滚动体均匀分布,防止滚动体脱落,引导滚动体旋转起润滑作用。 作用 滚动轴承使用维护方便,工作可靠,起动性能好,在中等速度下承载能力较高。与滑动轴承比较,滚动轴承的径向尺寸较大,减振能力较差,高速时寿命低,声响较大。 结构 滚动轴承的结构由部分组成 1.外圈——装在轴承座孔内,一般不转动 2.内圈——装在轴颈上,随轴转动 3.滚动体——滚动轴承的核心元件 4.保持架——将滚动体均匀隔开,避免摩擦 目前,润滑剂也被认为是滚动轴承第五大件,它主要起润滑、冷却、清洗等作用 基本特点 优点 1 摩擦阻力小,功率消耗小,机械效率高,易起动。 2、尺寸标准化,具有互换性,便于安装拆卸,维修方便。 3、结构紧凑,重量轻,轴向尺寸更为缩小。 4、精度高,转速高,磨损小,使用寿命长。 5、部分轴承具有自动调心的性能。 6、适用于大批量生产,质量稳定可靠,生产效率高。 缺点 1、噪音大。 2、轴承座的结构比较复杂。 3、成本较高。 滑动轴承 在滑动摩擦下工作的轴承。滑动轴承工作平稳、可靠、无噪声。在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。轴瓦和轴承衬的材料统称为滑动轴承材料。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。 常用的滑动轴承材料有轴承合金(又叫巴氏合金或白合金)、耐磨铸铁、铜基和铝基合金、粉末冶金材料、塑料、橡胶、硬木和碳-石墨,聚四氟自润滑轴承全家福(1张)乙烯(特氟龙、PTFE)、改性聚甲醛(POM)、等。 分类 滑动轴承种类很多。 ①按能承受载荷的方向可分为径向(向心)滑动轴承和推力(轴向)滑动轴承两类。 ②按润滑剂种类可分为油润滑轴承、脂润滑轴承、水润滑轴承、气体轴承、固体润滑轴承、磁流体轴承和电磁轴承7类。 ③按润滑膜厚度可分为薄膜润滑轴承和厚膜润滑轴承两类。 ④按轴瓦材料可分为青铜轴承、铸铁轴承、塑料轴承、宝石轴承、粉末冶金轴承、自润滑轴承和含油轴承等。 ⑤按轴瓦结构可分为圆轴承、椭圆轴承、三油叶轴承、阶梯面轴承、可倾瓦轴承和箔轴承等。 轴承的材料有1)金属材料,如轴承合金、青铜、铝基合金、锌基合金等;2)多孔质金属材料(粉末冶金材料);3)非金属材料。其中:轴承合金:轴承合金又称白合金,主要是锡、铅、锑或其它金属的合金,由于其耐磨型好、塑性高、跑合性能好、导热性好和抗胶和性好及与油的吸附性好,故适用于重载、高速情况下,轴承合金的强度较小,价格较贵,使用时必须浇筑在青铜、钢带或铸铁的轴瓦上,形成较薄的涂层。多孔质金属材料:多孔质金属是一种粉末材料,它具有多孔组织,若将其浸在润滑油中,使微孔中充满润滑油,变成了含油轴承,具有自润滑性能。多孔质金属材料的韧性小,只适应于平稳的无冲击载荷及中、小速度情况下。轴承塑料:常用的轴承塑料有酚醛塑料、尼龙、聚四氟乙烯等,塑料轴承有较大的抗压强度和耐磨性,可用油和水润滑,也有自润滑性能,但导热性差。

高性能陶瓷轴承球的研制

高性能陶瓷轴承球的研制 李典基 1 概述 陶瓷轴承作为“面向21世纪”的最具发展前景的新材料轴承,主要包括全陶瓷轴承和部分零件为陶瓷的混合轴承。目前,在工业界中应用最多的为混合轴承,其滚动体采用陶瓷,套圈采用高碳铬等材质的钢制造。西方发达国家60~70年代 就开始了陶瓷轴承的研究,现阶段开始工业化应用的主要是以氮化硅(Si 3N 4 )、碳 化硅(SiC)、氧化铝(Al 2O 3 )、氧化锆(Z r O 2 )等陶瓷球代替钢球为主要形式的混 合球轴承,其中以氮化硅球为主。该产品与同样型号的钢球相比主要有以下优点:(1)氮化硅球的密度是钢球的40%,高速运转时离心力小,轴承抗疲劳破坏能力强,寿命长。 (2)滚动体的弹性模量比钢高,弹性变形小,轴承的动刚度高。 (3)热膨胀系数为钢材的1/3~1/4,随温度变化的尺寸变化量小,适用于温度变化大的场合。 (4)在润滑条件恶劣的环境中适应性强。 (5)具有耐腐蚀、无磁性、绝缘性好等特点。 (6)设计灵活性更大,因为陶瓷材料能使轴承设计者不必考虑许多参数的影响。 目前,世界各国研究陶瓷球处于领先水平的公司主要有瑞典SKF,法国圣戈班戒,日本NSK、KOYO、NTN等公司。在国内,陶瓷混合轴承的研究较西方发达国家晚近20年。为使这一尖端基础部件更好地为经济建设服务,促进我国机械制造业的发展,我公司已开始了高性能氮化硅陶瓷轴承球的研究,现将有关研究成果做一下简述。 2 氮化硅陶瓷球的制造 2.1 原材料的制备 原材料的状态对生产过程及产品的性质有明显的影响,精确控制原料的化学和物理性能是非常必要的。要求原材料具有以下特性:(1)纯度高;(2)高均匀而细的颗粒;(3)有用相含量高。针对上述要求,我们采用气相法制备氮化硅原 料。其反应式为:3SiO 2+6C+2N 2 =Si 3 N 4 +6CO。用该技术生产的氮化硅原料,工艺操作 较易,Si 3N 4 含量高,晶粒均匀、细小,有利于陶瓷球的制造。 2.2 配料 将配制好的微细氮化硅粉末和氧化镁(MgO)、氧化钇(Y 2O 3 )等烧结助剂粉末 混合均匀。混合在专用配料机中进行。配料机采用氮化硅内衬或氧化锆内衬。工作时将加工原料和一定数量的陶瓷球放入配料机,注入无水乙醇,开动机床,混合1~2天。 2.3 干燥造粒 将混好的原料放入离心喷雾机中,加入粘合剂,反絮凝剂等配成料浆。使料浆流到高速旋转的圆盘上进行雾化。雾化后的小液滴在热风中迅速干燥,成为流动性

动静压轴承工作原理和设计

几种典型液体动静压轴承结构特点与应用 2007-1-23 来源: 本文介绍了几种典型的、使用场合较多的液体动静压轴承的结构及特点,并举了各种动静压轴承在机床上应用的实例及效果。 液体动静压轴承精度高、刚度大、寿命长、吸振抗震性能好,主要用于精密加工机械及高速、高精度设备的主轴。既可用于旧机床改造,也可用于新机床配套。采用动静压轴承可以完全恢复机床因主轴轴承问题而丧失的加工精度和表面粗糙度;提高机床主轴精度和切削效率;并可多年连续使用而不需维修。多年来我国一些企业采用动静压轴承为新机床配套和进行国产和进口旧机床设备改造,均获得了满意的使用效果和显著的经济效益。 液体动静压轴承综合了静压轴承的优点,消除了这两种轴承的不足。其特点是采用整体式轴承与表面深浅腔结构油腔轴承系统工作时主轴被一层压力油膜浮起,主轴为经电机驱动已悬浮在轴承之间发生机械摩擦与磨损,从而提高轴承寿命且有良好的精度保持性。当电机驱动主轴旋转时,轴承油腔内由于阶梯效应自然形成动静压承载油膜,轴承成为具有静压压力场的东压滑动轴承。与三块、五块瓦相比,动静压轴承为整体式使结构,轴承与箱体孔接触面积大,为刚性连接,是油膜刚度得到充分的发挥利用。主轴工作时,油膜刚度是轴承静态刚度与动态刚度的叠加,有很强的承载能力。压力油膜的“均化”作用可使主轴回转精度高于轴颈和轴承的加工精度。 一、静压轴承的几种典型结构及特点 液体动静压轴承所采用油腔结构、节流器与静压轴承相比均不相同。静压轴承采用的固定节流器有“小孔”、“毛细管”等,可变节流器大多设置在轴承外部的静止部位,结构复杂,使用时常因节流器出面截流面太小,油液杂质易堆积而发生堵赛。 早期设计的动静压轴承为浅腔结构,分有节流器和无节流器两种。图1为节流器的动静压轴承,深腔与浅腔形成静压腔,浅腔兼备节流功能。压力油ps 进入中间环槽后,流入深腔和浅腔,经两端的轴向封油面排出,当主轴在轴承中高速旋转时,由于浅腔同轴向封油面台阶及主轴中心的轴承中微小偏心,自然形成楔形油膜而产生动压承载油膜。主轴只能按图1所示W方向旋转。

动静压轴承

静压轴承与动压轴承 1.静动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑和冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 l 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到

100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修. 2.动压与静压SKF轴承特点及应用选例 磨床主轴进口轴承除采用滚动轴承外,一般常用的是动压滑动轴承,其特点是运动平稳,抗振性好,回转速度高。但动压滑动轴承必须在一定的运转速度下才能产生压力 油膜,实现纯液体摩擦,因此不适用于运转速度低的主轴部件,例如工件头架主轴等。另外,主轴在启动和停止时,由于速度太低,也不能建立压力油膜,因而不可避免地要发生轴颈和轴承金属表面的直接接触,引起磨损。 同时启动力矩较大,NSK轴承容易发热。主轴在运转过程中,轴心的偏移将随外载荷和转速等工作条件不同而不同,旋转精度和

陶瓷轴承的优缺点

陶瓷轴承: 普通轴承钢AISI52100(GCr15)、不锈钢AISI440(9Cr18)、氮化硅(Si3N4)和氧化锆(ZrO2)四种轴承材料性能对照情况,陶瓷轴承作为一种重要的机械基础件,由于其具有金属轴承所无法比拟的优良性能,抗高温、超强度等在新材料世界一马当先。近十多年来,在国计民生的各个领域中得到了日益广泛的应用。 主要用途: 陶瓷轴承具有耐高温、耐寒、耐磨、耐腐蚀、抗磁电绝缘、无油自润滑、高转速等特性。可用于极度恶劣的环境及特殊工况,可广泛应用于航空、航天、航海、石油、化工、汽车、电子设备,冶金、电力、纺织、泵类、医疗器械、科研和国防军事等领域,是新材料应用的高科技产品。 陶瓷轴承的套圈及滚动体采用全陶瓷材料,有氧化锆(ZrO2)、氮化硅(Si3N4)、碳化硅(Sic)三种。保持器采用聚四氟乙烯、尼龙66,聚醚酰亚氨,氧化锆、氮化硅,不锈钢或特种航空铝制造,从而扩大陶瓷轴承的应用面。 应用领域: 医疗器械、低温工程、光学仪器、高速机床、高速电机、印刷机械、食品加工机械。 在航空航天、航海、核工业、石油、化工、轻纺工业、机械、冶金、电力、食品、机车、地铁、高速机床及科研国防军事技术等领域需要在高温、高速、深冷、易燃、易爆、强腐蚀、真空、电绝缘、无

磁、干摩擦等特殊工况下工作,陶瓷轴承不可或缺的替代作用正在被人们逐渐地认识。 随着加工技术的不断进步,工艺水平的日益提高,陶瓷轴承的成本不断下降,已经从过去只在一些高、精、尖领域小范围内应用,逐步推广到国民经济各个工业领域,产品市场价格也逐渐接近实用化,达到用户可接受的程度,陶瓷轴承大面积应用的浪潮已经涌来!

【CN109854617A】一种陶瓷轴承【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910176898.0 (22)申请日 2019.03.08 (71)申请人 尹苑苑 地址 215617 江苏省苏州市张家港市杨舍 镇乘航河东路80号宝骏集团江苏骏马 集团 (72)发明人 不公告发明人  (51)Int.Cl. F16C 19/50(2006.01) F16C 33/38(2006.01) F16C 33/58(2006.01) F16C 41/00(2006.01) (54)发明名称 一种陶瓷轴承 (57)摘要 本发明属于轴承领域,具体的说是一种陶瓷 轴承,包括设置有滚道的内圈和设置在滚道内的 陶瓷滚珠,还包括保持架和外圈;所述保持架安 装在内圈和外圈之间,保持架用于陶瓷滚珠的安 装;所述外圈的断面为U型结构,外圈的内部开设 有空腔,空腔的侧壁上设置有两个单向阀,两个 所述单向阀关于轴承的转动中心对称布置,使得 轴承在旋转时可以受力均衡,避免发生偏振。不 需要将直径相同的陶瓷滚珠进行配对,可以直接 将直径不同的陶瓷滚珠进行直接安装,通过活塞 缸、活塞杆、安装架和滚轮间的配合,实现了对不 同直径的陶瓷滚珠均可稳定的固定,从而不再需 要对陶瓷滚珠进行精确的测量以及花费大量时 间配对, 大大提高了陶瓷轴承的生产速度。权利要求书1页 说明书5页 附图3页CN 109854617 A 2019.06.07 C N 109854617 A

权 利 要 求 书1/1页CN 109854617 A 1.一种陶瓷轴承,包括设置有滚道的内圈(1)和设置在滚道内的陶瓷滚珠(2),其特征在于:还包括保持架(3)和外圈(4);所述保持架(3)安装在内圈(1)和外圈(4)之间,保持架(3)用于陶瓷滚珠(2)的安装;所述外圈(4)的断面为U型结构,外圈(4)的内部开设有空腔(401),空腔(401)的侧壁上设置有两个单向阀(402),两个所述单向阀(402)关于轴承的转动中心对称布置,且两个单向阀(402)的阀体相反设置,两个单向阀(402)分别用于液压油的充入和液压油的排出,空腔(401)的侧壁贯通连接有活塞缸(403);所述活塞缸(403)内滑动安装有活塞;所述活塞上固连有活塞杆(404)的一端,所述活塞杆(404)的另一端设置有安装架(405);所述安装架(405)上转动安装有滚轮(406);所述滚轮(406)的数量为四个,滚轮(406)用于对陶瓷滚珠(2)进行限位。 2.根据权利要求1所述的一种陶瓷轴承,其特征在于:所述活塞杆(404)与安装架(405)间通过铰接件(407)进行铰接,且铰接件(407)位于安装架(405)的中心位置。 3.根据权利要求1所述的一种陶瓷轴承,其特征在于:所述空腔(401)内设置有压力传感器和控制器,压力传感器用于检测空腔(401)内部的油压,且所述单向阀(402)为电磁单向阀(402),压力传感器、控制器和单向阀(402)间电联,压力传感器检测到的压力大于预设值后,控制器将单向阀(402)关闭,停止向空腔(401)内加油。 4.根据权利要求1所述的一种陶瓷轴承,其特征在于:所述保持架(3)上开设有安装槽(408),所述安装槽(408)的侧壁上内嵌有曲形板(409);曲形板(409)的内嵌处与保持架(3)平滑过度布置,所述曲形板(409)用于滚轮(406)和陶瓷滚珠(2)间的平滑过度。 5.根据权利要求4所述的一种陶瓷轴承,其特征在于:所述曲形板(409)上开设有定位孔,曲形板(409)为金属片;所述定位孔中插接有螺栓(410),螺栓(410)螺纹连接在安装槽(408)上所开设的螺纹孔中,通过螺栓(410)和螺纹孔间的配合,使得曲形板(409)发生弯曲形变,调节曲形板(409)与陶瓷滚珠(2)间的距离,曲形板(409)与陶瓷滚珠(2)间的距离保持在1-2mm之间,且所述螺栓(410)与滚轮(406)之间错位设置,滚轮(406)在滚动时不与螺栓(410)接触。 2

滚动轴承和轴部分练习题

滚动轴承 一选择题 (1) 下列各类轴承中,C 能很好地承受径向载荷与轴向载荷的联合作用;而 D 则具有良好的调心作用。 A. 短圆柱滚子轴承 B. 推力球轴承 C. 圆锥滚子轴承 D. 调心滚子轴承 (2) 在良好的润滑和密封条件下,滚动轴承的主要失效形式是 D 。 A. 塑性变形 B. 胶合 C. 磨损 D. 疲劳点蚀 (3) 下列四种型号的滚动轴承中,只能承受径向载荷的是 B 。 A. 6208 B. N208 C. 30208 D. 51208 (4) 代号为7212AC的滚动轴承,对它的承载情况描述最准确的是 D 。 A. 只能承受径向载荷 B. 单个轴承能承受双向载荷 C. 只能承受轴向载荷 D. 能同时承受径向和单向轴向载荷 (5) 一个滚动轴承的基本额定动载荷是指 D 。 10转时,所受的载荷 A. 该轴承的使用寿命为6 10小时时,所能承受的载荷 B. 该轴承使用寿命为6 10转时,所能承受的载荷 C. 该轴承平均寿命为6 10转时,所能承受的最大载荷 D. 该轴承基本额定寿命为6 (6) 判别下列轴承能承受载荷的方向: 6310可承受 D ;7310可承受 B ;30310可承受 B ;5310可承受C ;N310可承受 A 。 A. 径向载荷 B. 径向载荷和单向轴向载荷 C. 轴向载荷 D. 径向载荷与双向轴向载荷 (7) 按基本额定动载荷选定的滚动轴承,在预定使用期限内其破坏率最大为 C 。 A. l% B. 5% C. 10% D. 50% (20) D 不宜用来同时承受径向负荷与轴向负荷。 A. 圆锥滚子轴承 B. 角接触球轴承 C. 深沟球轴承 D. 圆柱滚子轴承 (21) D 是只能承受径向负荷的轴承。

相关文档
最新文档