动量和能量

动量和能量
动量和能量

1、从地面上以初速度v0竖直向上抛出一质量为m的球,若运动过程中受到的空气阻力与其速率成正比关系,球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,

落地时速率为v1,且落地前球已经做匀速运动。求:

(1)球从抛出到落地过程中克服空气阻力所做的功;

(2)球抛出瞬间的加速度大小;

(3)球上升的最大高度H

2、如图所示,在水平桌面上放有两根相互平行相距为0.2m的金属导轨PQ和MN,电容器的电容C=104μF,且已充电完毕。L是质量m=O.1 kg的铝棒,它与轨道的摩擦不计,竖直向上的磁场的磁感强度B= 2 T,导轨离地面的高度h=0.8 m。当开关S闭合后,金属棒被推出,落地点的水平位移为0.4m。求电容器放电时通过金属棒的电量和电容器两极板间的电压的改变量。

3、如图所示,阻值为R,质量为m,边长为的正方形金属框位于光滑水平面上。金属框的ab 边与磁场边缘平行,并以一定的初速度进入矩形磁场区域,运动方向与磁场边缘垂直。磁场方向垂直水平面向下,在金属框运动方向上的长度为L(L>)。设金属框的ab边进入磁场后,框的运动速度与ab边在磁场中的位置坐标之间关系为v=v0-cx (x<),式中c为未知的正值常量。若金属框完全通过磁场后恰好静止,求:

(1)磁场的磁感应强度。

(2)从线框进入磁场区域到线框ab边刚出磁场区域的运动过程中安培力所做的功。

4.如图所示,两条相互平行的光滑金属导轨相距l,其中水平部分位于同一水平面内,倾斜部分构成一倾角为 的斜面,倾斜导轨与水平导轨平滑连接。在水平导轨区域内存在竖直向下的匀强磁场,磁感应强度为B。两长度均为l的金属棒ab、cd垂直导轨且接触良好,分别置于倾斜和水平轨道上,ab距水平轨道面高度为h。ab、cd质量分别为2m和m,电阻分别为r和2r。由静止释放ab棒,导轨电阻不计。重力加速度为g,不计两金属棒之间的

相互作用,两金属棒始终没有相碰。求

(1)ab棒刚进入水平轨道时cd棒的电流I

(2)两金属棒产生的总热量Q

(3)通过以棒的电量q

5、如图所示,一排人站在沿x轴的水平轨道旁,原点O两侧的人的序号都记为n(n=l, 2, 3…),每人只有一个沙袋,x>O一侧的每个沙袋质量为m=14kg,x<0一侧的每个沙袋质量为m'=lO kg,一质量为M=48kg的小车以某初速从原点出发向正x方向滑行,不计轨道阻力,当车每经过一人身旁时,此人就把沙袋以水平速度u朝与车速相反的方向沿车面扔到车上,u的大小等于扔袋之前的瞬间车速大小的2n倍(n是此人的序号数)。

(1)空车出发后,车上堆积了几个沙袋时车就反向滑行?

(2)车上最终有大小沙袋共多少个?

6、在光滑的水平面上,放置一个质量为M,截面是1/4圆(圆的半径为R)的柱体A,如图所示。柱面光滑,顶端放一质量为m的小滑块B,初始时刻A,B都处于静止状态,在固定坐标系xOy 中的位置如图所示。设小滑块从圆柱顶端沿圆弧滑下,试求小滑块脱离圆弧以前在固定坐标

系中的轨迹方程。

7、碰后动能之和等于碰前动能之和的碰撞,称为弹性碰撞。

(1)质量分别为m1,m2的两个物体,碰前速度为v10,v20如图所示,碰后速度分别记为v1,v2,如图所示,假设碰撞是弹性的,试列出可求解v1,v2的方程组,并解之。

(2)光滑的水平面上平放着一个半径为R、内壁光滑的固定圆环,质量

分别为m,2m,m的小球A,B,C在圆环内侧的初始位置和初始速度均在图

中示出,注意此时B球静止。已知而后球间发生的碰撞都是弹性的,试

问经多长时间,A,B,C又第一次恢复到图中所示的位置和运动状态。

8、如图所示,光滑水平面上有一质量为m=1 kg的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m0=1 kg的物块,物块与上表面光滑的小车一起以v0=5 m/s的速度向右匀速运动,与静止在光滑水平面上、质量为M=4 kg的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.求:

(1)碰撞结束时,小车与小球的速度;

(2)从碰后瞬间到弹簧被压至最短的过程,弹簧弹力对小车的冲量大小.

9.如图所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生完全非弹性碰撞,B、C 的上表面相平且B、C不粘连,A滑上C后恰好能达到C板的最右端,已知A、B、C质量均相等,木板C长为L,求:

(1)A物体的最终速度;

(2)A在木板C上滑行的时间.

10、人和冰车总质量为M,另有一木球质量为m,且M:m=31:2,人坐在静止于水平冰面的冰车上,以速度v将原来静止的木球沿冰面推向正前方的固定挡板,不计一切摩擦,设球与挡板碰撞后以原速率弹回,人接球后再以同样的速度(相对于地面)推向挡板,求人推多少次后才不能接到球。

11、如图所示,在光滑水平面上有两个并排放置的木块A和B,己知m A=500g, m B=300g,有一质量为80g的小铜块C以25 m/s的水平初速度开始在A表面滑动。由于C与A、B间有摩擦,铜块最后停在B上,B和C一起以2.5 m/s的速度共同前进,求:

(1)木块A的最后速度' A

v

。 (2) C在离开A时速度' C

v

12、一列整体质量为M的列车,在平直的长轨道上匀速前进。突然尾部有质量为 m的车厢脱钩,但等到司机发觉而关闭油门时,前部分列车已经行驶了一段长L的路程。设机车的牵引力不变,阻力与车重成正比,求前、后两部分(视为质点)停止点间的距离。

13、在光滑的水平桌面上有两个质量均为m的小球,由长度为2L的拉紧细线相连。以一恒力作用于细线中点,恒力的大小为F,方向平行于桌面。两球开始运动时,细线与恒力方向垂直。在两球碰撞前瞬间,两球的速度在垂直于恒力方向的分量为多少。

14、质量约1 t的汽车在10 s内由静止加速到60 km/h,如果不计阻力。

(1)发动机的平均输出功率约为多大?

(2)汽车速度较高时,空气阻力不能忽略。将汽车简化为横截面积约1m2的长方体,并以此模型估算汽车以60 km/h行驶时为克服空气阻力所增加的功率。

已知空气密度ρ=1. 3 kg/m3。

(3)数据表明,上述汽车所受阻力与速度平方的关系如图所示。假定除空气阻力外,汽车行驶所受的其他阻力与速度无关,估计其他阻力总的大小。

15、在光滑水平地面上放有一个表面光滑的圆弧形小车,另有一质量与小车相等的铁块,以速度v沿小车的水平端面向上滑去,如图所示。铁块在小车上滑至圆弧面的某一高度后又返回,则铁块返回到小车的右端以后,将做的运动是( )。

A.又以速度v向左沿小车的水平端向上滑去

B.以与v大小相等的速度从小车右端平抛出去

C.以比v小的速度从车右端平抛出去

D.自由落体运动

16、平直铁轨上停着一节质量M=2m的小车厢,可以忽略车厢与水平铁轨之间的摩擦。有N 名组员沿着铁轨方向列队前行,另有1名组长在最后,每名组员的质量同为m。(1)当组员和组长发现前面车厢时,都以相同速度V0跑步,每名组员在接近车厢时又以2 V0速度跑着上车坐下,组长却因跑步速度没有改变而恰好未追上车,试求N。(2)组员们上车后,组长前进速度减为V0/2,车上的组员朝着车厢前行方向一个接一个水平跳下,组员离开车厢瞬间相对车厢速度大小同为u,结果又可使组长也能追上车。试问:跳车过程中组员们总共至少消耗掉人体中的多少内能?

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

能量和动量的综合应用(超详细)

【本讲主要内容】 能量和动量的综合应用 相互作用过程中的能量转化及动量守恒的问题 【知识掌握】 【知识点精析】 1. 应用动量和能量的观点求解的问题综述: 该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。 2. 有关机械能方面的综述: (1)机械能守恒的情况: 例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。等等…… (2)机械能增加的情况: 例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。等等…… (3)机械能减少的情况: 例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析: 如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。 滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。 A 、 B 为系统,动量守恒。(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。 由动量守恒定律可求出共同速度0 v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理: 对A :W fA =2020202B 2 1)(212121)(mv m M mv m mv mv s s f -+=-=?+-

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量与能量之难点解析专题5

动量与能量之难点解析 专题01 动量与能量分析之“碰撞模型” 专题02 动量与能量分析之“板-块模型” 专题03 动量与能量分析之“含弹簧系统” 专题04 动量与能量分析之“爆炸及反冲问题” 专题05 动量与能量观点在电磁感应中的应用 专题5 动量与能量观点在电磁感应中的应用 【方法总结】 解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下: 1. “双轨+双杆”模型 以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好: 模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+= 2. 巧用“动量定理”求通过导体电荷量q 思路:动量定理得:p t BIL p t F ?=????=??安,由于t I q ??=,所以p BLq ?=,

即:BL p q ?= 【精选试题解析】 1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。下列图像中可能正确的是( ) 2. [多选]如图所示,两根相距为d 的足够长的光滑金属导轨固定在水平面上,导轨电阻不计。磁感应强度为B 的匀强磁场与导轨平面垂直,长度等于d 的两导体棒M 、N 平行地放在导轨上,且电阻均为R 、质量均为m ,开始时两导体棒静止。现给M 一个平行导轨向右的瞬时冲量I ,整个过程中M 、N 均与导轨接触良好,下列说法正确的是( ) A .回路中始终存在逆时针方向的电流 B .N 的最大加速度为B 2Id 2 2m 2R C .回路中的最大电流为BId 2mR D .N 获得的最大速度为I m 3. (2019浙江选考)如图所示,在间距L =0.2m 的两光滑平行水平金属导轨间存在方向垂直于 纸面(向内为正)的磁场,磁感应强度为分布沿y 方向不变,沿x 方向如下: 10.2{50.20.2 10.2Tx m B xT m x m Tx m >=-≤≤-<- 导轨间通过单刀双掷开关S 连接恒流源和电容C =1F 的未充电的电容器,恒流源可为电路提供恒定电流I =2A ,电流方向如图所示。有一质量m =0.1kg 的金属棒ab 垂直导轨静止放置于x 0=0.7m 处。开关S 掷向1,棒ab 从静止开始运动,到达x 3=-0.2m 处时,开关S 掷向2。已知棒ab 在运动过程中始终与导

高中物理复习能量和动量经典习题例题含问题详解

专题研究二 能量和动量 清大师德教育研究院物理教研中心丽

1.功和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。例如2005年物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。 2.动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。计算题常设置某个瞬时过程,计算该过程物体受到的平均作用力或物体状态的变化。要求学生能正确地对物体进行受力分析,弄清物体状态变化的过程。 3.动量守恒定律的应用,近几年单独命题以选择题为主,常用来研究碰撞和类碰撞问题,主要判定碰撞后各个物体运动状态量的可能值,这类问题也应该综合考虑能量及是否符合实际情况等多种因素。机械能守恒定律的应用常涉及多个物体组成的系统,要求学生能正确在选取研究对象,准确确定符合题意的研究过程。这类问题有时还设置一些临界态问题或涉及运用特殊数学方法求解,对学生的能力有一定的要求。如2004年物理卷的10题,涉及到两个小球组成的系统,并且要能正确地运用数学极值法求解小球的最大速度。 4.动量和能量的综合运用一直是高考考查的重点,一般过程复杂、难度大、能力要求高,经常是高考的压轴题。要求学生学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化。对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化与守恒的方法解决实际问题。分析解答问题的过程中常需运用归纳、推理的思维方法。如:2003年全国卷第20题、2004年理综全国卷第25题的柴油机打桩问题、2004年物理卷第18题、2004年物理卷第17题、2005年物理卷第18题、2005年物理卷第18题等。值得注意的是2005年物理卷的第18题把碰撞中常见的一维问题升级为二维问题,对学生的物理过程的分析及动量矢量性的理解要求更高了一个层次。

弹簧的动量和能量问题

弹簧的动量和能量问题

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种:①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余

各处的摩擦不计,重力加速度为g,求: (1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原 长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g =10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

物理能量和动量经典总结知识点

运用动量和能量观点解题的思路 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 ? 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 ? 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点: ? 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 ? 2.要能视情况对研究过程进行恰当的理想化处理。 ? 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 ? 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 ? 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是: ? 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 ? 2.若是多个物体组成的系统,优先考虑两个守恒定律。 ? 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 ? 例1图1中轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处于原长状态。另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行。当A滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好回到出发点P并停止。滑块A和B与导轨的摩擦因数都为,运动过程中弹簧最大形变量为,重力加速度为。求A从P点出发时的初速度。 ? 解析:首先要将整个物理过程分析清楚,弄清不同阶段相互作用的物体和运动性质,从而为

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

6.动量和能量

小车.两人都离开小车后,小车的速度将是 ( ) A.v 0 B.2v 0 C.大于v 0小于 2v 0 D.大于2v 0 3、质量为M 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手。首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。当两颗子弹均相对木块静止时,下列说法正确的是( ) A .最终木块静止,d 1=d 2 B .最终木块向右运动,d 1

高三物理能量和动量经典总结知识点

运用动量和能量观点解题的思路 河南省新县高级中学吴国富 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个 重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下 几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应 作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时 这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过 程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原 则是: 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量

动量及能量(全)

动量与能量专题 2.子弹击中木块模型 (1)“子弹击中木块” 模型,不管子弹是否击穿木块,由子弹和木块组成的系统,在水平方向所 受合力为零,故系统水平方向动量是守恒的,即: ()0mv M m v =+(未击穿时) 012mv mv mv =+(击穿时) (2)“子弹击中木块” 模型过程中各力做功例举如下: 如图5,质量为M 的木块放在光滑水平面上,现有一质量为m 的子弹以速度v 0射入木块中,木块与子弹的共同速度为v 设子弹在木块中所受阻力f 不变,且子弹未射穿木块。若子弹射入木块的深度为d ,则: 以子弹、木块组成系统为研究对象。画出运算草图,如图6。系统水平方向不受外力,故水平方向动量守恒。据动量守恒定律有: mv 0=(M+m)v (设v 0方向为正)……① 子弹打入木块到与木块有相同速度过程中摩擦力做功: 对子弹做负功: w f s =-?子……② 对木块做正功: w f s '=?木……③ f 对系统(子弹和木块)做功: () W w w f s s fd '=+=--=-子木……④ 即对系统做功:W fd =-(相互作用力乘以相对位移) (3)“子弹击中木块” 模型过程中(子弹未突穿出)的能量转化和转移 对子弹:克服阻力f 做的功等于子弹动能的减少,即:22 01122 f k w fs E mv mv ==?=-子子 对木块,阻力f 对其做正功等于木块动能的增加,即:2 102w fs mv '== -木 对系统,阻力f 对其做负功等于系统动能的变化,即:22011 ()22 W fd M m v mv =-=+- 或系统克服阻力做的功等于系统动能的减少,即:22011 ()22 fd mv M m v =-+ 可见,转化和转移规律是:子弹机械能减少22 011()22mv mv -一部分转移给木块使木块机械能增加 21 ()2Mv ;另一部分转化为系统内能()fd ,而转化为系统内能(即产生的热量)恰是系统机械能减少部分22011 [()]22 mv M m v -+ (重要结论:系统损失的机械能等于滑动摩擦力与相对位移的乘积) 图5 图6

弹簧的动量和能量问题#(精选.)

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种: ①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

高中物理-动量和能量的综合

动量和能量的综合 一、大纲解读 动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查. 二、重点剖析 1.独立理清两条线:一是力的时间积累——冲量——动量定理——动量守恒;二是力的空间移位积累——功——动能定理——机械能守恒——能的转化与守恒.把握这两条主线的结合部:系统.. 。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。 2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统弹力做 功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律. 3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加. 三、考点透视 考点1、碰撞作用 碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即1212k k k k E '+E 'E +E ≤;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即v v 后前>,碰撞后,原来在前面的物体速度一定增大,且≥v v 后前;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

高中物理动量和能量知识归纳

高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律 时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理 空间积累效应(做功)w=Fs ?动能发生变化?动能定理 2.动量观点:动量:p=mv= K mE 2 冲量:I = F t 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’ 一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=? P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP ' (两物体动量变化大小相等、方向相反) 实际中应用有:m 1v 1+m 2v 2=' 22' 11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算 简化为代数运算。 相对性:所有速度必须是相对同一惯性参照系。 同时性:表达式中v 1 和v 2 必须是相互作用前同一时刻的瞬时速度,v 1 ’和v 2’ 必须是相互作用后同一时刻的瞬时 速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos ? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t (?p= t w =t FS =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = F v

物理竞赛练习(2能量与动量)

竞赛练习2 (能量与动量) 1?如图所示,水平细杆MN、CD,长度均为L。两杆间距离为h, M、C两端与半圆形细杆相连,半圆形细杆与MN、CD在同一竖直平面内,且MN、CD恰为半圆弧在M、C两点处的切线。质量为m的带正电的小球P,电荷量为q,穿在细杆上,已知小球P与两水平细杆间的动摩擦因数为仏小球P与半圆形细杆之间的摩擦不计,小球P与细杆之间相互绝缘。 在MD、NC连线的交点处固定一电荷量为Q的正电荷,如图所示,使小球P从D端出发沿杆滑动,滑到N点时速度恰好为零。(已知小球所受库仑力始终小于重力)求小球P从D端出发时的初速度。 2?两个质量都为m的小球,用一根长为21的轻绳连接起来,置于光滑桌面上,绳恰好伸直。用一个垂直绳方向的恒力F作用在连线中点0上,问:在两小球第一次碰撞前的瞬间, 小球在垂直于F方向上的分速度是多少? 3.在光滑水平面上放着一个质量为m!、高度为a的长方体滑块,长度为I (l > a)的光滑 轻质杆斜靠在滑块的右上侧棱上,轻杆能绕0轴在竖直面内自由转动,杆的上端固定一个质量为m2小球。开始时系统静止,轻杆与水平面间的夹角为“。试求系统释放后滑块的速度v i随B的变化规律。

4 ?图示的是一个物体沿斜面滑动的速度大小与时间关系的测量结果。物体质量 仪器每隔30ms 记录一次速度。斜面底端有一个缓冲器。试利用图线求出: (1) 斜面的倾角和摩擦系数; (2) 第二次碰撞的平均作用力 (3) 第三次碰撞的机械能损失。 5 ?如图为体积不可压缩流体中的一小段液柱,由于体积在运动中不变,因此当 S i 面以速度 V 1向前运动了 X i 时,S 2面以速度 V 向前运动了 X 2,若该液柱前后两个截面处的压强分别 为P 2和P i , 利用功能关系证明流体内流速大的地方压强反而小(忽略重力的作用及高度的 变化). 6?—半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上 .一小滑块在半球面内 侧最高点处获得沿球面的水平速度,其大小为 v 0 (v 0 =0).求滑块在整个运动过程中可能达 到的最 大速率?重力加速度大小为g m =100g , V [Xk/s]

(完整版)动量与能量专题复习

动量与能量专题复习 一、教学目的 1. 能灵活选取研究对象,正确分析物理过程。 2. 能从动量和能量的角度去综合分析和解决一些力学问题。 二、教学重、难点 重点:力学规律的综合应用。 难点:在物理过程中,对所遵循的相应力学规律的正确判定。 三、教学过程 一个力学过程,所遵循的物理规律往往是多方面的,对相互作用的两物体这一整体遵循能的转化和守恒,总动量守恒是较为常见的一类问题。 (一)解决力学问题一般采用的三种方法 1.运用力与物体的瞬时作用效果——牛顿运动定律 。 2.运用力对物体作用时间的积累效果——动量定理和动量守恒定律 。 3.运用力对物体作用空间(位移)的积累效果——动能定理和能量守恒定律 。 (二)碰撞中能量关系 1.分类: (1)弹性碰撞:碰撞后总动能 等于 碰撞前总动能。 (2)非弹性碰撞:碰撞后总动能 小于 碰撞前总动能。 (3)完全非弹性碰撞:碰撞后两物体粘合在一起,碰撞后总动能 小于 碰撞前总动能,且系统 动能损失 最多 。 注意:不管是何种碰撞,在整个作用过程中系统的总动量 守恒 。 例1.在光滑的水平面上,置放着滑块A 和B ,它们的质量分别为1m 和2m ,滑块B 与一轻弹簧相连,弹簧的另一端固定在竖直的墙上,滑块A 以速度0v 与静止的滑块B 发生正碰后粘合在一起运动并压缩,如图所示,求弹簧所能达到的最大弹性势能。 解:取向右为正 对A 、B 组成系统:据动量守恒定律 'P P =得 1012()m v m m v =+ 对A 、B 、弹簧组成系统:压缩弹簧过程,据机械能守恒定律P K E E ?=-?得 2221012121()22() P m v E m m v m m =+=+ 讨论:弹簧的最大弹性势能为什么不等于A 滑块的初动能?(原因是:AB 碰撞过程,动能损失) 所以,第二种解法为:据能量守恒定律得 21012 P E m v E = -V 损 22101211()22E m v m m v =-+V 损 由以上两式解得: P E =2210122() m v m m +

动量和能量

暑假专题 --- 动量和能量 力的效应: 一^ 斗 F x 0 力的瞬时作用效应 牛顿第二定律F = ma ;当合外力为零时 物体平衡。 F y 0 力对时间的积累效应一一动量定理 Ft = P 2 — p i ,当合外力的冲量为零时, 系统动量守恒 p i = P 2o 力对空间的积累效应一一动能定理 Fs = E k2 — E ki ,当只有重力和弹簧弹力做功时, 机械 能守恒E i = E 2o (一)动量定理和动能定理 动量和动能是从不同角度描述物体运动状态的物理量。动量是矢量,而动能是标量; 物体动量的变化用外力的冲量来量度,而动能的变化则用外力的功来量度。动量定理和动 能定理的公式分别为: Ft = mv 2 — mv i L 1 2 1 2 Fs mv 2 mv 1 2 2 虽然两个公式分别为矢量式和标量式,但不难看出二者仍有很多相同的地方。首先两 个公式的形式是 相似的;其次式中的 V i 、V 2和S 均应相对于同一惯性系;再者合外力的冲 量Ft 与合外力的功Fs 在求解方法上也具有相似性,即可以先求合力 F 再求它的冲量或功, 也可以先求各分力的冲量和功再合成。 (二)动量守恒定律和机械能守恒定律 如果说动量定理和动能定理研究对象仅限于单个物体的话,那么动量守恒定律和机械 能守恒定律的研究对象则一定是由多个物体所构成的系统。二者的数学表达式常用形式分 别为 m i V i m 2V 2 m i V i ' m 2V 2' ③ 在应用两个守恒定律解题时首先要注意系统的确定和守恒条件的确定。两个守恒定律 的条件含义是完全不同的,解题时千万不能混为一谈。 1. 动量守恒的条件 ① 动量守恒定律的条件是系统不受外力的作用,但是实际上,根本不受外力作用的系 统是不存在的,只要系统受的合外力为零,那么该系统就将严格遵循动量守恒定律,因为 “合外力为零”与“不受外力作用”在对系统运动状态的变化上所产生的效果是相同的。 ② 在实际情况中,合外力为零的系统也是很少遇到的,因此在解决实际问题时,如果 系统内部的相互作用力(即内力)远比它们所受的外力大(例如相互作用时间极短的碰撞 类问题就是如此)就可忽略外力的作用,应用动量守恒定律去处理。 ③ 动量守恒定律表示的是物理量之间的矢量关系, 所以若系统所受的合外力并不为零, 但合外力在某个方向上分量为零时,那么尽管系统的总动量不守恒,但总动量在该方向上 的分量却是守恒的,例如平抛或斜抛出去的物体,它们只在竖直方向上受到外力,而水平 方向上不受外力作用,因此尽管该物体在飞行的过程中总动量不守恒但在水平方向上动量 却是守恒的。 2. 机械能守恒的条件 “只有重力和弹力做功”这一条件可理解为包含下列三种情况:①只受重力或弹力; 1 2 mV i 2 1 mgh i 扌 mV 22 mgh 2

相关文档
最新文档