(完整word版)圆的标准方程 练习题

(完整word版)圆的标准方程 练习题
(完整word版)圆的标准方程 练习题

第四章 4.1 4.1.1

A 级 基础巩固

一、选择题

1.圆心是(4,-1),且过点(5,2)的圆的标准方程是 ( ) A .(x -4)2+(y +1)2=10 B .(x +4)2+(y -1)2=10 C .(x -4)2+(y +1)2=100 D .(x -4)2+(y +1)2=10 2.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 ( ) A .是圆心

B .在圆上

C .在圆内

D .在圆外

3.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为 ( ) A .(-1,2),2

B .(1,-2),2

C .(-1,2),4

D .(1,-2),4

4.(2016·锦州高一检测)若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是 ( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1

D .(x +1)2+(y +2)2=1

5.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a = ( ) A .-4

3

B .-34

C .3

D .2

6.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是 ( A ) A .x -y -3=0

B .2x +y -3=0

C .x +y -1=0

D .2x -y -5=0

二、填空题

7.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是 .

8.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是 三、解答题

9.圆过点A (1,-2)、B (-1,4),求 (1)周长最小的圆的方程;

(2)圆心在直线2x -y -4=0上的圆的方程.

10.已知圆N 的标准方程为(x -5)2+(y -6)2=a 2(a >0). (1)若点M (6,9)在圆上,求a 的值;

(2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.

B 级 素养提升

一、选择题

1.(2016~2017·宁波高一检测)点????12,3

2与圆x 2+y 2=12的位置关系是 ( )

A .在圆上

B .在圆内

C .在圆外

D .不能确定

2.若点(2a ,a -1)在圆x 2+(y +1)2=5的内部,则a 的取值范围是 ( ) A .(-∞,1]

B .(-1,1)

C .(2,5)

D .(1,+∞)

3.若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 ( ) A .2x +y -3=0 B .x -2y +1=0

C .x +2y -3=0

D .2x -y -1=0

4.点M 在圆(x -5)2+(y -3)2=9上,则点M 到直线3x +4y -2=0的最短距离为 ( ) A .9 B .8

C .5

D .2

二、填空题

5.已知圆C 经过A (5,1)、B (1,3)两点,圆心在x 轴上,则C 的方程为__ __.

6.以直线2x +y -4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为__ __.

C 级 能力拔高

1.如图,矩形ABCD 的两条对角线相交于点M (2,0),AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在AD 边所在的直线上.求AD 边所在直线的方程.

2.求圆心在直线4x +y =0上,且与直线l :x +y -1=0切于点P (3,-2)的圆的方程,并找出圆的圆心及半径.

第四章 4.1 4.1.2

A 级 基础巩固

一、选择题

1.圆x 2+y 2-4x +6y =0的圆心坐标是 ( ) A .(2,3)

B .(-2,3)

C .(-2,-3)

D .(2,-3)

2.(2016~2017·曲靖高一检测)方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a ,b ,c 的值依次为 ( )

A .-2,4,4

B .-2,-4,4

C .2,-4,4

D .2,-4,-4

3.(2016~2017·长沙高一检测)已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为 ( ) A .x 2+y 2-6x -2y +6=0 B .x 2+y 2+6x -2y +6=0 C .x 2+y 2+6x +2y +6=0

D .x 2+y 2-2x -6y +6=0

4.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0

B .在圆外

C .在圆内

D .不确定

5.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2

2

,则a 的值为 ( ) A .-2或2

B .12或32

C .2或0

D .-2或0

6.圆x 2+y 2-2y -1=0关于直线y =x 对称的圆的方程是 ( ) A .(x -1)2+y 2=2 B .(x +1)2+y 2=2

C .(x -1)2+y 2=4

D .(x +1)2+y 2=4

二、填空题

7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为__ __.

8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是_ 三、解答题

9.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.

10.求过点A (-1,0)、B (3,0)和C (0,1)的圆的方程.

B 级 素养提升

一、选择题

1.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过 ( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

2.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为 ( ) A .52

B .102

C .152

D .20 2

3.若点(2a ,a -1)在圆x 2+y 2-2y -5a 2=0的内部,则a 的取值范围是 ( ) A .(-∞,4

5

]

B .(-43,43

)

C .(-3

4

,+∞)

D .(3

4

,+∞)

4.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为 ( ) 二、填空题

5.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a 6.若实数x 、y 满足x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值是__ _.

C 级 能力拔高

1.设圆的方程为x 2+y 2=4,过点M (0,1)的直线l 交圆于点A 、B ,O 是坐标原点,点P 为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.

2.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆. (1)求实数m 的取值范围; (2)求该圆的半径r 的取值范围; (3)求圆心C 的轨迹方程.

第四章 4.2 4.2.1

A 级 基础巩固

一、选择题

1.若直线3x +y +a =0平分圆x 2+y 2+2x -4y =0,则a 的值为 ( ) A .-1

B .1

C .3

D .-3

2.(2016·高台高一检测)已知直线ax +by +c =0(a 、b 、c 都是正数)与圆x 2+y 2=1相切,则以a 、b 、c 为三边长的三角形是 ( )

A .锐角三角形

B .直角三角形

C .钝角三角形

D .不存在

3.(2016·北京文)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为 ( ) A .1

B .2

C .2

D .2 2

[4.(2016·铜仁高一检测)直线x +y =m 与圆x 2+y 2=m (m >0)相切,则m = ( ) A .1

2

B .

2

2

C .2

D .2

5.圆心坐标为(2,-1)的圆在直线x -y -1=0上截得的弦长为22,那么这个圆的方程为 ( ) A .(x -2)2+(y +1)2=4 B .(x -2)2+(y +1)2=2 C .(x -2)2+(y +1)2=8

D .(x -2)2+(y +1)2=16

6.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点有 ( ) A .1个 B .2个

C .3个

D .4个

二、填空题

7.(2016·天津文)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为

45

5

,则圆C 的方程为__ __. 8.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为__ __. 三、解答题

9.当m 为何值时,直线x -y -m =0与圆x 2+y 2-4x -2y +1=0有两个公共点?有一个公共点?无公共点

10.(2016·潍坊高一检测)已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个不同的交点; (2)若直线l 与圆C 交于A 、B 两点,当|AB |=17时,求m 的值.

B 级 素养提升

一、选择题

1.过点(2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦最长的直线的方程是 ( ) A .3x -y -5=0 B .3x +y -7=0

C .3x -y -1=0

D .3x +y -5=0

2.(2016·泰安二中高一检测)已知2a 2+2b 2=c 2,则直线ax +by +c =0与圆x 2+y 2=4的位置关系是 ( ) A .相交但不过圆心 B .相交且过圆心 C .相切

D .相离

3.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为 ( ) A .(-3,3) B .[-3,3]

C .(-

33,3

3

) D .[-

33,3

3

] 4.设圆(x -3)2+(y +5)2=r 2(r >0)上有且仅有两个点到直线4x -3y -2=0的距离等于1,则圆半径r 的取值范围是 ( )

A .3

B .4

C .r >4

D .r >5

二、填空题

5.(2016~2017·宜昌高一检测)过点P (1

2,1)的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠

ACB 最小时,直线l 的方程为__ __.

6.(2016~2017·福州高一检测)过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为__ __.

C 级 能力拔高

1.求满足下列条件的圆x 2+y 2=4的切线方程: (1)经过点P (3,1); (2)斜率为-1; (3)过点Q (3,0).

2.设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且与直线x -y +1=0相交的弦长为22,求圆的方程.

第四章 4.2 4.2.2

A级基础巩固

一、选择题

1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()

A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25

C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25

2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线方程为() A.x+y-1=0B.2x-y+1=0

C.x-2y+1=0D.x-y+1=0

3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是() A.a2-2a-2b-3=0 B.a2+2a+2b+5=0

C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0

4.(2016~2017·太原高一检测)已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()

A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9

C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25

5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=

A.5B.4C.3D.2 2

6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()

A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6

C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36

二、填空题

7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__ __.

8.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=__ __.

三、解答题

9.求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆C的方程.

10.判断下列两圆的位置关系.

(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;

(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;

(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;

(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.

B级素养提升

一、选择题

1.已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4)2=82上的点,则|MN|的最小值为() A.4B.42-1 C.22-2D.2

2.过圆x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程为()

A.4x-y-4=0B.4x+y-4=0 C.4x+y+4=0D.4x-y+4=0

3.已知两圆相交于两点A(1,3),B(m,-1),两圆圆心都在直线x-y+c=0上,则m+c的值是() A.-1B.2 C.3D.0

4.(2016·山东文)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x -1)2+(y-1)2=1的位置关系是()

A.内切B.相交C.外切D.相离

[二、填空题

5.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是__ __.

6.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是____.

C级能力拔高

1.已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A、B两点,且这两点平分圆N的圆周,求圆心M的轨迹方程.

2.(2016~2017·金华高一检测)已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|P A|成立,如图.

(1)求a,b间的关系;

(2)求|PQ|的最小值.

第四章 4.2 4.2.3

A 级 基础巩固

一、选择题

1.一辆卡车宽1.6 m ,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过 ( )

A .1.4 m

B .3.5 m

C .3.6 m

D .2.0 m

2.已知实数x 、y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是 ( ) A .30-105

B .5-5

C .5

D .25

3.方程y =-4-x 2对应的曲线是 ( )

4.y =|x |的图象和圆x 2+y 2=4所围成的较小的面积是 ( )

A .π

4

B .3π

4

C .3π

2

D .π

5.方程1-x 2=x +k 有惟一解,则实数k 的范围是 ( ) A .k =-2 B .k ∈(-2,2) C .k ∈[-1,1)

D .k =2或-1≤k <1

6.点P 是直线2x +y +10=0上的动点,直线P A 、PB 分别与圆x 2+y 2=4相切于A 、B 两点,则四边形P AOB (O 为坐标原点)的面积的最小值等于 ( )

A .24

B .16

C .8

D .4

二、填空题

7.已知实数x 、y 满足x 2+y 2=1,则y +2x +1

的取值范围为__ __

8.已知M ={(x ,y )|y =9-x 2,y ≠0},N ={(x ,y )|y =x +b },若M ∩N ≠?,则实数b 的取值范围是__ ]__. 三、解答题

9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离

10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)

1.(2016·葫芦岛高一检测)已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为 ( ) A .9

B .14

C .14-65

D .14+6 5

2.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为 ( )

A .(2,322)

B .(0,32

2

)

C .(0,2)

D .(2,322)∪(32

2

,+∞)

3.已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 ( )

A .106

B .206

C .306

D .40 6

4.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为 ( )

A .4π

5

B .3π4

C .(6-25)π

D .5π4

二、填空题

5.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 __ __.

6.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠?,则实数a 的取值范围是__ _.

C 级 能力拔高

1.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.

问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)

数学——圆的标准方程教学设计

教学设计和反思 圆的方程 教学知识点 1. 圆的标准方程 2. 圆的一般方程 3. 圆的参数方程 能力训练要求 1. 掌握圆的标准方程 2. 能根据圆心坐标、半径熟练地写出圆的标准方程 3. 从圆的标准方程熟练地求出圆心和半径。 4. 掌握圆的一般方程及一般方程的特点; 5. 能将圆的一般方程化为圆的标准方程,进而求出圆心和半径 6. 能用待定系数法由已知条件导出圆的方程 7. 理解圆的参数方程 8. 熟练求出圆心在原点、半径为r 的圆的参数方程 9. 理解参数θ 的意义 10. 理解圆心不在原点的圆的参数方程 11. 能根据圆心坐标和半径熟练地求出圆的参数方程 12. 可将圆的参数方程化为圆的普通方程 教学重点 1.已知圆心为(a,b ),半径为r ,则圆的标准方程是(x-a)2+(y-b)2=r 2 特别地,a=b=0时,它表示圆心在原点,半径为r 的圆:x 2+y 2=r 2 2.圆的一般方程x 2+y 2+Dx+Ey+F=0,方程形式特征: (1)x 2和y 2的系数相同,不等于0 (2)没有xy 这样的二次项 圆心坐标(-D/2,-E/2),半径R 为F E D 422-+/2 4. 圆心在原点,半径为r 的圆的参数方程为{x=rcos θ,y=rsin θ,(θ为参数) 5. 圆心在(a,b ),半径为r 的圆的参数方程为{x=a+rcos θ,y=b+ rsin θ,(θ为参数) 教学难点 1. 根据条件,利用待定系数法确定圆的三个参数a 、b 、r ,从而求出圆的标准方程。 2. 方程x 2+y 2+Dx+Ey+F=0 (1) 当D 2+E 2-4F=0时,方程表示一个点(-D/2,-E/2); (2) 当D 2+E 2-4F<0时,方程不表示任何图形 (3) 当D 2+E 2-4F>0时,方程表示一个圆。 3. 参数方程的概念 教学课程见课件(略)

圆的标准方程导学案1(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 1.在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢? 2.什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 3.设圆心坐标为(,)C a b ,半径为r ,设),(y x P 为这个圆上任意一点,那么P,C 与r 有什么关系?能用坐标表示吗? 4.圆心在(,)C a b ,半径为r 的圆的标准方程:________________ 5.圆心为坐标原点、半径为r 的圆的方程是: 圆心在原点、半径为1的圆的方程: 思考:确定圆的标准方程的基本要素? 预习自测 1.写出下列各圆的方程: (1) 以C(2,-1)为圆心,半径等于3;

(2) 圆心在圆点,半径为5; (3) 经过点P(5,1),圆心在点C(6,-2); (4) 以A(2,5),B(0,-1)为直径的圆。 2.圆22 (3)(2)13x y -++=的圆心为 半径为 二、课/堂/探/究:合作探究————取长补短 基础知识探究 1.圆的标准方程是一个____元____次方程. 2.写出圆心为(2,3)A -,半径长为 5 的圆的方程,并判断点12(5,7),(1)M M -- 是否在这个圆上.

3.若点),3(a 在圆1622=+y x 的内部,则a 的取值范围是 4.试由圆的标准方程的推导过程思考,若点P 在圆内,在圆上,在圆外时,00,x y 应满足 怎样的关系式P P P ???????? 点在圆内点在圆外点在圆上 综合应用探究 1.已知ABC Rt ? 的斜边AB 的端点A 的坐标为(-2,1),B 的坐标为(4,3),直角顶点C 在什么曲线上?并求出它的方程? 2.ABC ?的三个顶点的坐标是(5,1),(7,3),(2,8)A B C --,求它的外接圆的方程. 3.求圆心在直线02=-+y x 上,且经过两点)2,1(),0,1(-Q P 的圆的方程。 三、达/标/检/测 1. 求满足下列条件的圆的方程

【精品】高中数学选修1-1 椭圆及其标准方程 知识讲解 讲义+巩固练习

椭圆及其标准方程 【学习目标】 1. 知识与技能目标: 掌握椭圆的定义和标准方程;明确焦点、焦距的概念;理解椭圆标准方程的推导. 2. 过程与方法目标: 通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程;体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力. 3. 情感态度与价值观目标: 通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神. 【要点梳理】 要点一:椭圆的定义 平面内到两个定点1F 、2F 的距离之和等于常数(大于12F F )的点的集合叫椭圆.这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离叫作椭圆的焦距. 要点诠释: (1)1F 、2F 是椭圆上不同的两个顶点; (2)若P 是椭圆上任意一点,则12PF PF +=常数; (3)当 常数12F F > 时,轨迹为椭圆; 当 常数=12F F ,则轨迹为线段12F F ; 当 常数12F F <,则轨迹不存在. 要点二:椭圆的标准方程 1. 椭圆的标准方程

要点诠释: 1. 这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2. 在椭圆的两种标准方程中,都有0a b >>和222c a b =-; 3. 椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为(,0)c ,(,0)c -;当焦点在y 轴上时,椭圆的焦点坐标为(0,)c ,(0,)c -; 4. 在两种标准方程中,∵a 2>b 2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上. 2. 标准方程的推导: 由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程. 如何建立椭圆的方程?根据求曲线方程的一般步骤:建系、设点、列式、化简. 以焦点在x 轴上的方程22 221x y a b +=(0)a b >>为例. (1)建系 建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的. 以两个定点1F ,2F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系(如图). (2)设点 设|F 1F 2|=2c(c >0),M(x ,y)为椭圆上任意一点,则有F 1(-1,0),F 2(c ,0).

新人教版必修二高中数学 《圆的标准方程》 教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

人教版高中数学《圆的标准方程》教案导学案

圆的标准方程 一、教学目标 (一)知识教学点 使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. (二)能力训练点 通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力. (三)学科渗透点 圆基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育. 二、教材分析 1.重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程. (解决办法:(1)通过设问,消除难点,并详细讲解;(2)多多练习、讲解.) 2.难点:运用圆的标准方程解决一些简单的实际问题. (解决办法:使学生掌握分析这类问题的方法是先弄清题意,再建立适当的直角坐标系,使圆的标准方程形式简单,最后解决实际问题.) 三、活动设计 问答、讲授、设问、演板、重点讲解、归纳小结、阅读. 四、教学过程 (一)复习提问 前面,大家学习了圆的概念,哪一位同学来回答?

问题1:具有什么性质的点的轨迹称为圆? 平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).问题2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点? 圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小. 问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少? 求曲线方程的一般步骤为: (1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9 (2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集; (3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程; (4)化方程f(x,y)=0为最简形式,简称化简方程; (5)证明化简后的方程就是所求曲线的方程,简称证明. 其中步骤(1)(3)(4)必不可少. 下面我们用求曲线方程的一般步骤来建立圆的标准方程.

圆的标准方程 练习题

第四章 4.1 4.1.1 A 级 基础巩固 一、选择题 1.圆心是(4,-1),且过点(5,2)的圆的标准方程是 ( ) A .(x -4)2+(y +1)2=10 B .(x +4)2+(y -1)2=10 C .(x -4)2+(y +1)2=100 D .(x -4)2+(y +1)2=10 2.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 ( ) A .是圆心 B .在圆上 C .在圆内 D .在圆外 3.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为 ( ) A .(-1,2),2 B .(1,-2),2 C .(-1,2),4 D .(1,-2),4 4.(2016·锦州高一检测)若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是 ( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1 D .(x +1)2+(y +2)2=1 5.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a = ( ) A .-4 3 B .-34 C .3 D .2 6.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是 ( A ) A .x -y -3=0 B .2x +y -3=0 C .x +y -1=0 D .2x -y -5=0 二、填空题 7.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是 . 8.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是 三、解答题 9.圆过点A (1,-2)、B (-1,4),求 (1)周长最小的圆的方程; (2)圆心在直线2x -y -4=0上的圆的方程. 10.已知圆N 的标准方程为(x -5)2+(y -6)2=a 2(a >0). (1)若点M (6,9)在圆上,求a 的值; (2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.

圆的标准方程优秀教案

第四章圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 教材分析 本节内容数学必修2 第四章第一节的起始课,是在学习了直线的有关知识后学习的,圆是学生比较熟悉的曲线,在初中就已学过圆的定义.这节课主要是根据圆的定义,推出圆的标准方程,并会求圆的标准方程.本节课的教学重点是圆的标准方程的理解、掌握;难点是会根据不同的已知条件,利用待定系数法,几何法求圆的标准方程.通过本节课的学习培养学生用坐标法研究几何问题的能力,使学生加深对数形结合思想和待定系数法的理解,增强学生的数学意识. 课时分配 本节内容用1课时的时间完成,主要讲解圆的标准方程的推导和应用. 教学目标 重点: 圆的标准方程的理解、掌握. 难点:会根据不同的已知条件,利用待定系数法求圆的标准方程. 知识点:会求圆的标准方程. 能力点:根据不同的已知条件求圆的标准方程. 教育点:尝试用代数方法解决几何问题探究过程,体会数形结合、待定系数法的思想方法. 自主探究点:点与圆的位置关系的判断方法. 考试点:会求圆的标准方程. 易错易混点:不同的已知条件,如何恰当的求圆的标准方程. 拓展点:如何根据不同的条件,灵活适当地选取恰当的方法求圆的标准方程. 教具准备多媒体课件和三角板 课堂模式学案导学 一、引入新课 问题 1:什么是圆? 【设计意图】回顾圆的定义便于问题2的回答. 【设计说明】学生回答. 问题2:在平面直角坐标系中,两点确定一条直线,一点和倾斜角也可以确定一条直线,那么在什么条件下可以确定一个圆? 【设计意图】使学生在已有知识的基础上,结合圆的定义回答出确定圆的两个要素—圆心(定位)和半径(定形). 【设计说明】教师引导,学生回答. 问题3:直线可以用一个方程表示,圆也可以用一个方程来表示吗? 【设计意图】使学生在已有知识和经验的基础上,探索新知,引出本课题. 【设计说明】教师指出建立圆的方程正是我们本节课要探究的问题. 二、探究新知

高中数学《圆的标准方程》导学案

2.1 圆的标准方程 [学习目标] 1.会用定义推导圆的标准方程;掌握圆的标准方程的特点. 2.会根据已知条件求圆的标准方程. 3.能准确判断点与圆的位置关系. 【主干自填】 1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于□01定长. (2)确定圆的条件:□02圆心和□03半径. 2.圆的标准方程 (1)以C (a ,b )为圆心,半径为r □ 04(x -a )+(y -b )=r . (2)当圆心在坐标原点时,半径为r 的圆的标准方程为□05x +y =r . 3.中点坐标 A (x 1,y 1), B (x 2,y 2)的中点坐标为□06? ????x 1+x 22,y 1+y 22. 4.点与圆的位置关系 点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有两种方法: (1)几何法:将所给的点M 与圆心C 的距离跟半径r 比较: 若|CM |=r ,则点M 在□07圆上; 若|CM |>r ,则点M 在□08圆外; 若|CM |

(2)代数法:可利用圆C的标准方程(x-a)2+(y-b)2=r2来确定: 点M(m,n)在□10圆上?(m-a)2+(n-b)2=r2; 点M(m,n)在□11圆外?(m-a)2+(n-b)2>r2; 点M(m,n)在□12圆内?(m-a)2+(n-b)2

椭圆及其标准方程练习题

椭圆及其标准方程练习题 【基础知识】 一.椭圆的基本概念 1。椭圆的定义:我们把平面内与两个定点的距离的和等于常数 ( )的点 的轨迹叫做椭圆,用符号表示为这两个定点叫椭圆的 ,两个焦点之间的距离叫做椭圆的 。 二.椭圆的定义、椭圆的标准方程、椭圆的性质 椭圆的图象和性质 数学定义式 |MF 1|+|MF 2|=2a 焦点位置 x 轴 y 轴 图形 标准方程 焦点坐标 焦距 顶点坐标 a , b , c 的关系式 长、短轴 长轴长=2a , 短轴长=2b 对称轴 两坐标轴 离心率 a c e = = ( 0 〈 e 〈 1) 椭圆方程的总形式为 [经典例题]: 例1. 根据定义推导椭圆标准方程. 已知B,C 是两个定点,|BC |=6,且ABC ?的周长等于16,求顶点A 的轨迹方程 已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 y x o y x o

例2。写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,2 5) 例3 求适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0). (2)两个焦点坐标分别是(0,5),(0,—5),椭圆上一点P 到两焦点的距离和为26. 例4 已知椭圆经过两点()5,3()2 5 ,23与-,求椭圆的标准方程 例5 1.椭圆短轴长是2,长轴是短轴的2倍,则椭圆离心率是 ; 2。如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 ; 3.若椭圆的两个焦点F 1、F 2与短轴的一个端点B 构成一个正三角形,则椭圆的离心率为 ; [典型练习]: 1 椭圆 19 252 2=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A 。5 B.6 C 。4 D 。10 2.椭圆 1169 252 2=+y x 的焦点坐标是( ) A 。(±5,0) B 。(0,±5) C 。(0,±12) D 。(±12,0) 3。已知椭圆的方程为 182 2 2=+m y x ,焦点在x 轴上,则其焦距为( ) A 。228m - B.2m -22 C 。28 2-m D.222-m 4。1,6==c a ,焦点在y 轴上的椭圆的标准方程是

椭圆的简单几何性质练习题

. 课时作业(八) [学业水平层次] 一、选择题 1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为3 5 的椭圆的标准方程是( ) +y 236=1 + y 2 64 =1 +y 2 16 =1 +y 2 9 =1 【解析】 本题考查椭圆的标准方程.由题意知2b =8,得 b =4,所以b 2 =a 2 -c 2 =16,又e =c a =3 5 ,解得c =3,a =5,又 焦点在x 轴上,故椭圆的标准方程为x 225+y 2 16 =1,故选C. $ 【答案】 C 2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) 【解析】 由题意知a =2c ,∴e =c a =c 2c =1 2 . 【答案】 A 3曲线x 225+y 29=1与x 29-k +y 2 25-k =1(0

A .有相等的焦距,相同的焦点 ) B .有相等的焦距,不同的焦点 C .有不等的焦距,不同的焦点 D .以上都不对 【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k + y 2 25-k =1(0<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B. 【答案】 B 4.已知O 是坐标原点,F 是椭圆x 24+y 2 3=1的一个焦点,过F 且 与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( ) B .-513 D .-21313 # 【解析】 由题意,a 2=4,b 2=3, 故c =a 2-b 2=4-3=1. 不妨设M (1,y 0),N (1,-y 0),所以124+y 2 3 =1, 解得y 0=±3 2 , 所以|MN |=3,|OM |=|ON |=12 +? ?? ??322=132. 由余弦定理知 cos ∠MON =|OM |2+|ON |2-|MN |2 2|OM ||ON | =

人教版圆的标准方程教案

圆的标准方程 教学目标 (一)知识目标 1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2.理解并掌握切线方程的探求过程和方法。 (二)能力目标 1.进一步培养学生用坐标法研究几何问题的能力; 2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力. (三)情感目标 充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。 教学重、难点 (一)教学重点 圆的标准方程的理解、掌握。 (二)教学难点 圆的标准方程的应用。 教学过程 Ⅰ.复习提问、引入课题 师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学

们考虑:如何求适合某种条件的点的轨迹? 生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y); ②写出适合某种条件p的点M的集合P={M ︳p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示] 师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题] 师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52即x2+y2=25. 若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程? 生:x2+y2=r2. 师:你是怎样得到的?(引导启发)圆上的点满足什么条件? 生:圆上的任一点到圆心的距离等于半径。即,亦即x2+y2=r2. 师:x2+y2=r2表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的? 生:此圆是到点C(a,b)的距离等于半径r的点的集合, 由两点间的距离公式得 即:(x-a)2+(y-b)2= r2

圆的标准方程 练习题

第四章4.14、1.1 A级基础巩固 一、选择题 1、圆心就是(4,-1),且过点(5,2)的圆的标准方程就是( ) A、(x-4)2+(y+1)2=10B.(x+4)2+(y-1)2=10 C.(x-4)2+(y+1)2=100 D、(x-4)2+(y+1)2=10 2、已知圆的方程就是(x-2)2+(y-3)2=4,则点P(3,2)满足( ) A.就是圆心 B.在圆上?C、在圆内D、在圆外 3、圆(x+1)2+(y-2)2=4的圆心坐标与半径分别为( ) A、(-1,2),2 B、(1,-2),2 C.(-1,2),4D、(1,-2),4 4、(2016·锦州高一检测)若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程就是( ) A.(x-2)2+(y+1)2=1? B.(x-2)2+(y-1)2=1 C.(x-1)2+(y+2)2=1D、(x+1)2+(y+2)2=1 5.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( ) A、-错误!B.-错误! C.错误!D、2 6、若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程就是(A) A、x-y-3=0?B、2x+y-3=0?C、x+y-1=0 D.2x-y-5=0 二、填空题 7、以点(2,-1)为圆心且与直线x+y=6相切的圆的方程就是、 8.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程就是 三、解答题 9、圆过点A(1,-2)、B(-1,4),求 (1)周长最小的圆的方程; (2)圆心在直线2x-y-4=0上的圆的方程、 10、已知圆N的标准方程为(x-5)2+(y-6)2=a2(a>0)、 (1)若点M(6,9)在圆上,求a的值; (2)已知点P(3,3)与点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点,求a的取值范围、

新人教版必修二高中数学 《圆的标准方程》 教学设计-2019最新整理

新人教版必修二高中数学《圆的标准方程》教学设计-2019 最新整理 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径

为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点 间的距离公式让学生写出点M 适合的条件 ①r 化简可得: ②222()()x a y b r -+-= 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的 标准方程。 总结出点与圆的关系的判断方法:00(,)M x y 222()()x a y b r -+-= (1)=点在圆上 2200()()x a y b -+-2r ? (2)<点在圆内220 0()()x a y b -+-2r ? (3)>点在圆外 2200()()x a y b -+-2r ? 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1); 222=+y x (2); 5)1()3(22=-+-y x (3)()。222)1()2(a y x =+++0≠a 2、写出下列圆的标准方程:(P120-121练习1、3、4) (1)圆心在C(-3,4),半径长为;5 (2)圆心在C(8,-3),且经过点M(5,1); (3)圆心在(-1,2),与y 轴相切 (4)以P1(4,9)、P2(6,3)为直径的圆; (5)已知△ABC的顶点坐标分别是A(4,0),B(0,3),

圆的标准方程学案

高二数学必修2 圆与方程 班级________ 姓名_________ 圆的标准方程 【课标要求】 回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程。 【学习目标】 1.能在平面直角坐标系中,探索并掌握圆的标准方程。 2.能根据圆的标准方程写出圆心和半径,会根据条件求圆的方程。 【学习重、难点】 重点:圆的标准方程的求法及其应用。 难点:会根据不同的已知条件,利用待定系数法求圆的标准方程,以及选择恰当的坐标系解决 与圆有关的实际问题。 【问题探究】 请认真阅读教材P118—P119例1以前的内容,完成下列问题: 1.在直角坐标系中,当_________与_________确定后,圆就唯一确定了。因此,确定圆的最基本 的要素是_____________ 2.在直角坐标系中,设),(y x M 是圆心为),(b a A ,半径为r 的圆上任意一点,你能根据圆的定 义推到出圆的标准方程吗? 3.(1)圆的标准方程有哪些特征? (2)圆心在原点,半径为r 的圆的标准方程为_______________ 4.(1)若点),(00y x M 在圆2 22r y x =+内,则满足条件____________ (2)若点),(00y x M 在圆2 22r y x =+外,则满足条件____________ 同理,(3)若点),(00y x M 在圆2 22)()(r b y a x =-+-内,则满足条件____________ (4)若点),(00y x M 在圆2 22)()(r b y a x =-+-外,则满足条件____________ 【例题剖析】 例1:完成教材P119例1 例2:完成教材P119例2 思考:(1)你能说说本题的解题思路吗? (2)你能根据三角形外心的定义给出其他解法吗? 例3:完成教材P120例3 思考:(1)你能用类似例2的方法解答本题么? (2)比较例2和例3,你能说说求任意ABC ?外接圆方程的方法有几种? 试比较各自的优越性。 【自主测评】 独立完成教材P120练习1,3,4(两种方法) 【作业布置】 习题4.1A 组3,4,5, 【本节收获】 通过本节的学习,你有哪些收获?还有什么疑问?

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

高中数学-圆的标准方程教案

第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)22 00()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2): ABC V 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程2 2 2 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用 待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和 (2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长 等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、 例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

最新椭圆及其标准方程导学案

2.2.1 椭圆及其标准方程 【学法指导】1.仔细阅读教材(P38—P41),独立完成导学案,规范书写,用 红色笔勾画出疑惑点,课上讨论交流。 2.通过动手画出椭圆图形,研究椭圆的标准方程。 【学习目标】1.掌握椭圆的定义,标准方程的两种形式及推导过程。 2.会根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆 的标准方程。 【学习重、难点】 学习重点:椭圆的定义和椭圆的标准方程. 学习难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因. 【预习案】 预习一:椭圆的定义(仔细阅读教材P38,回答下列问题) 1.取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 . 点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什 么曲线 在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数. 2.平面内与两个定点1F ,2F 的 的点的轨迹叫做椭圆。这两个定点叫做椭圆的 , 叫做椭圆的焦距。 3.将“大于|1F 2F |”改为“等于|1F 2F |”的常数,其他条件不变,点的轨迹 是 将“大于|1F 2F |”改为“小于|1F 2F |”的常数,其他条件不变,点的轨

迹存在吗? 结论:在椭圆上有一点P ,则|1PF |+|2PF |= (a 2>|1F 2F | )。 a 2>|1F 2F |时,点的轨迹为 ; a 2=|1F 2F |时,点的轨迹为 ; a 2<|1F 2F |时,点的轨迹 。 预习二:椭圆的标准方程(仔细阅读教材P40,回答下列问题) 结论:2x ,2y 分母的大小,哪个分母大,焦点就在哪个坐标轴上。 【探究案】 探究一、椭圆定义的应用 设P 是椭圆11625 2 2=+y x 上的任意一点,若1F 、2F 是椭圆的两个焦点,则21PF PF +等于( ) A.10 B.8 C.5 D.4 (解法指导:椭圆的标准方程找到a ,根据|1PF |+|2PF |=a 2。) 解:椭圆中=2a ,a 2= 。 由椭圆的定义知21PF PF += = 。

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点 )4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)

因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢 例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-: .

椭圆练习题(经典归纳)

椭圆练习题(经典归纳)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点12? ?? ,,M N 为平面上关于原点对称的两点,已知N 的坐 标为0,? ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设

相关文档
最新文档