小电流接地系统单相接地故障地仿真

小电流接地系统单相接地故障地仿真
小电流接地系统单相接地故障地仿真

设计题目:小电流接地系统单相故障matlab仿真

中文摘要:使用matlab和 simulink模拟小电流接地系统单相接地故障。

关键字:matlab, simulink,小电流系统,单相接地故障。小电流接地系统单相故障

电网中性点接地系统的分类方法有很多种,其中最常用的是按照接地短路时接地电流的大小分为大电流接地系统和小电流接地系统。电网中性点采用哪种接地方式主要取决于供电可靠性(是否允许带一相接地时继续运行)和限制过电压两个因素。我国规定110kv以上电压等级的系统采用中性点直接接地方式,35kv及以下的配电系统采用小电流接地方式(中性点不接地或经消弧线圈接地)。

在小电流接地系统中发生单相接地时,由于故障点的电流很小,而且三相之间的线电压任然保持对称,对负荷的供电没有影响,因此,在一般情况下都允许系统在继续运行1~2小时,而不必立即跳闸,这也是采用小电流接地系统运行的主要优点。但是在单相接地以后,其他两相的对地电压要升高根号三倍,为了防止故障进一步扩大成两点或多点接地短路,就应及时发出信号,以便运行人员采取措施予以消除。

小电流接地系统单相故障特点简介

对于如图1-1所示的中性点不接地系统,单相接地故障发生后,由于中性点N不接地,所

以没有形成短路电流通路,故障相都将流过正常负

荷电流,线电压任然保持对称,因此可以短时不予

以切除。这段时间可以用于查明故障原因并排除故

障,或者进行倒负荷操作,因此该方式对于用户的

供电可靠性高,但是接地相电压将降低,非接地相

电压将升高至线电压,对电气设备绝缘造成威胁。单相接地故障发生后系统不能长期运行。事实上,对于中性点不接地系统,由于线路分布电容(电容数值不大,而容抗很大)的存在,接地故障点和导线对地电容还是能够形成电流通路的,从而有数值不大的电容性电流在导线和大地之间流通。一般情况下,这个容性电流在接地故障点将以电弧形式存在,电弧产生的高温会损毁设备,甚至引起附近建筑物燃烧起火,不稳定的电弧燃烧还会引起弧光过电压,造成非接地相绝缘击穿进而发展成为相间故障,导致断路器动作跳闸,中断对用户的供电。

中性点不接地系统发生单相接地时的故障特点如下

1)在发生单相接地时,全系统都将出现零序电压。

2)在非故障的元件上有零序电流,其数值等于本身的对地电容电流,电容电流的实际方向为由母线流向线路。

3)在故障线路上,零序电流为全系统非故障元件对地电容电流之总和,数值一般较大,电容电流的实际方向为由线路流向母线。

小电流接地系统的仿真模型构建

1.中性点不接地系统的仿真模型及计算

利用simulink建立一个10kv中性点不接地系统的仿真模型,如图1-3所示。

在仿真模型中,电源采用”Three-phase source”模型,输出电压为10.5kv,内部接线方式为Y形联结,其他参数与图1-4设置相同。

在模型中共有4条10kv输电线路line1~line4,均采用“Three-phase Pl Section Line”模型,线路的长度分别为130km、175km、1km、150km,其他参数相同。Line1参数设置如图1-5所示。

需要说明的是,在实际的10kv配电系统中,单回架空线路的输送容量一般在0.2~2MV.A,输送距离的适宜范围为6~20km.本文的仿真模型将输电线路的长度人为加长,这样可以使仿真时的故障特征更为明显,而且不用很多输电线的出线路数,不影响仿真结果的正确性,

线路负荷load1、load2、load3均采用“three-phase series rlc load”模型。其有功负荷分别为1MW、0.2MW、2MW,其他参数相同,load1参数设置如图1-6所示。

每一线路的始端都设三相电压电流测量模块“three-phase v-I measurement”将测量到的电压、电流信号转变成simulink信号,相当于电压、电流互感器的作用,其参数设置如图1-7所示。

图1-3

图1-4电源设置

图1-5线路设置

图1-6负载设置

图1-7三相电压电流测量模块

在仿真模型中,选择在第三条出线的1km处发生A相金属性单相接地,故障模块的参数设置如图1-8所示。这里选择A相发生单相接地短路

图1-8故障模块

系统的零序电压3uo及每条线路始端的零序电流3i0采用如图1-9所示方式得到。故障点的接地电流Id则可以用如图1-10与1-11所示的万用表测量方式得到

图1-9零序电压与零序电流测量图

图1-10万用表外部链接图

图1-11万用表内部设定

根据以上设置的参数,可以通过计算得到系统在第3条出线的1km处发生A相金属性单相接地时各线路始端的零序电流有效值为

3I0Ⅰ=3Uφ*ψ*C0I

=3*(10.5/√3)*103*10-9*314*7.751*130A

=5.75A

同理可得3I0Ⅱ=7.75A

3I0Ⅲ=3I0Ⅰ+3I0Ⅱ=13.5A

故障电流为I D=20.18A

仿真结果及分析

在仿真开始前,选择离散算法,仿真的结束时间取0.2s,利用powergui模块设置采样时间为1x10-5s,系统在0.04s时发生A相金属性单相接地。图1-12为powergui模块设置

图1-12

1. 中性点不接地系统的仿真结果及分析

设置好参数,运行如图1-13,1-14,1-15,1-16,1-17,1-8所示的10kv中性点不接地系统仿真模型,得到系统的零序电压3uo及每条线路始端的零序电流3Io,故障点的接地电流Id 波形如图1-19所示

图1-13Line 1的零序电压U0

图1-14 Line 2的零序电压U0

图1-15 Line 3的零序电压U0

可以看见3个线路的零序电压相等,符合电路实际情况。

图1-16 Line 1的零序电流I0

进入稳态之后的零序电流有峰值为8,则其有效值为5.7符合计算值。

图1-17 Line 2的零序电流I0

进入稳态之后的零序电流有峰值为11,则其有效值为7.8符合计算值。

综上SIMULINK模拟的3条线路的零序电压都相等,而三个零序电流满足:3I0Ⅲ=3I0Ⅰ+3I0Ⅱ

图1-18 Line 3的零序电流I0

进入稳态之后的零序电流有峰值为18.6,则其有效值为13.15符合计算值。

故障点的接地电流Id峰值为28,有效值为19.8与理论值误差为3%满足要求。

结论

与理论计算值相比,仿真结果略大,但误差不大于3%。从图1-13中可以看出,在中性点不接地方式下,非故障线路的零序电流超前零序电压90°(即电容电流的实际方向为由母线流向线路);故障线路的零序电流为全系统故障元件对电容电流之和,零序电流滞后零序电压90°(电容电流的实际方向为由线路流向母线);故障线路的零序电流和非故障的零序电流相位差为180°

三总结和体会

在这次的小电流接地系统的matlab仿真实验中我学会了很多。不仅仅单单是自己独立完成了作业,主要是在这次仿真实验中,我学会了能够独自查阅资料,独自定课题,独自完成,在过程中有疲惫,有迷惑,错了很多次,怎么都出不了图像,仿真没有结果,然后又仔细的阅读文章,阅读书上的讲解,细心的对照每一个环节。每一个可能会出错的地方,知道是往往每一个细节就可以导致结果出不来。一一的对照参数的设置,元件的选择是否有错,然后然后,在找着找着的过程中逐渐发现设计的乐趣,发现编写教材的艰难。每一个看似简单的成功其实都不简单,往往都有设计者的艰辛与汗水,我们在享受别人的成果时要珍惜,要珍惜前辈们的来自不易。

小组成员蒋骏杰,钱俊杰,曹魏。其中蒋骏杰负责编程,钱俊杰负责理论数据计算,曹魏负责写报告。

MATLAB对小电流接地系统单相故障的仿真

38 2009年第7期 科园 的管理能力。针对企业领导层、管理层、技术研发层、操作层等不同层次的人员,以培训班、研讨会、专题讲座等多种形式,开展技术创新、信息安全、商业秘密、成果申报、专利申报、科技论文撰写等方面的系统培训。 6.应对侵权纠纷 企业不仅要学会应用法律武器来保护自己的知识产权,而且也要学会如何处理专利侵权纠纷。当事人可以通过以下途径进行解决:一是双方当事人协商;二是双方当事人在第三人(管理专利行政部门、人民调解委员会、律师等双方信任的机关或者个人)的协助下调解;三是请求管理专利行政部门处理;四是向仲裁机构申请仲裁;五是向人民法院起诉。由此可见,当面临专利侵权纠纷时,企业可选择的应对办法很多。企业要利用专利权保护自己,就必须学习、了解和熟悉专利制度。 7.专利档案保管 企业在申请专利并得到授权后,要及时做好专利档案资料的收集、整理、归档和保管工作。项目完成单位要在取得专利证书后一个月内将申请文件报送主管业务部门,移交档案室归档。需归档的申请文件分两类:一类是技术文件,包括请求书、权利要求书、说明书、说明书附图、说明书摘要和摘要附图等;另一类是程序文件,包括受理通知书、补正书、审查意见通知书、授权通知书、交费通知书和专利证书等。同时,对工程(项目)设计文件、竣工资料、竣工图、验收证书,以及专业期刊、出版物等,都要注意收集、整理、归档,以便查找利用,为企业生产经营提供高效服务。 (作者单位:中铁四局集团有限公司) 责任编辑:潘勇 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 我国配电网接方式通常采用中性点非有效接地(NUGS ),它包括中性点不接地系统(NUS ),经消弧线圈接地系统(NES)和经电阻接地系统(NRS ),因为这样的接线方式在发生单相接地故障时接地电流比较小,所以称其为小电流接地系统。由于故障点电流很小,而且三相之间的线电压仍然保持对称,对负荷的供电没有影响,因此,在一般情况下都允许再继续运行1~2小时,而不必立即跳闸,这也是采用中性点非有效接地运行的主要优点。但是,为了防止故障扩大,就应及时发出信号,以便运行人员采取措施予以消除。 1.故障的示意图和仿真图 在采取措施前,必须弄清到底哪一相发生了故障,图1中a 是简单的中性点不接地系统单相故障的示意图,设A 相接地短路。图1中b 是MATLAB 仿真模块,设 0.05s 故障发生,0.25s 故障排除,总的模拟 时间是0s~0.3s 。通过调节3-phase Fault 的过渡电阻的阻值来模拟接地电阻;通过调节3-phase Fault 的选项来仿真不同的相的接地;同时还可以通过调整线路模型参数来模拟不同的距离、阻抗等接地。 2.仿真参数 三相电源电压是10kv ,频率是60Hz 。取每条线路长度不等,L1=300km ,L2= MATLAB 对小电流接地系统单相故障的仿真 尹 润张庆生 摘 要:在小电流接地系统中发生单相接地时,虽然故障点电流很小对负荷的供电没有太多影响,但是其他两相的 接地电压升高了,为了防止故障进一步扩大成两点或多点接地短路,应及时采取措施予以消除。MATLAB 是对系统进行仿真,通过零序电流和零序电压的波形对系统进行分析,从而推断出哪相发生故障。 关键词:小电流接地仿真零序电流零序电压 a.示意图 b.仿真图 图1 中性点不接地系统单相故障 一、引言 二、中性点不接地系统单相接地故障

小电流接地系统接地故障分析

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压 升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性点不接地系统正常运行时,各相线路对地有相同的对地电容C0,在相电压作用下,每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是

架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向,每相对地电压就等于相电压。 图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对 地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = - U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC = U A’jwC0,I BC = U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相

配电网单相接地故障的仿真分析

中国石油大学(华东)现代远程教育 毕业设计(论文) 题目:配电网单相接地故障的仿真分析学习中心:天津滨海奥鹏学习中心 年级专业:网络10春电气工程及其自动化 学生姓名:吴燕燕学号: 18 指导教师:郑淑慧职称:教授 导师单位:中国石油大学(华东) 中国石油大学(华东)远程与继续教育学院 论文完成时间: 2011 年 12 月 23日 摘要

为了提取配电网单相接地故障选线和故障测距的暂态故障特征量,基于Matlab的Simulink仿真环境,搭建了小电流接地系统的配电网络仿真模型并综合考虑不同短路时刻、不同接地电弧电阻、不同故障距离和线路长度等多个因素,对配电网小电流接地系统的单相接地故障进行了大量仿真。在配电网单相接地短路故障后的第1个工频周波(O~O.02 s)内故障线路的零序电流包络线的变化速度比非故障线路变化缓慢,包络面积大,但与非故障线路首半波极性相反。仿真分析表明此暂态特性不受短路时刻、电弧电阻、故障距离和消弧线圈被偿度的影响,为单相接地故障选线和故障测距的研究提供了理论依据。 关键词:配电网;仿真模型零序电流;单相接地故障;补偿度;故障相电压

第一章引言 我国35 kV、10 kV(6 kV)配电网中性点运行方式一般为不接地或经消弧线圈接地。当发生单相接地故障时允许继续运行1~2 h,及时查找故障线路和故障点是提高供电可靠性的保证。基于稳态分量的单相接地选线方法有5次谐波电流的幅值方向法【1,2】,注入信号源法【3】,零序电流有功分量法【4,5】等,由于稳态零序电流幅值较小,基于稳态分量的单相接地选线准确率不高;消弧线圈短时并联电阻【6,7】,可提高接地选线的可靠性,但不能很好发挥消弧线圈的作用。近年来,以小波变换为理论研究工具,分别提出了应用零序电流小波变换系数模值大小与极性【8-13】零序电流小波变换系数模值的积分【14】、零序电压流的小波变换系数之比【15】作为选线判据,但受短路时刻、网络结构、线路长度、接地点的位置、电弧电阻及被分析信号的数据长度、小波基的选取等多因素的影响较大。研究小电流接地系统单相接地暂态过程特点是单相接地故障选线和测距方法的理论基础,目前关于这方面的文献很少。

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。 中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。 中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护 中性点不接地系统的接地保护、接地选线装置 (1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统) 绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。 将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。 当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。 该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。要想判断故障线路,必须经拉线路试验。且若发生两条线路以上接地故障时,将更难判别。 装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。 该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。 (3) 零序功率保护: 零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。如传统的零序功率方向继电器,无人值守综自所应用的如南瑞DSA113、119系列零序功率方向保护。 零序功率方向保护没有死区,但对零序电压零序电流回路接线等要求比较高,对系统中有消弧线圈的需用五次谐波功率原理。 (4) 小电流接地选线综合装置:

小电流接地故障现象及原因分析通用版

安全管理编号:YTO-FS-PD721 小电流接地故障现象及原因分析通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

小电流接地故障现象及原因分析通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短

课程设计(论文)-基于MATLAB的电力系统单相短路故障分析与仿真.doc

课程设计 ( 论文 )- 基于 MATLAB的电力系统单相短路故障分析与 仿真

————————————————————————————————作者:————————————————————————————————日期:

电力系统分析课程设计说明书题目:单相接地短路 专业:电气工程及其自动化 班级:电气 1307 姓名:陈欢

目录 课程设计(论文)任务书 ----------------------- (1)引言 ------------------------------------------------------------------- ( 3)第一章.电力系统短路故障分析------------------------------- ( 4)第二章.电力系统单相短路计算-------------------- ( 5)2.1 简单不对称故障的分析计算---------------------- ( 5) 2.1.1. 对称分量法 ------------------- (5) 2.2 单相接地短路------------------------------ ( 6) 2.2.1. 正序等效定则 ---------------------------- (6) 2.2.2. 复合序网 --------------------------------- (6) 2.2. 3. 单相接地短路分析 --------------------------- (7)第三章.电力系统单相短路时域分析 ---------------- ( 10)3.1 仿真模型的设计与实现------------------------ (10) 3.1.1. 实例分析 -------------------------------- (10) 3.1.2. 仿真参数 ----------------------------- -- -- -- (11)3.2 仿真结果分析------------------------------- (13) 结束语 ----------------------------------------- ( 18)参考文献 --------------------------------------- ( 18)

单相接地故障的特征及处理

单相接地故障的特征及处理 10kV(35kV)小电流接系统单相接(以下简称单相接是配电系统最常见故障,多发生潮湿、多雨天气。树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起。单相接影响了用户正常供电,可能产生过电压,烧坏设备,引起相间短路而扩大事故。,熟悉接故障处理方法对值班人员来说十分重要。 1几种接故障特征 (1)当发生一相(如A相)不完全接时,即高电阻或电弧接,这时故障相电压降低,非故障相电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处电压达到整定值,电压继电器动作,发出接信号。 (2)发生A相完全接,则故障相电压降到零,非故障相电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相指示不为零,这是此相电压表二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小电压指示,但该相实际电压,非故障相仍为相电压。互感器开口三角处会出现35V左右电压值,并启动继电器,发出接信号。 (4)系统中存容性和感性参数元件,特别是带有铁芯铁磁电感元件,参数组合不匹配时会引起铁磁谐振,继电器动作,发出接信号。 (5)空载母线虚假接现象。母线空载运行时,也可能会出现三相电压不平衡,发出接信号。但当送上一条线路后接现象会自行消失。 2单相接故障处理 (1)处理接故障步骤: ①发生单相接故障后,值班人员应马上复归音响,作好记录,迅速报告当值调度和有关负责人员,并按当值调度员命令寻找接故障,但具体查找方法由现场值班员自己选择。 ②详细检查所内电气设备有无明显故障迹象,不能找出故障点,再进行线路接寻找。 ③将母线分段运行,并列运行变压器分列运行,以判定单相接区域。 ④再拉开母线无功补偿电容器断路器以及空载线路。对多电源线路,应采取转移负荷,改变供电方式来寻找接故障点。 ⑤采用一拉一合方式进行试拉寻找故障点,当拉开某条线路断路器接现象消失,便可判断它为故障线路,并马上汇报当值调度员听候处理,同时对故障线路断路器、隔离开关、穿墙套管等设备做进一步检查。 (2)处理接故障要求: ①寻找和处理单相接故障时,应作好安全措施,保证人身安全。当设备发生接时,室内不接近故障点4m以内,室外不接近故障点8m以内,进入上述范围工作人员必须穿绝缘靴,戴绝缘手套,使用专用工具。 ②减小停电范围和负面影响,寻找单相接故障时,应先试拉线路长、分支多、历次故障多和负荷轻以及用电性质次要线路,然后试拉线路短、负荷重、分支少、用点性质重要线路。双电源用户可先倒换电源再试拉,专用线路应先行通知。若有关人员汇报某条线路上有故障迹象时,可先试拉这条线路。 ③若电压互感器高压熔断件熔断,不用普通熔断件代替。必须用额定电流为0.5A装填有石英砂瓷管熔断器,这种熔断器有良好灭弧性能和较大断流容量,具有限制短路电流作用。 3结束语 减少单相接故障给电网运行带来不良影响,要求值班人员熟悉有关运行规程,了解设备运行状况,实践中不断总结经验,提高处理问题能力,还要积极改善设备运行条件,及时消除设备缺陷,保持设备清洁,提高设备绝缘水平。同时,还要加强配电线路检修、维护管理,提高配电线路检修人员技术水平,缩短查找处理接故障时间,尽快恢复对用户供电。

小电流接地故障现象及原因分析(正式版)

文件编号:TP-AR-L2950 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 小电流接地故障现象及 原因分析(正式版)

小电流接地故障现象及原因分析(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 引言 随着全国农村电网改造工程的全面展开,农村供 电网络健康水平明显提高,小接地电流电网中三相对 地电压不平衡现象是电网异常和故障的反映,电气运 行人员若能正确判断并限制故障发展,迅速排除故 障,则可保证电网安全运行。反之,往往导致配电变 压器电磁式电压互感器烧损、高压熔断器熔断、避雷 器爆炸、导线烧断、线路短路、保护误动、大面积停 电等事故发生。

1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2 故障现象判断与分析 2.1 绝缘监视装置自身故障的判断 2.1.1 TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则

小电流接地系统接地故障选线方法 涂少煌

小电流接地系统接地故障选线方法涂少煌 发表时间:2019-09-18T10:09:46.183Z 来源:《电力设备》2019年第7期作者:涂少煌[导读] 摘要:本文简要总结近年来现有的选线的理论方法,对选线方法的原理做了简要分析,并指出了小电流接地系统故障选线的主要侧重方向。 (广州智光电气技术有限公司广州 510760) 摘要:本文简要总结近年来现有的选线的理论方法,对选线方法的原理做了简要分析,并指出了小电流接地系统故障选线的主要侧重方向。 关键词:小电流接地系统;单相接地;故障选线;选线方法 1单相接地故障信号特征的分析 1.1稳态特征信号分析 中性点不直接接地系统发生接地故障时,全系统伴随零序电压的产生会有零序电流产生,所有非故障线路上元件的对地电容电流之和在数值上等于故障线路的零序电流,故障相电流方向从线路流向母线,与非故障线路相反。为了减少故障点处的故障电流,在中性点处接入了消弧线圈,相当于叠加了一个与故障电流相反的感性电流,在实际运行中,由于消弧线圈过补偿的作用,所叠加的感性电流在数值上大于故障电流,使得故障电流方向发生改变与非故障线路相同,由此,使得基于稳态量的选线方法失败。 1.2暂态特征信号分析 配电网发生接地故障时,所产生的故障电流包含的暂态成分比稳态成分多。可以被利用的有效的信息较多,全网络的暂态电容电流相当于2个电容电流之和:放电电流,此电流方向由母线流向故障点处,是由于故障相的电压突然降低而产生;充电电流,该电流通过电源形成回路,是由于非故障相的电压突然升高而产生。一般在相电压接近最大值时刻较多地发生接地故障,此时电容电流远远大于电感电流,消弧线圈补偿作用可以忽略不计,所以可以认为中性点不接地系统和经消弧线圈接地系统发生故障时的暂态特征是相似的,因此利用故障时的暂态特征作为选线的基本依据的重要意义显而易见。 2小电流接地系统故障选线方法 2.1基于稳态分量的选线方法 2.1.1零序电流比幅法 零序电流比幅法所需的特征量是零序电流,是根据系统故障的稳态特征来进行选线,比较母线处各出线零序电流幅值大小,其中幅值最大的线路即为故障线路,此方法比较简单容易实行。但是,当幅健距不大或母线故障时,会造成选线失败,此外还有各种复杂因素的影响,如不平衡的CT,系统运行方式等问题。由于电容电流在中性点经消弧线圈接地系统中被补偿,使得该方法不适用于此系统,但可用于小电流不接地系统,适用范围较小。 2.1.2零序电流相位法 配电网发生接地故障时,该方法利用故障稳态特征选出与各条出线零序电流方向不同的线路作为故障线路。当线路很短且零序电很小时容易产生“时针效应”,在零序电流方向的判断上出现错误。同时,系统运行方式、电流不平衡以及过渡电阻也会对故障线路产生一定程度的干扰。同样,由于消弧线圈的补偿作用可以改变故障线路电流的方向,同零序电流比幅法一样,此方法也不适用谐振接地系统,只能用于不接地系统。 2.1.3群体比幅比相法 该方法是前两个方法的结合。首先比较各条线路的零序电流幅值大小,选出3条以上幅值相对较大的线路,然后再比较它们的相位,方向与其他线路相反的即为故障线路,若所有方向线路都相同则为母线故障。但此方法易受过渡电阻的大小以及CT不平衡等因素的影响,且死区和盲点的存在会对相位的判断产生影响。除此以外,由于是前两种方法的结合,同样只能适用于不接地系统。 2.1.4有功分量法 电网中各条线路存在对地电导,消弧线圈串/并联的电阻在发生故障时,会产生一定有功电流且不能被消弧线圈补偿。以零序电压作为参考量,将有功分量取出,然后利用故障线路零序电流有功分量比非故障线路大且方向相反来选线此方法虽然不受消弧线圈的限制,但接地电流中有功分量的成分较少,降低了检测的灵敏度,且受接地电阻和电流互感器不平衡的影响。 2.2基于暂态分量的选线方法 2.2.1首半波法 此方法最重要的一点就是假设故障发生的时刻是相电压接近峰值的瞬间,此时,暂态电容电流远远大于暂态电感电流。该方法的选线原理是在发生单相接地故障后的首个半周期内,故障线路的零序暂态电流和电压的极性与非故障线路相反。但是如果故障发生在相电压经过零的时刻,暂态电流的信号非常薄弱,特征信号不明显,不易检测。显而易见,该方法有一定的局限性,并且过渡电阻和谐波会造成一定的干扰,降低故障选线的准确性。 2.2.2小波分析法 小波分析理论可以在一定的频带内将暂态信号分解,尤其是对奇异信号和变化不明显的信号应用较好,信号突变部分和信号的奇异点处包含有能清晰反映原始信号中重要信息的成分。而在小电流系统发生接地故障时,暂态信号的奇异处隐藏有较多有价值的故障信息,能清晰地反映故障的暂态特征,所以可以利用小波分析法来分析和提取故障信息。故障发生时电流会突然改变,小波分析法就是利用这一特点来进行选线,首先利用小波奇异性检测的方法对各条线路的暂态零序电流使用小波变换,然后对各条线路的零序电流经过小波变换后的模极大值的峰值和相位进行分析和对比,模极大值最大且相位与其他线路相反的线路即为故障线路。对信号进行小波变换时,也涉及到一些细节选择:小波基函数的选取对小波变换的结果非常关键,要选择紧支集正交性的小波;对故障信号进行小波分解后,选择小波变换细节部分中绝对值幅值最大的点所在的尺度作为分解尺度;信号的采样频率也有相应的要求,应该大于等于信号中最高频率的2倍;还要进行细节分量的重构以及边界的处理。本文认为小波分析在信号处理方面是一种比较理想的数学工具,所以应将小波分析法应用于现场的实际运行中,并结合实际继续深入研究,使得小波分析法能适用于各种类型的单相接地故障的选线。 2.2.3暂态能量法

变电站线路单相接地故障处理及典型案例分析(扫描版)

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

不同接地方式配电系统的单相接地故障仿真分析

不同接地方式配电系统的单相接地故障仿真分析 陈亚,任建文 (华北电力大学电气工程学院,河北保定071003) 摘要:首先介绍了配电网的3种接地方式(不接地、经电阻接地、谐振接地)的原理和特点,然后利用MAT2 LAB仿真平台,对某10k V配电网的这三种接地方式进行了仿真比较,针对该配电网的输电线单相接地问题给出了较为准确的数值仿真解,指出了中性点经消弧线圈接地方式是目前比较合理的接地方式。 关键词:配电网; 谐振接地; 消弧线圈; 仿真 中图分类号:T M727 文献标识码:A 文章编号:100324897(2005)0520067205 0 引言 10kV配电网中性点的接地方式是一个涉及面非常广的综合性问题,它不仅是一个技术问题,还是一个经济问题。首先,从技术的角度而言,它与整个电力系统的供电可靠性、人身安全、设备安全、绝缘水平、继电保护以及通信干扰和接地装置等技术问题有密切的关系。其次,配电网中性点接地方式的选择必须与整个系统发展的现状和发展规划进行技术经济比较,必须全面考虑其技术经济指标。随着电力工业的迅速发展和对供电质量要求的提高,选择一种有效的中性点接地方式是十分重要的。 1 配电网中性点接地方式 传统的配电网接地方式有3种:中性点不接地、经电阻接地及谐振接地。下面对这3种接地方式的原理及其特点做一个简单介绍[1,4,5]: 中性点不接地,实际上是经过集中于电力变压器中性点的等值电容(绝缘状态欠佳时还有泄漏电阻)接地的,其零序阻抗多为一有限值,而且不一定是常数。此时,系统的零序阻抗呈现容性,因接地程度系数k<0,ΔU可能高于相电压,故非故障相的工频电压升高会略微高过线电压。最早的城市配电网由于规模不大,多采用中性点不接地方式。在这种接地方式下,系统发生单相接地故障时,流过故障点的电流为线路的电容性电流。在规模不大的架空线路网架结构中,这个值是相当小的,对用户的供电影响不大。而且各相间的电压大小和相位维持不变,三相系统的平衡性未遭破坏,允许继续运行一段时间(2h以内)。但是这种接地方式有一个极大的缺陷,就是当接地电流超过一定值时容易产生弧光接地过电压,将使系统的安全性受到很大的影响,对系统绝缘水平要求提高。近几年国家和地方大力投资进行城网、农网改造,电网规模扩大,电缆线路不断增加,6~35k V中压配电网原有的中性点不接地方式已不再适宜,并已逐渐被其他接地方式取代。 对于中压电网来说,中性点经电阻接地的最初出发点,主要是为了限制电弧接地过电压。电阻接地方式可以避免不接地方式中弧光接地过电压的产生,同时由于增大了故障线路的接地电流,使得故障选线可以很方便地实施,进而实现快速跳闸,使非故障线路不需要长时间承受过电压,降低了绝缘水平要求。对于以电缆为主又能实现环网供电的城市配电网,这是一种较为理想的接地方式。因为以电缆线路为主的电网发生单相接地故障时,流过故障点的电容电流很大,容易发展为相间故障,且多为永久性接地故障,需要及时跳闸,切除故障线路。而环网供电可保证供电的连续性,最大限度地减少停电范围。从目前国内农网及城网的发展情况看,依然是架空线路占多数,或架空线路和电缆混合电网,环网供电水平较低。这些情况决定了国内配电网以中性点经消弧线圈接地,也就是通常所说的谐振接地方式为主要的接地方式。 谐振接地系统即中性点经消弧线圈接地的电力系统。因为消弧线圈是一种补偿装置,故通常又被称为补偿系统。消弧线圈是一种铁心带有空气间隙的可调电感线圈。它装设于配电网的中性点。瞬间单相接地故障可经消弧线圈动作消除,保证系统不断电;永久单相接地故障时消弧线圈动作可维持系统运行一定时间,可以使运行部门有足够的时间启动备用电源或转移负荷,不至于造成被动;系统单相接地时消弧线圈动作可有效避免电弧接地过电压,对全网电力设备起保护作用;由于接地电弧的时间缩短,使其危害受到限制,因此也减少了维修工作 76 第33卷第5期2005年3月1日 继电器 RE LAY Vol.33No.5 M ar.1,2005

小电流接地系统单相故障matlab仿真

Xx学院课程设计说明书设计题目:小电流接地系统单相故障matlab仿真 系(部):机电工程系 专业:自动化 班级: 姓名: x x x 学号: 20 12 年 12 月 12 日

目录 第一章matlab简介 (3) 第二章小电流接地系统单相故障matlab仿真 (4) 2.1小电流接地系统单相故障特点简介 (4) 2.2 小电流接地系统的仿真模型构建 (5) 2.3 仿真结果及分析 (11) 第三章心得与体会 (16) 参考文献 (16)

一Matlab简介 Matlab是由英文单词matri和laboratory的前3个字母组成。目前matlab已成为国际认可的最优秀的科技应用软件之一。在大学里,他是用于初等和高等数学、自然科学和工程学的标准数学工具;在工业界,他是一个高效的研究、开发和分析的工具。随着科技的发展,许多优秀的工程师不断的对matlab进行了完善,使其从一个简单的矩阵分析软件逐渐发展成为一个具有极高通用性,并带有众多实用工具的运算操作平台。 Simulink是matlab提供的实现动态系统建模和仿真的一个软件包,是基于框图的仿真平台。Simulink挂接在matlab环境上,以matlab的强大计算功能为基础,利用直观的模块框图进行仿真和计算。Simulink提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大的方便。在simulink平台上拖拽和连接典型模块就可以绘制仿真对象的模块框图,并对模型进行仿真。在simulink平台上,仿真模型的可读性很强,这就避免了在matlab窗口使用matlab命令和函数仿真时,需要熟悉大量的M函数的麻烦,对广大工程技术人员来说,这无疑就是一个福音。随着matlab的不断升级,simulink的版本也在不断的升级,从1993年的matlab4.0/simulink1.0版到2001年的matlab6.1/simulink4.1版、2002年的matlab6.5/simulink5.0版,现在的最常用的版本就是matlab7.0/simulink6.0 Simulink最初是为仿真控制系统而建立的工具箱,在使用中容易编程、容易扩展,并且可以解决在使用matlab过程中遇到的非线性、变系数等问题。它能够进行系统和离散系统的仿真,也能够进行线性和非线性系统仿真,并且支持多种采样频率系统的仿真,使不同的系统能以不同的采样频率组合,这样就可以仿真较大、较复杂的系统。因此,不同的科学领域根据自己的仿真要求,以matlab为基础,开发了大量的专用仿真程序,并把这些程序以模块的形式放入simulink中,形成模块库。Simulink的模块库实际上就是用matlab基本语言编写的子程序集。现在simulink模块库有3级树状的子目录,在一级目录下包含了simulink 最早开发的数学计算工具箱、控制系统工具箱的内容,之后开发的信号处理工具箱、通信工系统工具箱等也并行列入模块库的一级子目录,逐级打开模块库浏览器的目录,就可以看到这些模块。 Simulink是基于matlab的图形化仿真设计环境。确切的说,它是matlab提供的对动态系统进行建模、仿真和分析的一个软件包。它支持线性和非线性系统、连续时间系统、离散时间系统、连续和离散混合系统,而且系统可以是多进程的。它使用图形化的系统模块对动态系统进行描述,并非在此基础上采用matlab计算引擎对动态系统在时域内进行求解。Matlab计算引擎主要对系统微分方程和差分方程求解。Simulin和matlab是高度集成在一起的,因此,它们之间可以进行灵活的交互操作。 Simulink提供了友好的图形用户界面,模型由模块组成的框图来表示,用户通过简单的鼠标操作就能够完成建模。Simulink的模块库为用户提供了包括基本功能模块和扩展模块在

小电流接地系统接地故障的原因分析及对策(正式版)

文件编号:TP-AR-L5942 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 小电流接地系统接地故障的原因分析及对策(正 式版)

小电流接地系统接地故障的原因分 析及对策(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.问题提出 目前,小电流接地系统特别是35KV及以下的小 接地系统,由于其线路分支多,走向复杂,电压等级 较低,在设计施工中线路质量不易保证,运行中发生 接地故障的几率是很高的。从我市地方电网历年来的 运行统计资料来看,在小电流接地系统的接地故障 中,35KV电网占8.2%,10KV电网占91.8%。本文通 过笔者在实践中对电网运行工况的了解以及运行经验 的总结,分析了小电流接地系统在实际运行中易引起 误判的几类接地故障,在给出其原因分析的基础上着

重阐述了接地故障的判别方法、处理措施及对策。相信对同行有一定的借鉴作用。 2.易引起误判的几类接地故障及其原因分析 为了便于展开下文,我们有必要首先对电网发生接地的原因作一个简单的分析。如图1,当中性点电压Uo不为0且Uo大于绝缘监察系统定值时,便有接地信号发出,而Uo反映的是零序电压,其计算公式为: Uo=(ùa ùb ùc)/3 从上式可以看出,当电网各相电压ùa、ùb、ùc 不平衡时,便有中性点电压Uo产生,而电网电压的不平衡度是接地信号发生与否的关键,本文下面的论述将紧紧围绕接地故障发生的原因作具体分析。根据兴义市地方电网历年来的运行资料,我们统计了如下几类经常发生接地的情况:

换流变压器阀侧单相接地故障保护动作分析_高爱云

第29卷第4期2010年10月 电工电能新技术 Advanced Technology of Electrical Engineering and Energy Vol.29,No.4Oct.2010 收稿日期:2010- 01-10作者简介:高爱云(1977-),女,山东籍,讲师,硕士,研究方向为电动机故障诊断,电力系统继电保护; 蔡泽祥(1960-),男,江苏籍,教授,博士,研究方向为电力系统故障诊断与继电保护。 换流变压器阀侧单相接地故障保护动作分析 高爱云1,聂娟红2,李晓华3,蔡泽祥 3 (1.广东水利电力职业技术学院电力系,广东广州510635;2.北京四方继保自动化股份有限公司, 北京100085;3.华南理工大学电力学院,广东广州510640) 摘要:文章系统分析了超高压直流输电系统的换流变压器阀侧发生单相接地故障时的特点,并讨论了相应的换流变压器差动保护和换流器差动保护的动作行为,最后运用EMTDC 对CIGRE 直流输电标准测试系统的整流侧和逆变侧换流变压器阀侧单相接地故障进行了仿真分析,研究了交直流保护系统的配合及相关的解决措施,完善了超高压直流输电系统的故障分析和保护配置。关键词:换流变压器;阀侧单相接地;交直流保护 中图分类号:TM77 文献标识码:A 文章编号:1003- 3076(2010)04-0071-051引言 超高压直流输电系统中,换流变压器是重要的 设备之一。目前,对换流变压器阀侧接地及其保护已有较深入的研究,文献[1]提出阀侧单相接地故障是不接地系统的两相故障和直流短路的反复切换, 导致差电流中含有大量的谐波含量,变压器差动保护有可能不能出口;文献[2]主要以试验和仿真的方法对逆变侧换流变阀侧单相接地进行了分析,其目的在于分析直流保护的动作特性,并未对换流变差动保护进行分析;文献[3]主要介绍了逆变侧换流变阀侧套管接地故障过程和直流保护动作情况, 其故障点位于换流变阀侧套管电流互感器与换流器之间,属于换流变保护区外故障,未分析换流变差动保护动作行为及其与换流器差动保护之间的配合关系。实际上, 换流变阀侧交流引线单相接地时,既是交流系统的单相接地,又是换流器的阀短路。因此,从电路角度对换流变阀侧接地故障进行分析,研究换流变差动保护的动作行为及与换流器差动保护之间的配合关系对系统运行和保护设计具有指导意义。 2换流变压器阀侧单相接地故障分析 本文以6脉桥为例,对整流侧和逆变侧换流变 阀侧单相接地进行了分析, 如图1所示。图中,三相电动势e u 、e v 、e w 对应换流变阀侧三相电动势,电抗X r 为换相电抗,即换流变的短路阻抗。 若整流侧换流变阀侧U 相接地,假设V1V6导通,电流分布如图1(a )所示。由于阀V6的单向导通性,换流变UV 两相经接地极系统电阻R 和过渡电阻 R f 构成短路回路,短路电流为2E (2X r )2 +(R +R f ) 槡 2 ,此电流即是流过换流变阀 侧UV 两相和直流中性端的电流。同时, 因为U 相接地,所以施加在V1上的电压减小,也就是流过阀V1和直流线路电流减小。类似地,可分析其他阀导通时的电流分布,得出U 相接地的故障特点: (1)换流变阀侧电流和直流中性端电流相等,并且均增大; (2)V1V3V5上的电压减小,直流线路电流也减小。 若逆变侧换流变阀侧U 相接地,假设V3V4导通,电流分布如图1(b )所示。一方面,因V4导通,直流电流经V4和过渡电阻构成回路,造成直流电流突增,直流电压突降,换流变U 相电流减小,最终导致逆变器换相失败。另一方面, 因V3导通,则换流变UV 两相经过渡电阻和接地极系统电阻构成短路回路,即换流变UV 两相和直流中性端的电流增加。

小电流接地系统单相接地故障的仿真

设计题目:小电流接地系统单相故障matlab仿真 中文摘要:使用matlab和 simulink模拟小电流接地系统单相接地故障。 关键字:matlab, simulink,小电流系统,单相接地故障。小电流接地系统单相故障 电网中性点接地系统的分类方法有很多种,其中最常用的是按照接地短路时接地电流的大小分为大电流接地系统和小电流接地系统。电网中性点采用哪种接地方式主要取决于供电可靠性(是否允许带一相接地时继续运行)和限制过电压两个因素。我国规定110kv以上电压等级的系统采用中性点直接接地方式,35kv及以下的配电系统采用小电流接地方式(中性点不接地或经消弧线圈接地)。 在小电流接地系统中发生单相接地时,由于故障点的电流很小,而且三相之间的线电压任然保持对称,对负荷的供电没有影响,因此,在一般情况下都允许系统在继续运行1~2小时,而不必立即跳闸,这也是采用小电流接地系统运行的主要优点。但是在单相接地以后,其他两相的对地电压要升高根号三倍,为了防止故障进一步扩大成两点或多点接地短路,就应及时发出信号,以便运行人员采取措施予以消除。 小电流接地系统单相故障特点简介 对于如图1-1所示的中性点不接地系统,单相接地故障发生后,由于中性点N不接地, 所以没有形成短路电流通路,故障相都将流过正常 负荷电流,线电压任然保持对称,因此可以短时不 予以切除。这段时间可以用于查明故障原因并排除 故障,或者进行倒负荷操作,因此该方式对于用户 的供电可靠性高,但是接地相电压将降低,非接地 相电压将升高至线电压,对电气设备绝缘造成威胁。单相接地故障发生后系统不能长期运行。事实上,对于中性点不接地系统,由于线路分布电容(电容数值不大,而容抗很大)的存在,接地故障点和导线对地电容还是能够形成电流通路的,从而有数值不大的电容性电流在导线和大地之间流通。一般情况下,这个容性电流在接地故障点将以电弧形式存在,电弧产生的高温会损毁设备,甚至引起附近建筑物燃烧起火,不稳定的电弧燃烧还会引起弧光过电压,造成非接地相绝缘击穿进而发展成为相间故障,导致断路器动作跳闸,中断对用户的供电。 中性点不接地系统发生单相接地时的故障特点如下 1)在发生单相接地时,全系统都将出现零序电压。 2)在非故障的元件上有零序电流,其数值等于本身的对地电容电流,电容电流的实际方向为由母线流向线路。 3)在故障线路上,零序电流为全系统非故障元件对地电容电流之总和,数值一般较大,电容电流的实际方向为由线路流向母线。

相关文档
最新文档