恒功率中频电源

恒功率中频电源
恒功率中频电源

恒功率中频电源

使用说明书

感谢您选用建德巨龙电炉有限公司生产的KGPS系列恒功率中频电源。为了更好地使用和维护本装置,请在使用前仔细阅读本说明书。

KGPS系列恒功率中频电源是一种将工频50Hz交流电转变成2508000Hz的中频电源装置,可用于金属的熔炼、保温、透热和淬火,单晶硅提纯,晶体生长等需要感应加热的场合作为中频供电的电源设备。

一.概述

1.KGPS系列晶闸管恒功率恒功率中频电源是我公司最新开发研制的第六代数字化恒功率中频电源,与其它类型的恒功率中频电源相比较,其优点主要表现在以下几个方面:

2.由于控制电路采用数字化结构,具有相序自适应功能,可自动实现与电网的同步,使得电源的三相交流输入可不区分相序。结构简单,控制电路的外围器件及连线大大减少,整个系统的可靠性也有较大提高。

3.逆变电路采用扫频式零压启动方式,并设有自动重复启动电路,只要负载的品质因数Q≥

2.5,启动成功率便可达到100%,无需任何附加的启动电路。信号取样只需中频电压信号,

省去了中频电流互感器,因此,电源与负载回路的连接无需区分极性。

4.电源具有完善的保护功能,主电路与控制电路的合闸、分闸次序以及使用人员的误操作等,均不会对系统产生任何不良影响。具体功能有:缺相(OP)、过电压(OV)、过电流(OC)、水压低(WPL)、控制电源欠压(LV)等。

二.使用条件

1.海拔不超过2000米。

2.环境温度-5℃~+35℃。

3.相对湿度不超过90%(25℃时)。

4.没有导电和易燃、易爆尘埃,没有腐蚀金属和损坏绝缘气体的场合。

5.无剧烈振动和冲击的室内。

6.电网电压波动不大于±10%。

三.技术参数

参数

输入电压输入电流中频电压中频功率中频频率稳压精度

型号

KGPF-15 3φ-380V 25A 650V 15KW 2500Hz-8000Hz 0.5% KGPF-25 3φ-380V 40A 650V 25KW 2500Hz-8000Hz 0.5% KGPF-35 3φ-380V 56A 650V 35KW 1000Hz-8000Hz 0.5% KGPF-50 3φ-380V 80A 650V 50KW 1000Hz-8000Hz 0.5%

四.系统原理图

参见附图

五.外形尺寸(供参考)

1.功率15KW-50KW

450(宽)×800(厚)×1200(高)单柜

2.功率100KW-1000KW

1400(宽)×815(厚)×1800(高)单柜

3.功率1500KW-3000KW

2300(宽)×815(厚)×1970(高)双柜

4.功率大于,等于4000KW

3100(宽)×815(厚)×1970(高)三柜

六.原理及调试步骤

1.控制电路原理

整个控制电路除逆变末级触发单元外,做成一块印刷电路板结构。功能上包括电源、整流触发、调节器、逆变、启动演算等,除调节器为模拟运算电路外,其余均为数字电路。

组成该控制板的核心集成电路为IC6,型号为ISPLSI-1016,为美国LATTICE公司生产.它是一块经编程处理的专用可编程控制器(CPLD),有3路时钟输入口,31路输入/输出口,内部功能包括整流移相触发、相序自适应、逆变触发、逆变引前角锁定、逆变重复起动、过流保护、过压保护、缺相保护、水压低保护、控制板欠压保护,另外还有三个0.2秒钟的定时器。

1.1 整流触发工作原理

这部分电路包括三相同步、相序自适应、压控时钟、数字触发、末级驱动等电路。三相同步信号直接由晶闸管的门极引线K4、K6、K2从主回路的三相进线上取得,由R3、C1、R7、C2、R11、C3进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比略小于50%的矩形波同步信号(低电平有效),输入到IC6的5P~10P。

在IC6的内部有相序自适应电路,确保了恒功率中频电源的三相交流输入可以不分相序。数字触发的特征是用计(时钟脉冲)数的办法来实现移相,6路移相触发脉冲均由IC6产生。IC2C、IC2D及其周围电路组成定输出脉宽电路。6路移相触发脉冲经IC5晶体管阵列放大后,驱动脉冲变压器输出。值得一提的是,脉冲变压器采用的是反激工作方式。

1.2 调节器工作原理

调节器部分共设有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角

节器。

其中电压调节器(IC3B)、电流调节器(IC3D),组成常规的电流、电压双闭环系统,在启动和运行的整个阶段,电流环始终参与工作,而电压环仅工作于运行阶段;另一阻抗调节器(IC3A),从输入上看,它与电流调节器的输入完全是并联的关系,区别仅在于阻抗调节器的负输入较电流调节器的略大,再者就是电流调节器的输出控制的是整流桥的输出直流电压,而阻抗调节器的输出控制的是中频电压与直流电压的比例关系,即逆变功率因数角。

调节器电路的工作过程可以分为两种情况:一种是在直流电压没有达到最大值的时候,由于阻抗调节器的负输入略大,阻抗调节器便工作于限幅状态,对应的为最小逆变θ角,此时可以认为阻抗调节器不起作用,系统完全是一个标准的电压、电流双闭环系统;另一种情况是直流电压已经达到最大值,电流调节器开始限幅,不再起作用,电压调节器的输出增加,而反馈电流却不变化,对阻抗调节器来说,当反馈电流信号比给定电流略小时,阻抗调节器便退出限幅,开始工作,调节逆变角调节器的θ角给定值,使输出的中频电压增加,直流电流也随之增加,达到新的平衡。此时,就只有电压调节器与阻抗调节器工作。若负载等效电阻RH继续增大。逆变θ角亦相应增大θ直至最大逆变θ角。

逆变角调节器(IC4C)用于使逆变桥能在某一θ角下稳定的工作。

中频电压互感器过来的中频电压信号由CON2-1和CON2-2输入后,分别两路,一路送到逆变部分,另一路经D7-D10整流后,又分为三路,一路送到电压调节器;另一路送到过电压保护;一路用于电压闭环自动投入。

电压调节器由IC3B组成,其输出信号由DW1及Q1进行钳位限幅。IC4B和IC5C组成电压闭环自动投入电路。由IC3D构成电流PI调节器,然后由IC4A隔离,控制触发电路的压控时钟。

由主回路交流互感器取得的电流信号,先在外部转换成电压信号,从CON2-3、CON2-4、CON-5输入,经二极管D11~D16整流后,再分为三路。一路作为过流保护信号。另一路作为电流调节器的反馈信号,还有一路作为阻抗调节器的反馈信号。

IC3A构成阻抗调节器,它与电流调节器是并列的关系,用于控制逆变桥的引前角。其作用可间接地使恒功率中频电源达到恒功率输出,或者可提高整流桥的运行功率因数。微动开关DIP-2可关掉此调节器。

IC4C构成逆变角调节器,然后由IC4D反相输出。

1.3 逆变部分工作原理

本电路逆变触发部分,采用的是扫频式零压软起动,只需取一路中频电压反馈信号,无需槽路中频电容器上的电流信号,其本质上相当于它激转自激电路,属于平均值反馈电路。由于主回路上无需附加任何起动电路,不需要预充磁或预充电的起动过程,因此,主回路得以简化,调试过程简单。

起动过程大致是这样的,在逆变电路起动前,先以一个高于槽路谐振频率的它激信号去触发逆变晶闸管,当电路检测到主回路开始有直流电流时,便控制它激信号的频率从高向低扫描,同时继续加大主回路的直流电流,当它激信号频率下降到接近槽路谐振频率时,中频电压便建立起来,并反馈到自动调频电路。自动调频电路一旦投入工作,便停止它激信号的频率往低扫描动作,转由自动调频电路控制逆变引前角。使设备进入稳态运行。

若一次起动不成功,即自动调频电路没有抓住中频电压反馈信号,此时,它激信号便会一直扫描到最低频率,重复起动电路一旦检测到它激信号进入到最低频段,便进行一次再起动,把它激信号再推到最高频率,重新扫描一次,直至起动成功。重复起动的周期约为0.5秒钟。

由CON2-1和CON2-2输入的中频电压信号,经IC1AD转换成方波信号,输入到IC6的30脚。由IC6的15P、16P输出的逆变触发信号,经IC7A隔离放大后,驱动逆变触发MOS晶体管Q5、Q6。IC6B构成逆变压控时钟,输入到IC6的33脚CLOK2;同时又进行频压转换后用于驱动频率表。W6微调电位器用于设定压控时钟的最高频率(即逆变它激信号的最高频率),W5微调电位器用于整定外接频率表的读数。

另外,当发生过电压保护时,IC6内部的过电压保护振荡器起振,输出2倍于最高逆变频率的触发脉冲,使逆变桥的4只晶体管均导通。

Q1为起动失败检测器,其输出控制IC6内部重复起动电路。

1.4 起动演算工作原理

过电流保护信号经Q3倒相后,送到IC6的20P,封锁整流触发脉冲;驱动“O.C”LED指示灯亮并驱动报警继电器。过电流触发器动后,只有通过复位信号或通过关机后在开机进行“上电复位”,方可再次运行。通过W1微调电位器可整定过流电平。

当三项交流输入缺相时,本控制板均能对电源实现保护和指示。其原理是:由4#、6#、2#晶闸管的阴极(K)分别取A、B、C三相电压信号(通过门极引线),经过光电耦器的隔离送到IC6进行检测和判别,一旦出现“缺相”故障时,除了封锁整流触发脉冲外,还驱动“O.P”LED指示灯以及报警继电器.

为了使控制电路能够更可靠准确的运行,控制电路上还设置了启动定时器和控制电源欠

压检测保护。在开机的瞬间,控制电路的工作是不稳定的,设置一个3秒钟左右的定时器,待定时后,才容许输出触发脉冲。这部分电路由IC5A等元件构成。若由于某种原因造成控制板上直流供电电压过低,稳压器不能稳压,亦会使控制出错。设置一个欠压检测电路(由IC1B 等组成),当VCC电压低于12.5V时便封锁整流触发脉冲,防止不正确的触发,同时点亮“L、V”LED指示灯和驱动报警继电器。

自动重复起动电路在IC6内部。微动开关DIP-1用于关闭自动重复起动电路。

IC2C组成中频过电压检测,输入到IC6的29P,封锁整流触发脉冲;驱动“0.V” LED 指示灯亮并驱动报警继电器;同时使过电压保护振荡器起振。过电压保护动作后,也向过电流保护一样,只有通过复位信号或通过关机后在开机进行“上电复位”,方可再次运行。调节W1微调电位器可整定过压电平。

IC5D及周围电路组成水压过低延时保护电路,延时时间约4秒。输入到IC6的27P,封锁整流触发脉冲;驱动“WPL”LED指示灯亮并驱动报警继电器。当水压正常后,电路会自动恢复正常工作。

复位开关信号由CON2-6、CON2-7输入,闭合状态为复位/暂停。

IC1A组成周期为25mS的固定时钟,输入到IC6的35P,作为起动演算电路的公用时钟信号CLOK1。

2 调试

2.1 调试需准备的工具

一台20M示波器,若示波器的电源线是三芯插头时,注意”地线”千万不能接, 示波器外壳对地需绝缘,仅使用一踪探头,示波器的X轴、Y轴均需校准,探头需在测试信号下补偿好。若无高压示波器探头,应用电阻做一个分压器,以适应600V电压的测量。

一个≤ 500Ω、≥ 500W的电阻性负载。

2.2 整流部分的调试

2.2.1 整流桥的整定

为了调试的安全,调试前,应该使逆变桥不工作。例如:把平波电抗器的一端断开。再在整流桥直流口接入一个≤ 500Ω、≥ 500W的电阻性负载。电路板上的如果微调电位器W2顺时针旋至灵敏最高端,(调试过程发生短路时,可以提供过流保护)。主控板上的DIP-1开关拨在ON位置;用示波器做好测量整流桥输出直流电压波形的准备;把面板上的“给定”电位器逆时针旋至最小。

送上三相供电(可以不分相序),检查是否有缺相报警指示,若有,可以检查进线快速熔断器是否损坏。

把面板上的“给定”电位器顺时针旋大,直流电压波形应该几乎全放开(a≈0°)6个波头都全在,若恒功率中频电源为380V输入,此时的直流电压表应指示在530V左右。再把面板上的“给定”电位器逆时针旋至最小,调节控制板上的W7微调电位器,使直流电压波形刚

好全关闭,此时的a角约为120度。输出直流波形在整个移相范围内应该是连续平滑的。

若在调试中,发现出不来6个整流波头,则应检查6只整流晶闸管的序号是否接对,晶闸管的门极线是否接反和短路。

在此过程中也检查了面板上的“给定”电位器是否接反,接反了则会出现直流电压几乎为最大,只有把“给定”电位器顺时针旋到头时,直流电压才会减小的现象。

2.2.2 额定输出电流(W2)的整定

在停电状态下,把逆变桥接入,使逆变触发脉冲投入,去掉整流桥口的电阻性负载。把电路板上的VF微调电位器W1顺时针旋至灵敏最高端,(调试过程发生逆变过压时,可以提供过压保护)。主控板上的DIP-1开关拨在ON位置,面板上的“给定”电位器逆时针旋至最小。

上电数秒钟后,把面板上的“给定”电位器顺时针慢慢地旋大,这时逆变桥会出现两种工作状态,一种是逆变桥起振,另一种是逆变桥直通。此时需要的是逆变桥直通,若逆变桥为起振状态,可在停电的状态下,调节中频电压互感器的相位,即把中频电压互感器20V绕组的输出线对调一下,就不会起振了。在缓慢旋大面板上“给定”电位器的操作中,应密切注意电流表的反应,若电流表的指示迅速增大,则应迅速把“给定”电位器逆时针旋下来,此时表明电流取样电路有问题,系统处于电流开环状态,应检查电流互感器是否接对,特别是5A/0.1A电流互感器的原、付边是否接反,0.1A绕组上的200Ω电阻是否接上。正常的表现是随着“给定”电位器的缓慢加大,电流表的指示也跟着增大,当停止旋转“给定”电位器时,电流表的指示能稳定的停在某一刻度上。

当出现直通现象时,继续把面板上的“给定”电位器顺时针旋大,使直流电流表指示到额定电流的20%左右,用示波器观察主控板上D21的正极波形,即电流取样波形,(示波器探头的地线夹在主控板的COM跳线上),正常的电流取样波形,应该是6个负极性波头的高低一致,若波头相差太大,说明电流互感器的同名端没有接对,必须改对,否则会影响电流调节器的正常工作。

继续把面板上的“给定”电位器顺时针旋到头,电流表的指示应接近额定值,逆时针调节主控制板上的W2电流反馈微调电位器,使直流电流表指示到额定输出电流,完成了额定电流的整定。

这样整流桥的调试就基本完成,可以进行逆变桥的调试。

需要指出的是,当平波电抗器的直流电阻较小时,在直通状态下作额定电流的整定,会出现直流电流振荡的现象,可在直流回路里串一点电阻加以解决。另外,水冷装置在作此项调试时,必须通水冷却。

当调试场地的电源供不出装置的额定电流时,额定电流的整定,可放在现场满负荷运行时进行。但是,应先在小电流的状态下,判定一下电流取样回路的工作是否正常。

2.3 逆变部分的调试

2.3.1 校准频率表(W5)

主控板上的DIP开关均拨在OFF位置,面板上的“给定”电位器逆时针旋至最小。把示

波器接在Q5或Q6的管壳上,测逆变触发脉冲的它激频率(它激频率可以通过W6来调节),调节W5微调电位器,使频率表的读数与示波器测得的相一致。

若恒功率中频电源用的专用中频频率表,则可免去此步调试。但还是推荐使用直流毫安表头(1mA)改制的频率表,如采用其它量程的电流表可改变板上R60(3.3K).这一方面是可以测得最高它激频率,另一方面是价格便宜。

2.3.3 起振逆变器(W6)

首先检查逆变晶闸管的门极线连接是否正确,逆变末级上的LED亮度是否正常,不亮则说明逆变末级的E和C接线端子接反了;再把主控板上的CON3-5对外的连线解掉,看熄灭的LED逆变末级是否处在逆变桥的对角线位置。

把主控板上的DIP开关均拨在OFF位置,把面板上的“给定”电位器逆时针旋到底,调节控制板上的W6微调电位器,使最高它激频率高于槽路谐振频率的1.2倍,W3、W4微调电位器旋在中间位置.把面板上的“给定”电位器顺时针稍微旋大,这时它激频率开始从高往底扫描(从频率表中可以看出),逆变桥进入工作状态,开始起振。若不起振,表现为它激信号反复作扫频动作,可调节中频电压互感器的相位,即把中频电压互感器20V绕组的输出线对调一下。

若把中频电压互感器20V绕组的输出线对调后,仍然起动不起来,此时应确认一下槽路的谐振频率是否正确,可以用电容/电感表测量一下电热电容器的电容量及感应器的电感量,计算出槽路的谐振频率,当槽路的谐振频率处在最高它激频率的0.6~0.9的范围内时,起动应该是很容易的。再着就是检查一下逆变晶闸管是否有损坏的。

2.3.3 整定逆变引前角(W3、W4)

逆变起振后,可做整定逆变引前角的工作,把DIP开关均打在关位置,用示波器观察电压互感器100V绕组的波形,调节主控板上W3微调电位器,使逆变换相引前角在22°左右,此时中频输出电压与直流电压的比为1.2左右(若换相重叠角较大,可适当增大此比例值),此步整定的是最小逆变引前角,一般希望它仅可能的小,当然,过小的逆变换相引前角会使逆变换相失败表现为中频电压生高时,会出现重复起动。

再把DIP-2开关打在ON位置,调节主控板上W4微调电位器,整定最大逆变换相引前角。根据不同的中频输出电压的要求,最大逆变换相引前角亦不同,如中频装置的三相输入电压为380V,额定中频输出电压为750V时,则要求最大逆变换相引前角在42°左右,此时,中频输出电压与直流电压的比为1.5。一般希望它仅可能的大些,这在系统输入电压偏低时,仍可保证中频输出电压到额定值。当系统输入电压偏高时,由于有电压调节器的作用,中频输出仍然不会出现过电压。

此项调试工作可在较低的中频输出电压下进行。注意,必须先调1.2倍关系,再调1.5倍关系,否则顺序反了,会出现互相牵扯的问题。有时由于电压表不准,给调试带来错误的结论,所以应以示波器测得的引前角为准。

调试中若出现逆变引前角过大的现象,在排除了槽路谐振频率过低的原因后,应检查逆

变晶闸管是否都工作了,当只有三只晶闸管工作时,就会出现逆变引前角过大的现象。

2.3.4 额定输出电压的整定(W1)

在轻负荷的情况下整定额定输出电压,把主控板上的DIP开关均拨在OFF位置,W1微调电位器均顺时针旋至最大。把面板上的“给定”电位器顺时针旋大,逆变桥工作。继续把面板上的“给定”电位器顺时针旋至最大,此时输出的中频电压接近额定值,逆时针调节W1微调电位器,使输出的中频电压达到额定值。

在这项调试中,可见到阻抗调节器起作用的现象,即直流电压不再上升,而中频输出电压却还能继续随“给定”电位器的旋大而上升。

在整定额定输出电压时,应在直流电流低于额定电流的条件下进行,否则会由于电流调节器的作用,使中频输出电压调不上去。

至此,6只微调电位器全部调完,调试告结束。

3问题

3.1 过压保护

控制电路上已经把过压保护电平固定在额定输出电压的1.2倍上,当进行额定电压整定时,过压保护就自动整定好了。若觉得1.2倍不合适,可改变控制板上的R28电阻值,增大R28,过压保护电平增高;反之减小。

3.2 过流保护

控制电路上已经把过流保护电平固定在额定直流电流的1.5倍,当进行额定电流的整定时,过流保护就自动整定好了。若觉得1.5倍不合适,可改变控制板上的R27电阻值,增大R27,过流保护电平增高;反之减小。

3.3 额定电流整定

当2.2.2步骤没有进行话,可在系统运行于重负荷下,逆时针调节控制板上的W2电流反馈微调电位器,使直流电流表达到额定值。这与一般的恒功率中频电源的电流整定是一样的。

3.4 它激频率

一定要使它激频率高于槽路可能的最大谐振频率,否则,系统由于它激频率的“拽着”而不能正常运行。它激频率高于槽路可能的最大谐振频率1.2倍是合适的。

3.5 恒功率输出

对熔炼负载来说,恒功率输出是很重要的,要想使恒功率区的范围大,就要使逆变引前角从最小变到最大的范围仅可能的大,同时负载阻抗的匹配也很重要。即使不是熔炼负荷,这样做也有利于提高整流的功率因数。

七.使用及维护

1.操作规程

1.1位于电源柜后边,按照标示接好电源线,零线.电源柜前面的输出线,将冷却水进出水管接

入感应圈及电源柜,水压在0.15~0.2MPa,并观察有无渗漏。

1.2将柜门上“功率调节”旋钮旋止零位(逆时针旋到底)。合电源柜后边的空气开关,合“主

回路合”按钮,然后再合“逆变启动”按钮,然后顺时针缓慢旋转给定电位器,使得电源柜前的几个表头均显示一定的数值,此时即告中频启动成功。如在此启动过程中,直流电流上升很快而中频电压无指示,说明启动失败,电源会自动重新启动。

1.3当上述过程结束后,调节给定旋钮至所需电压、电流及功率值,系统进入稳定工作状态。

2.停机

停机时,先将调节旋钮调到零位,然后先分断“停机复位”按钮,然后再分断“主回路分”

按钮。最后分断电源柜内的空气开关.

3. 维护保养

3.1 设备每月检查一次,清除机内的尘土灰垢,检查紧固件的松动情况。

3.2 如设备暂时不用,应采取干燥措施,加强通风,以免受潮。

3.3 控制板上的ISPLSI-1016可编程器件是一种氧化物半导体器件,应特别注意。器件的引

脚间严禁短路,也不能用万用表直接测量器件的引脚,否则将损坏该器件。

3.4 用户单位应配有专门操作维修人员,其它人员不得乱动,以防发生人为故障或扩大故障范围。

敬告用户:

由于技术的不断进步,本公司保留对该系列产品技术改型的最终解释权。

建德巨龙电炉有限公司

二○○八年二月

半导体激光器自动功率控制电路设计_张莹

图3 电容充放电模块电路图图1 激光器自动功率控制系统原理图图2 具有关断功能的阴极共地型激光 器电流源 2014.1 57 https://www.360docs.net/doc/9b8057714.html,

PIN探测电流变大,从而导致反馈回路输出电压升高,直至高过比较器正端电压V SET后,比较器输出由低电平跳变为高电平,接着执行上述过程的反过程:电容放电、激光器功率减小,由此循环往复,最终稳定激光器发光功率。 恒流源 半导体激光器的可靠稳定工作需为伏特,即当输入电压由0V变化到 2.5V时,可实现激光器电流由0mA到 250mA的线性变化。 电容充放电模块 电容充放电模块是形成反馈回 路、实现自动功率控制至关重要的一 部分。稳定激光器功率是通过微调流 经激光器的电流实现的,这种微调功 能的实现是需要某种自动起伏变化的 了Q5通路,通路上的1k电阻可在电路 停止工作后迅速对大电容放电。 为了对电容充放电过程进行定量 分析,可将充放电电路等效成如图4 所示的电路模型: 假设在t=0时刻,U C=0,根据电 路理论,易得电容电压U C随时间t的 变化关系式为: (1exp(/)) C U E t RC =??(2) 图4 电容充电与放电等效电路模型图图5 电容电压充放电过程仿真波形图

带有PIN或PD光电探测器用于探测光强,光电探测器能够得到与检测光强成一定比例关系的电流信号,通过对该电流信号进行电压转换、放大处理即可得到实用的监测信号,这一过程可以体现于图6。 MAX4008是一款高精度电流检测芯片,在光纤应用中专门用于检测PD或PIN光电探测器的电流,它的REF引脚是参考电流输入引脚,OUT 引脚是检测电压输出引脚,其电压值考电流值对应的输出电压范围是 0.25mV~2.5V。 0.25mV~2.5V的电压值需要变换 放大到所需要的电压范围,这通过由 运算放大器A4组成的同相比例运算电 路实现,如图6所示,其比例系数为 1+R f/R。注意到一点,MAX4008的输 出电阻为10kΩ,而根据PIN、光强度 等的不同,MAX4008的输出电压可能 会低至几毫伏,为了防止输出电压在 下一级输入会有衰减,在MAX4008与 同相比例运算电路之间加一级电压跟 实验结果与分析 光电探测器选用S I E M E N S SRD00111Z硅PIN光电探测器来模拟 激光器集成光电探测器,该光电探 测器最高功率谱密度集中在800nm; 作为实验,选用红色发光二极管 (LED)来模拟激光器。DFB蝶形激 光器工作电流一般达到70mA,远超 过普通发光二极管的正常工作电流, 因此用20只发光二极管并联构成一只 图6 PIN光电探测器构成的固定增益反馈回路图7 根据采样点拟合得到电流源输入电 压与MAX4008输出电压关系曲线图 图9 连续6小时采样MAX4008输出电压 图8 电压比较器输出波形

中频炉MPU-11使用说明 2

MPU-11恒功率中频电源控制板随着中频设备配套系统的不断发展国家对电网污染的要求不断提高,我公司根椐现实情况推出MPU-11型中频电源控制板。MPU-11是一种新型控制板,此板采用了高性能:高密度:超大规模专用MPU (数字式集成电路控制系统)集成电路并集众板之所长。 MPU-11中频电源控制板可应用于各种金属的熔炼、保温、烧结、透热、金属液净化以及晶体生长等各种感应加热领域并具有以下特点具有积木式运行方式:独特的联机功能(6脉12脉24脉48脉……等,每台设备之间只需连接三根控制线)可轻松实现多台设备联机以达到更大功率输出和有特别要求的设备使用。 配合相应的供电电源及供电方式:可有效的去除因设备运行所产生的高次谐波,用户无须增加消谐设备(针对用可控硅整流的设备中6脉最低谐波次为5次,12脉最低谐波次为11次,24脉最低谐波次为23次)可达到国标GB/T14549-93的用电要求。 设备在联机运行时如果其中一台有问题此设备可在不停机的情况下自行退出或人为退出而不会影响到其它设备正常运行,这样可以减少或消除因其中一台设备有问题而影响其他相关设备历史连锁停机造成的损失。不停机自动退出功能尤其对配套如连铸连轧等大型设备有很大意义。 完全独立的控制系统:再多设备联机都可以轻松实现安装调式检修。也不会因为自动均流造成直流电压升不满的现像 先进的起动方式(扫频式零起动)可保证设备起动成功率为100%。独特的保护方式(脉冲封锁和拉逆变同时进行)可保证设备可靠运行 完善的抗干扰设计:可以有效减小或消除电压波动干扰、进线谐波干扰、换流尖峰干扰、布线干扰、等各种电磁干扰。 注:MPU-11调试与其它六脉控制板方法一样。如需要联机使用也是分别调好每台设备然后联机进行电流平衡整定。

中频炉mpu-11使用说明

MPU-11恒功率中频电源控制板 随着中频设备配套系统的不断发展国家对电网污染的要求不断提高,我公司根椐现实情况推出MPU-11型中频电源控制板。MPU-11是一种新型控制板,此板采用了高性能:高密度:超大规模专用MPU (数字式集成电路控制系统)集成电路并集众板之所长。 MPU-11中频电源控制板可应用于各种金属的熔炼、保温、烧结、透热、金属液净化以及晶体生长等各种感应加热领域并具有以下特点具有积木式运行方式:独特的联机功能(6脉 12脉 24脉 48脉……等,每台设备之间只需连接三根控制线)可轻松实现多台设备联机以达到更大功率输出和有特别要求的设备使用。 配合相应的供电电源及供电方式:可有效的去除因设备运行所产生的高次谐波,用户无须增加消谐设备(针对用可控硅整流的设备中6脉最低谐波次为5次,12脉最低谐波次为11次,24脉最低谐波次为23次)可达到国标GB/T14549-93的用电要求。 设备在联机运行时如果其中一台有问题此设备可在不停机的情况下自行退出或人为退出而不会影响到其它设备正常运行,这样可以减少或消除因其中一台设备有问题而影响其他相关设备历史连锁停机造成的损失。不停机自动退出功能尤其对配套如连铸连轧等大型设备有很大意义。 完全独立的控制系统:再多设备联机都可以轻松实现安装调式检修。也不会因为自动均流造成直流电压升不满的现像 先进的起动方式(扫频式零起动)可保证设备起动成功率为100%。独特的保护方式(脉冲封锁和拉逆变同时进行)可保证设备可靠运行 完善的抗干扰设计:可以有效减小或消除电压波动干扰、进线谐波干扰、换流尖峰干扰、布线干扰、等各种电磁干扰。 注:MPU-11调试与其它六脉控制板方法一样。如需要联机使用也是分别调好每台设备然后联机进行电流平衡整定。 MPU-11调试简介 MPU-11是新开发的新型恒功率中频炉控制板。此板的特点前面我们以介绍,现在我们主要介绍的调试及联机(12脉24脉等)情况下的应用。因为MPU-11设计是以六脉为一单元(12脉为2个单元 24脉为4个单元,更多脉可以此类推),因此板带有先进联机功和自动均流功能,所以我们在调试(或维修)12脉或24脉等更多脉时就以6脉为一单元调试或维修。和正常调6脉设备一样,先把每台6脉调好燃后再联机运行即可,联机运行时尽可能把每台设备的参数调一直,如果出现不均流的情况在排除控制板以外的原因后调整主控板上的W1

恒功率中频电源

恒功率中频电源 使用说明书 感谢您选用建德巨龙电炉有限公司生产的KGPS系列恒功率中频电源。为了更好地使用和维护本装置,请在使用前仔细阅读本说明书。 KGPS系列恒功率中频电源是一种将工频50Hz交流电转变成2508000Hz的中频电源装置,可用于金属的熔炼、保温、透热和淬火,单晶硅提纯,晶体生长等需要感应加热的场合作为中频供电的电源设备。 一.概述 1.KGPS系列晶闸管恒功率恒功率中频电源是我公司最新开发研制的第六代数字化恒功率中频电源,与其它类型的恒功率中频电源相比较,其优点主要表现在以下几个方面: 2.由于控制电路采用数字化结构,具有相序自适应功能,可自动实现与电网的同步,使得电源的三相交流输入可不区分相序。结构简单,控制电路的外围器件及连线大大减少,整个系统的可靠性也有较大提高。 3.逆变电路采用扫频式零压启动方式,并设有自动重复启动电路,只要负载的品质因数Q≥ 2.5,启动成功率便可达到100%,无需任何附加的启动电路。信号取样只需中频电压信号, 省去了中频电流互感器,因此,电源与负载回路的连接无需区分极性。 4.电源具有完善的保护功能,主电路与控制电路的合闸、分闸次序以及使用人员的误操作等,均不会对系统产生任何不良影响。具体功能有:缺相(OP)、过电压(OV)、过电流(OC)、水压低(WPL)、控制电源欠压(LV)等。 二.使用条件 1.海拔不超过2000米。 2.环境温度-5℃~+35℃。 3.相对湿度不超过90%(25℃时)。 4.没有导电和易燃、易爆尘埃,没有腐蚀金属和损坏绝缘气体的场合。 5.无剧烈振动和冲击的室内。 6.电网电压波动不大于±10%。 三.技术参数 参数 输入电压输入电流中频电压中频功率中频频率稳压精度 型号 KGPF-15 3φ-380V 25A 650V 15KW 2500Hz-8000Hz 0.5% KGPF-25 3φ-380V 40A 650V 25KW 2500Hz-8000Hz 0.5% KGPF-35 3φ-380V 56A 650V 35KW 1000Hz-8000Hz 0.5% KGPF-50 3φ-380V 80A 650V 50KW 1000Hz-8000Hz 0.5%

半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验 进行脉冲驱动电路的设计主要是由于,半导体激光器在脉冲驱动电路驱动时,其结温会在半导体激光器不工作的时刻进行散热,因此半导体激光器在脉冲电源驱动下,对半导体激光器的散热要求不高。在设计半导体激光器的脉冲驱动电源时,也是先仿真后设计的思想,在电路选型上也是力求简单。 1 脉冲电源的仿真 在进行脉冲电源仿真时,同样选用的NI公司的这款Multisim10这款电路仿真软件。选用的器件是IRF530,信号源是5V,占款比为50%,频率为50Hz的方波信号源;用电阻1R代替半导体激光器、且将1R的阻值设置为1Ω,用Multisim10的自带示波器对电阻1R两端的电信号进行测量。 脉冲电源仿真 在仿真电路设计的过程中,选用了功率管IRF530作为主开关,对电阻1R上的电压进行采样,信号源选取的是输出5V方波的、频率是50Hz、占款比是50%的信号源。在进行仿真前、将示波器的A通道接在电阻1R的两端,对整个电路的电流信号进行监测。将示波器的B通道接在信号源的两端,对信号源的输出

电信号进行采样,这样通过A、B两通道的电信号进行对比,看脉冲驱动电路能否满设计要求。 根据仿真示波器监测到的数据显示,电阻1R两端的电信号完全是跟信号源的电信号同步变化的,而且波形完全一致。仿真结果显示电阻1R的峰值电压是为1.145V,说明电路的峰值电流也是1.145A。 在仿真过程中,通过不断的调整信号源的特性,发现电阻1R两端的电压值的大小只与信号源的电压值大小有关系,而与信号源的频率和占空比关系不大,这说明此脉冲仿真电路输出电流值的大小只与信号源输出的电压值大小有关。出现这样的结果主要是选取的信号源的频率过低,功率管IRF530完全可以做到对电路的开断控制。 以上仿真结果显示,当信号源的峰值电压是5V的时候,所对应的流过IRF530的峰值电流是1.145A。根据IRF530的输出特性,通过调节信号源的加载在IRF530GS V的电压就可以改变功率管IRF530的输出电流值,从而改变整个脉冲电源输出电流的值。 2 脉冲电源的设计 从上面的电路仿真可以看出,脉冲电源的设计主要是脉冲信号源的设计、电路的主体部分还是用IRF530来实现的,通过控制信号源的加载在GS V的电压来控制流通IRF530的电流。要调整输出电流信号的频率得通过信号源进行控制。 图 3-25 基于单片机脉冲电源

KGPS1控制板说明书

KGPS-1型恒功率晶闸管中频电源控制板 使用说明书 一、控制电路原理 整个控制电路除逆变末级触发,做成一块印刷电路板结构,从功能上分为,整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见后附原理图。 (1)整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字触发,具有可靠性高、精度高、调试容易等优点。数字触发器特征是用(时钟脉冲)计数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉冲频率受a移相控制电压Vk的控制。Vk降低,则振荡频率升高,而计数器的计量是固定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短,a角小,反之a角大。计数器开始计数时刻同样受同步倍号控制。在a=0时,开始计数。现假设在某Vk值时,根据压控振荡器的控制压力与频率间的关系确定输出振荡频率为25KHZ,则在计数到256个脉冲所需的时间为(1/50000)×256=10.2(mS),相当于约180度电角度,该触发器的计数清零脉冲在同步电压(线电压)的30度处,这相当于三相全控桥式整流电路的β=30度位置,从清零脉冲起,延时10.2mS产生的输出触发脉冲,也即接近于三相桥式整流电路某一相晶闸管a=150度位置,如需要得到准确的a=150度触发脉冲,可以略微调节一下电位器W4。显然,有三套相同的触发电路,而压控振荡器和Uk控制电压为公用,这样在一个周期产生6个相位差60度的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL或CMOS数字集成电路,则有很强的抗干扰能力。 IC16AA及其周围电路构成电压———频率转换器,其输出信号的周期随调节器的输出电压Vk而线性变化,这里W4微调电位器是最低输出频率调节相当于模拟电路锯齿波幅调节。 三相同步信号直接由晶闸管的门极引线K4、K6、K2从主回路的三相接线上取得,或由同步变压器A、B、C、N输出端接入。由R23、C1、R63、C40、R102、C63进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比略小于50%的矩形波同步信号(如IC2C、IC2D)的输出。 IC3、IC8、IC12(14536计数器)构成三路数字延时器。三相同步信号对计数器进行复位后,对电压———频率转换器的输出脉冲每计数256个脉冲便输出一个延时脉冲,因计数脉冲的频率是受Vk 控制的,换句话说,VK控制了延时脉冲。 计数器输出的脉冲经隔离、微分后,变成窄脉冲,送到后级的NE556,它既有同步分频器功能,亦有定输出脉宽的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶体管放大,驱动脉冲变压器输出。具体的时序图见附图。 (2)调节器工作原理 调节器部分共设有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角调节器。

激光器驱动电流源电路设计方案

激光器驱动电流源电路设计方案 本文设计了一种数控直流电流源的方案,给出了硬件组成和软件流程及源程序。以STC89C52单片机为核心控制电路,利用12位D/A模块产生稳定的控制电压,12位A/D模块完成电流测量。输出电流范围为20~2000mA,具有“+”“-”步进调整功能,步进为1mA,纹波电流小,LCD同时显示预置电流值和实测电流值,便于操作和进行误差分析。 基于以上分析,选择方案二,利用STC89C52单片机将电流步进值或设定值通过换算由D/A转换,驱动恒流源电路实现电流输出。输出电流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。在器件的选取中,D/A转换器选用12位优质D/A转换芯片 TLV5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器选用高精度12数转换芯片ADS7816。. 恒流源模块设计方案 方案一:由三端可调式集成稳压器构成的恒流源。其典型恒流源电路图如图1.2.1所示。一旦稳压器选定,则U0 是定值。若R固定不变,则I0不变,因此可获得恒流输出。若改变R值,可使输出 I0改变。因此将R设为数控电位器,则输出电流可以以某个步长进行改变。此电路结构简单,调试方便,价格便宜,但是精密的大功率数控电位器难购买。 图1.2.1 三端集成稳压器构成的恒流源框图 方案二:由数控稳压器构成的恒流源方案一是在U0不变的情况下,通过改变R的数值获得输出电流的变化。如果固定R不变,若能改变U0的数值,同样也可以构成恒流源,也就是说将上图中的三端可调式集成稳压源改为数控电压源,其工作原理和上图类似。此方案原理清楚,若赛前培训过数控电压源的设计的话,知识、器件有储备,方案容易实现。但是,由1.2.2图可知,数控稳压源的地是浮地,与系统不共地线,对于系统而言,地线不便处理。

KGPS六型中频电源控制板

KGPS六型中频电源控制板 恒功率中频电源控制板是我们积多年从事中频电源工作而开发的第六代中频电源控制板。 1.控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为整流触发部分、调节器部分、逆变部分、起动演算部分。 (1) 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉冲频率受α 移相控制电压Vk的控制,Vk降低,则振荡频率升高,而计数器的计数量是固定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短,α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0度时开始计数。现假设在某Vk值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为25kHz,则在计数到256个脉冲所需的时间为 (1/25000)×256=10.2(mS),相当于约180°电角度,该触发器的计数清零脉冲在同步电压(线电压)的30度处,这相当于三相全控桥式整流电路的β=30度位置,从清零脉冲起,延时10.2mS产生的输出触发脉冲,也即接近于三相桥式整流电路某一相晶闸管α=150度位置,如果需要得到准确的α=150度触发脉冲,可以稍微调节一下电位器W4。显然,有三套相同的触发电路,而压控振荡器和Vk控制电压为公用,这样在一个周期中产生6个相位差60度的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL或CMOS数字集成电路,则可以有很强的抗干扰能力。 IC16A及其周围电路构成电压——频率转换器,其输出信号的周期随调节器的输出电压Vk而线性变化。这里W4微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。 三相同步信号直接由晶闸管的门极引线K4、K6,K2从主回路的三相进线取得,由R23,C1,R63,C40,R102,C63进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比略小于50%的矩形波同步信号(如IC2C、IC2D)的输出。 IC3、IC8、IC12(14536计数器)构成三路数字延时器。三相同步信号对计数器进行复位后,对电压——频率转换器的输出脉冲每计数256个脉冲便输出一个延时脉冲,因计数脉冲的频率是受Vk控制的,换句话说,Vk控制了延时脉冲。 计数器输出的脉冲经隔离、微分后,变成窄脉冲,送到后级的LM556,它既有同步分频器功能,亦有定输出脉宽的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶体管放大,驱动脉冲变压器输出。具体的时序图见附图。 (2) 调节器工作原理 调节器部分共设有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角调节器。

型恒功率晶闸管中频电源控制板使用说明书样本

MPU-6型恒功率晶闸管中频电源控制板 使用说明书 买板子电话: 技术论坛: 大芯片六脉波1、概述 MPU-6恒功率晶闸管中频电源控制板, 是MPU-2基础上开发的新型控制触发板。主要由电源、调节器、移相控制电路、保护电路、启动演算电路、逆变频率跟踪、逆变脉冲形成、脉冲放大及脉冲变压器组成。其核心部件采用了高性能、高密度、超大规模专用MPU 集成电路, 使其电路除调节器外, 其余均实现数字化, 整流触发器部分不需要任何调整, 而且可靠性高、脉冲对称度高、抗干扰能力强、反应速度快等特点, 又由于有相序自适应电路, 无需同步变压器, 因此, 现场调试中免去了调相序、对同步的工作, 仅需把KP晶闸管的门极线接入控制板相应的接线端上, 整流部分便能投入运行。 逆变采用扫频式零压软启动方式, 启动性能优于普通的零压软启动电路。并设有自动重复启动电路, 可防止中频电源偶然的启动失败, 使启动成功率达到100%。频率跟踪电路采用的是平均值取样方案, 提高了逆变的抗干扰能力, 而且仅需取样中频电压信号, 而无需槽路电容器的电流信号, 免去了外接中频电流互感器、确定取样电流相位的烦恼。因此, 在调试和使用现场中, 也不会由于中频输出线或取样电流互感器的相位接反, 而产生中频电源不能启动的问题。 逆变电路中还加有逆变角调节电路, 能够自动调节负载阻抗的匹配, 达到恒功率输出, 能够制成”快速熔炼”的中频电源, 达到节时、节电、提高网侧功率因数的目的( 此功能也可被送掉) 。逆变部分的主要电路均在MPU大规模集成电路的内部, 亦是数字电路。 MPU-6控制板全板仅有8只集成电路、 4只晶体管、 6只微调电位器、 33个引出端子, 安装十分方便, 适用于各种晶闸管并联谐振中频电源。 2、产品名称 产品名称: MPU-6恒功率晶闸管中频电源控制板 3、适用装置

半导体激光器驱动电路设计_图文(精)

第9卷第21期 2009年11月1671 1819(200921 6532 04 科学技术与工程 Science T echno logy and Eng i neering V o l 9 N o 21 N ov .2009 2009 Sci T ech Engng 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN 242; 文献标志码 A

2009年7月14日收到 作者简介:何成林(1982 ,男,湖北利川人,助理工程师,硕士,研究方向:激光引信技术,E m ai:l chengli nhe @163.co m 。 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲

中频电炉2.5吨主板说明书讲课讲稿

中频电炉2.5吨主板 说明书

MPU-3型12脉波恒功率晶闸管中频电源控制板 说明书 小芯片十二脉波1.概述 a.MPU-3型12脉波晶闸管中频电源控制板是一种新型控制触发板。主要由电源、调节器、移相控制、保护电路、相序自适应电路、启动演算电路、逆变频率跟踪、逆变脉冲形成、脉冲放大及脉冲变压器组成。其核心部件采用的是高性能、高密度、大规模专用MPU-3集成电路,与我公司开发的高性能软件相结合,从而制成智能化控制芯片---MPU,使该板的控制电电路除调节器外,其余均实现数字化,整流触发器部分不需要任何调整,而且具有可靠性高、脉冲对称度高、抗干扰能力强、反应速度快等特点,又由于有相序自适应电路,无需同步变压器,所以现场调试中免去了调相序、对同步的工作,仅需把两个三相中各自6只晶闸管的门阴极线接入控制板相应的接线端上,整流部分便能投入运行。 b.逆变采用扫频式零压软启动方式,启动性能优于普通的零压软启动电路,并设有自动重复启动电路,可防止中频电源偶尔的启动失败,使启动成功率达到100%。频率跟踪电路采用的是平均值取样方案,提高了逆变的抗干扰能力,而且仅需取样中频电压信号,而无需槽路电容器的电流信号,免去了外接中频电流互感器、确定取样电流相位的烦恼。因此,在调试和使用现场中,也不会由于中频输出线或取样电流互感器的相位接反,而产生中频电源不能启动的问题。 c.逆变电路中还加有逆变角调节电路,可以自动调节负载阻抗的匹配,达到恒功率输出,可以制成“快速熔炼”的中频电源, 达到省时、节电、提高网侧功率因数的目的(此功能也可被关掉)。逆变部分的主要电路均在MPU大规模集成电路的内部,亦是数字电路。 d.MPU-3型12脉波晶闸管中频电源控制板全板仅有12只集成电路、7只晶体管、7只微调电位器、47个引出端子,安装十分方便。电路的集成化程度很高,故障率极低。适用于各种晶闸管并联谐振中频电源。 e.MPU-3型12脉波晶闸管中频电源控制板在设计中征求了多方面的意见,采用了有效措施,使得调试极为方便。在大多数参数的设定都由电路内部自动设定,需要用户调整的只有6只电位器的参数设定,所以具有极强的通用性和互换性。 f.MPU-3型12脉波晶闸管中频电源控制板基本上是两套单桥控制电路的合成,核心部分是增加了电流平衡电路,当由于负载不平衡或进线电压不同造成两桥电流不平衡时,它可以自动调节两桥的电流,使之趋向一致。 g.MPU-3型12脉波恒功率控制板、主回路采用双桥整流,可以大大减少电源运行引起的电网谐波,提高功率因数和运行效率。 2.正常使用条件 2.1 海拔不超过2000米。 2.2 环境温度不低于-10℃,不高于+40℃。 2.3 空气最大相对湿度不超过90%(20℃±5℃时) 2.4 运行地点无导电及爆炸性尘埃,无腐蚀金属和破坏绝缘的气体或蒸汽。 2.5 无剧烈振动和冲击。 3.主要技术参数 3.1 主电路进线额定电压:100V~660V(50Hz)(注意R3、R7、R11的匹配); 3.2 控制供电电源:单相17V/2A; 3.3 中频电压反馈信号:AC 12V/15mA; 3.4 电流反馈信号:AC 12V/5mA三相输入;

中频电源使用说明书(KGPS)

恒功率中频电源使用说明书 一. 概述 1.KGPS系列晶闸管恒功率恒功率中频电源是我厂最新开发研制的第六代数字化恒功率中频电源,与其它类型的恒功率中频电源相比较,其优点主要表现在以下几个方面: 2.由于控制电路采用数字化结构,具有相序自适应功能,可自动实现与电网的同步,使得电源的三相交流输入可不区分相序。结构简单,控制电路的外围器件及连线大大减少,整个系统的可靠性也有较大提高。3.逆变电路采用扫频式零压启动方式,并设有自动重复启动电路,只要负载的品质因数Q≥2.5,启动成功率便可达到100%,无需任何附加的启动电路。信号取样只需中频电压信号,省去了中频电流互感器,因此,电源与负载回路的连接无需区分极性。 4.电源具有完善的保护功能,主电路与控制电路的合闸、分闸次序以及使用人员的误操作等,均不会对系统产生任何不良影响。具体功能有:缺相(OP)、过电压(OV)、过电流(OC)、水压低(WPL)、控制电源欠压(LV)等。 二.使用条件 1.海拔不超过2000米。 2.环境温度-5℃~+35℃。 3.相对湿度不超过90%(25℃时)。 4.没有导电和易燃、易爆尘埃,没有腐蚀金属和损坏绝缘气体的场合。 5.无剧烈振动和冲击的室内。 6.电网电压波动不大于±10%。

四.系统原理图 参见附图 五.外形尺寸(供参考) 1.功率小于等于50KW 450(宽)×800(厚)×1200(高) 2.功率大于,等于100KW 1400(宽)×815(厚)×1970(高) 六.原理及调试步骤 1.控制电路原理 整个控制电路除逆变末级触发单元外,做成一块印刷电路板结构。功能上包括电源、整流触发、调节器、逆变、启动演算等,除调节器为模拟运算电路外,其余均为数字电路。 组成该控制板的核心集成电路为IC6,型号为ASIC-330,它是一块经编程处理的专用数字集成电路,有3路时钟输入口,31路输入/输出口,内部功能包括整流移相触发、相序自适应、逆变触发、逆变引前角锁定、逆变重复起动、过流保护、过压保护、缺相保护、水压低保护、控制板欠压保护,另外还有三个0.2秒钟的定时器。 1.1 整流触发工作原理 这部分电路包括三相同步、相序自适应、压控时钟、数字触发、末级驱动等电路。三相同步信号直接由晶闸管的门极引线K4、K6、K2从主回路的三相进线上取得,由R3、C1、R7、C2、R11、C3进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比略小于50%的矩形波同步信号(低电平有效),输入到IC6的5P~10P。 在IC6的内部有相序自适应电路,确保了恒功率中频电源的三相交流输入可以不分相序。 数字触发的特征是用计(时钟脉冲)数的办法来实现移相,6路移相触发脉冲均由IC6产生。IC2C、IC2D 及其周围电路组成定输出脉宽电路。6路移相触发脉冲经IC5晶体管阵列放大后,驱动脉冲变压器输出。值得一提的是,脉冲变压器采用的是反激工作方式。 1.2 调节器工作原理 调节器部分共设有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角调节器。

1KGP恒功率中频电源1

KGP恒功率中频电源 1.控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为整流触发部分、调节器部分、逆变部分、起动演算部分。 (1) 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉冲频率受α移相控制电压Vk 的控制,Vk降低,则振荡频率升高,而计数器的计数量是固定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短,α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0度时开始计数。现假设在某Vk值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为25kHz,则在计数到256个脉冲所需的时间为 (1/25000)×256=10.2(mS),相当于约180°电角度,该触发器的计数清零脉冲在同步电压(线电压)的30度处,这相当于三相全控桥式整流电路的β=30度位置,从清零脉冲起,延时10.2mS 产生的输出触发脉冲,也即接近于三相桥式整流电路某一相晶闸管α=150度位置,如果需要得到准确的α=150度触发脉冲,可以稍微调节一下电位器W4。显然,有三套相同的触发电路,而压控振荡器和Vk控制电压为公用,这样在一个周期中产生6个相位差60度的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL或CMOS数字集成电路,则可以有很强的抗干扰能力。 IC16A及其周围电路构成电压——频率转换器,其输出信号的周期随调节器的输出电压Vk 而线性变化。这里W4微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。 三相同步信号直接由晶闸管的门极引线K4、K6,K2从主回路的三相进线取得,由R23,C1,R63,C40,R102,C63进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比略小于50%的矩形波同步信号(如IC2C、IC2D)的输出。 IC3、IC8、IC12(14536计数器)构成三路数字延时器。三相同步信号对计数器进行复位后,对电压——频率转换器的输出脉冲每计数256个脉冲便输出一个延时脉冲,因计数脉冲的频率是受Vk控制的,换句话说,Vk控制了延时脉冲。 计数器输出的脉冲经隔离、微分后,变成窄脉冲,送到后级的LM556,它既有同步分频器功能,亦有定输出脉宽的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶体管放大,驱动脉冲变压器输出。具体的时序图见附图。

SCR3200系列恒功率中频电源控制板中英文说明

SCR3200系列恒功率中频电源控制板中英文说明 SCR3200系列中频电源控制板是最新推出的结合787和785电路高度集成化和恒功率控制的优点而生产的最新一代产品,控制板上带整流和逆变脉冲压器。 SCR3200Series intermediate frequency power supply control panel is the newest one.And it unite the excellence of high integration and permanent power control of787&785circuit.The control panel has commutate and inverter pulse. 1.控制电路原理The elements of control circuit 整个控制电路除末级电路部分外,做成一块印刷电路板结构,从功能上分为整流触发部分、调节器部分、逆变部分、启动演示部分。详细电路见 《SCR3200中频电源控制板电路原理图》。 Whole control circuit(except the last stage circuit part),can make into a piece of PCB construction.It can classify by the function:commutate spring part,adjustor part,inverter part, start-up operate part.Please see the detail circuit as. 1.1控制板接线说明:The elucidation of connection 控制板采用两组15-17V交流电源,分别接于18VAC接线端子上。 A、B、C分别为A相同步,B相同步,C相同步接线,分别直接接于三相工频电上。 The control panel has2groups AC power supply of15-17V.Each of them is connect with the18VAC terminal separate.The meaning of A、B、C:A phase synchronous,B phase synchronous,B phase synchronous connection.

激光器设计原理

引言 光纤传感器自20世纪70年代以来,以其具有的灵敏度高、耐腐蚀、抗电磁干扰能力强、安全可靠等特点取得了飞速的发展。同时,这些特性也使它可以实现某些特殊条件下的测量工作,比起常规检测技术具有诸多优势,是传感技术发展的一个主导方向。 作为光纤传感器中关键的光学元件之一的光源,其稳定度直接影响着光纤传感器的准确度。本文所涉及的光纤传感器采用的是半导体激光器光源,半导体激光器具有单色性好、方向性好、体积小、光功率利用率高等优点,但是,光功率输出受外界环境变化的影响较大。因此,本文针对半导体激光光源的工作原理和特性,设计了一种简单可行的自动功率控制(APC)驱动电路,通过背向监测光电流形成反馈,实现恒功率控制。并且,引入了慢启动电路,防止电源电压的干扰,使激光器不会受到每次开启电源时产生的过流冲击,延长了激光器的使用寿命。经实验验证,该电路解决了激光器在使用中输出功率不稳定的问题,其稳定度优于0.5%,达到了较好的稳流效果。 1 光源的工作原理和特性 目前,实际应用的光源有表面光发射二极管(LED)、激光二极管(LD)、超辐射二极管(SLD)、超荧光光源(SFS)等。随着光纤传感技术的迅速发展,体积小、质量轻、功耗小、容易与光纤耦合的LD等半导体光源应用越来越广泛。本文主要研究半导体LD的驱动设计。 1.1 LD发光机理分析 LD的基本结构为:垂直于PN结面的一对平行平面构成法布里-珀罗谐振腔,它们可以是半导体晶体的解理面,也可以是经过抛光的平面。其余两侧面则相对粗糙,用以消除主方向外其他方向的激光作用。当半导体的PN结加有正向

电压时,会削弱PN结势垒,迫使电子从N区经PN结注入P区,空穴从P区经过PN结注入N区,这些注入PN结附近的非平衡电子和空穴将会发生复合,从而发射出波长为λ的光子,其公式 λ=hc/Eg, (1) 式中 h为普朗克常数;c为光速;Eg为半导体的禁带宽度。 如果注入电流足够大,则会形成和热平衡状态相反的载流子分布,即粒子数反转。当有源层内的载流子在大量反转情况下,少量自发辐射产生的光子由于谐振腔两端面往复反射而产生感应辐射,造成选频谐振正反馈,或者说对某一频率具有增益。当增益大于吸收损耗时,就可从PN结发出方向性好、相干性强、亮度高、频带窄的激光。LD除了具备一般激光的相干性好、方向性强、发散角小、能量高度集中外,还具有光电转换效率高、输出功率大、体积小、重量轻、结构简单、抗震性强等特点。 1.2 LD输出特性 图1是一种典型的半导体激光器在不同温度下的输出功率与正向驱动电流的关系曲线。为了便于看清楚,图中底部的近似直线部分有意抬高了一些。由图1中可以看出:当驱动电流低于阈值时,激光器只能发射出荧光,只有当驱动电流大于激光器的阈值电流时,激光器才能正常工作发出激光,因此,要使LD发射激光,就要供给LD略大于阈值电流的工作电流。而且,LD的阈值电流受温度的影响,温度越高,相应的阈值电流越大。在某一温度下,当驱动电流低于阈值电流时,输出光功率近似为零;当驱动电流高于阈值时,输出激光,光输出功率随着驱动电流的增大而迅速增加,并近似呈线性上升。

MPU3型12脉波恒功率晶闸管中频电源控制板14

MPU-3型12脉波恒功率晶闸管中频电源控制板 使用说明书 小芯片十二脉波1.概述 a.MPU-3型12脉波晶闸管中频电源控制板是一种新型控制触发板。主要由电源、调节器、移相控制、保护电路、相序自适应电路、启动演算电路、逆变频率跟踪、逆变脉冲形成、脉冲放大及脉冲变压器组成。其核心部件采用的是高性能、高密度、大规模专用MPU-3集成电路,与我公司开发的高性能软件相结合,从而制成智能化控制芯片---MPU,使该板的控制电电路除调节器外,其余均实现数字化,整流触发器部分不需要任何调整,而且具有可靠性高、脉冲对称度高、抗干扰能力强、反应速度快等特点,又由于有相序自适应电路,无需同步变压器,所以现场调试中免去了调相序、对同步的工作,仅需把两个三相中各自6只晶闸管的门阴极线接入控制板相应的接线端上,整流部分便能投入运行。 b.逆变采用扫频式零压软启动方式,启动性能优于普通的零压软启动电路,并设有自动重复启动电路,可防止中频电源偶尔的启动失败,使启动成功率达到100%。频率跟踪电路采用的是平均值取样方案,提高了逆变的抗干扰能力,而且仅需取样中频电压信号,而无需槽路电容器的电流信号,免去了外接中频电流互感器、确定取样电流相位的烦恼。因此,在调试和使用现场中,也不会由于中频输出线或取样电流互感器的相位接反,而产生中频电源不能启动的问题。 c.逆变电路中还加有逆变角调节电路,可以自动调节负载阻抗的匹配,达到恒功率输出,可以制成“快速熔炼”的中频电源, 达到省时、节电、提高网侧功率因数的目的(此功能也可被关掉)。逆变部分的主要电路均在MPU大规模集成电路的内部,亦是数字电路。 d.MPU-3型12脉波晶闸管中频电源控制板全板仅有12只集成电路、7只晶体管、7只微调电位器、47个引出端子,安装十分方便。电路的集成化程度很高,故障率极低。适用于各种晶闸管并联谐振中频电源。 e.MPU-3型12脉波晶闸管中频电源控制板在设计中征求了多方面的意见,采用了有效措施,使得调试极为方便。在大多数参数的设定都由电路内部自动设定,需要用户调整的只有6只电位器的参数设定,所以具有极强的通用性和互换性。 f.MPU-3型12脉波晶闸管中频电源控制板基本上是两套单桥控制电路的合成,核心部分是增加了电流平衡电路,当由于负载不平衡或进线电压不同造成两桥电流不平衡时,它可以自动调节两桥的电流,使之趋向一致。 g.MPU-3型12脉波恒功率控制板、主回路采用双桥整流,可以大大减少电源运行引起的电网谐波,提高功率因数和运行效率。 2.正常使用条件 2.1 海拔不超过2000米。 2.2 环境温度不低于-10℃,不高于+40℃。 2.3 空气最大相对湿度不超过90%(20℃±5℃时) 2.4 运行地点无导电及爆炸性尘埃,无腐蚀金属和破坏绝缘的气体或蒸汽。 2.5 无剧烈振动和冲击。 3.主要技术参数 3.1 主电路进线额定电压:100V~660V(50Hz)(注意R3、R7、R11的匹配); 3.2 控制供电电源:单相17V/2A; 3.3 中频电压反馈信号:AC 12V/15mA; 3.4 电流反馈信号:AC 12V/5mA三相输入; 3.5 整流触发脉冲移相范围:α=0~130o; 3.6 整流触发脉冲对称度:小于1o; 3.7 整流触发脉冲信号宽度:≥600μs、双窄、间隔60o;

中频电源控制线路原理分析

KGPS-1中频电源控制线路原理分析 田志明王斌 摘要:本文较全面的对西安科技人员设计,行业流行最广的中频电源KGPS-1恒功率控制线路原理进行了分析。 关键词:中频电源感应加热中频炉控制板KGPS-1 1 前言 KGPS-1恒功率晶闸管中频电源控制线路板是华明公司的系列产品之一,行业内也称为恒功率中频电源控制板,该控制线路最早由西安科技人员设计于上世纪90年代后期,至现在有十几年的历史,是一个划时代的产品,它在我国和出口中频产品中装机率最高,至今仍在大量装机。它对我国中频电源技术应用和感应加热领域的产品普及和推广功不可没!此后的许多中频电源控制线路基本都是以它的设计思想为基础改进和重新设计。 KGPS-1恒功率中频电源控制线路(见所附线路图)主要由电源、调节器、移相控制电路、保护电路、启动演算电路、逆变频率跟踪、逆变脉冲形成、脉冲放大及脉冲变压器组成。电路除调节器外,其余均实现数字化,整流触发器部分不需要任何调整,具有可靠性高、脉冲对称度高、抗干扰能力强、反应速度快等特点,又由于有相序自适应电路,无需同步变压器,所以,现场调试中免去了调相序、对同步的工作,而且整机调试非常方便,对调试人员技术要求较低。 2 整流触发工作原理 这部分电路由三相同步信号、压-频(V/F)转换、脉冲产生计数、脉冲选择和整形和末级驱动等电路组成。触发部分采用的是数字触发电路。 2.1 整流触发原理框图

图1 整流触发原理框图 图2 整流触发电路 整流触发电路的控制来自整流输出调节电压Vk,Vk的大小经压-频(V/F)

电路转换形成不同频率的数字信号,数字信号经过计数器根据设定值(256)计满溢出后向脉冲通道选择电路发出脉冲,脉冲通道选择电路再将脉冲分为两路输出,两路脉冲的相位差为180°。分相后的两路脉冲经整形放大后,可以通过脉冲变压器去触发三相全控整流桥路中对应的晶闸管。与其它形式的移相触发电路一样,数字触发电路也有一个移相参考点,这个点取自三相电压过零处。电路中由同步信号电路检测三相过零点,对应不同的过零点向三个脉冲形成环节发出计数器复位信号,作为脉冲计数的起点,从而可以输出六个相位差为60°的脉冲触发信号。 电路中IC3、IC8、IC12(4、5、3、6)为计数器,构成了三路数字延时器,延时时间确定了α角的大小。三相同步信号对计数器进行复位后,对电压一频率变换器的输出脉冲每计数256个脉冲便输出一个延时脉冲。 2.2 三相同步信号电路 三相同步信号电路采用了三相同步自适应数字控制移相技术。三相同步信号直接由晶闸管的门极引线K4、K6、K2,从主回路的三相进线上取得,由R23、C1、R63、C40、R102、C63进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比小于50%的矩形波同步信号(如IC2C、IC2D)的输出。

相关文档
最新文档