反渗透在焦化废水处理中的应用研究学习资料

反渗透在焦化废水处理中的应用研究学习资料
反渗透在焦化废水处理中的应用研究学习资料

反渗透在焦化废水处理中的应用研究

摘要:进行了(5~10m3/d)“A2/O+MBR(膜生物反应器)+反渗透(RO)”组合工艺用于焦化废水深度处理的试验研究。试验结果表明,该组合工艺处理效果优良RO系统能够长期稳定运行。在进水CODcr平均浓度高达3000ppm,NH3-N浓度220ppm时, RO出水COD<20 mg/L, NH3-N<3 mg/L。

关键词:A2/O工艺;MBR;RO;焦化废水;蒸氨废水;

前言

焦化废水是在生产焦炭、煤气、焦油及焦化产品的过程中产生的废水,含有多种污染物质。其中有机物以酚类化合物为主,占总有机物的一半以上,有机物中还包括多环芳香族化合物和含氮、氧、硫的杂环化合物等。无机污染物主要以氰化物、硫氰化物、硫化物铵盐等为主。其中蒸氨废水是焦化废水中浓度最高,处理难度最大的废水,属难降解的高浓度有机工业废水类。传统处理工艺都是,将其与生活污水或其他低浓度工艺废水混合稀释后,一起进行生化处理,达标排放。

本次试验采用“MBR+RO”组合工艺作为焦化蒸氨废水的深度处理,国内在此方面尚未有成功的研究报道。

1试验装置与方法

1.1、试验装置与方法

试验采用的中试装置在现场完成组装,其中MBR膜分离装置和RO装置都是一体化设备,能够选择手动和自动运行两种方式。

MBR装置采用的是DOWTM FLEXELL-20中空纤维膜,膜平均过滤孔径为0.1μm。装置使用了2支FLEXELL-20膜软件,膜通量在10~20L/m2.h,处理能力为5~10m3/d。

RO装置使用的是DOW FILMTECTM BW30-365-FR膜元件。装置产水量为5~8 m3/d。连续运行,膜池来水加还原剂和阻垢剂后进入系统。系统设置的回收率为65%,70%和80%。图1是中试试验所采用的工艺流程。

1.2试验方法

蒸氨废水先经过调节池,调节池主要是加酸调节pH,调节池出水进入气浮池除油。除油后的废水进入水解酸化池。水解酸化池的作用主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。酸化后的出水进入缺氧池,缺氧池带搅拌机,主要是起到反硝化的作用,缺氧池的出水在好氧池被有效的生化降解后进入膜池;在膜池进行泥水分离,产水进入RO装置进行进一步的脱盐处理,活性污泥混合液回流到缺氧池进行反硝化。

蒸氨废水→调节池→A2/O→潜水泵→MBR一体化装置→

RO系统(加HCl、阻垢剂)→混床

图1 中试系统工艺流程图

2试验水质及运行参数

试验废水来源为山东焦化集团铁雄能源煤化有限公司二分厂蒸氨废水。表1为该废水水质情况。

试验连续运行了90天。试验过程中MBR膜生物反应器的HRT为55~78小时。焦化废水经过调节,除油后进入水解酸化池,酸化池的水力停留时间为15~24h,缺氧池HRT为16~24h,好氧池的HRT为24~30小时。MLSS控制在8~10g/L。

3 结果及分析

3.1 RO进水SDI变化情况

SDI值是污染指数的简称,在反渗透系统中,用来衡量反渗透进水的一个重要指标。一般采用15分钟SDI值称作SDI15值。反渗透系统进水要求SDI15<5,推荐值SDI15<3。反渗透进水SDI15值越小说明进水对反渗透膜的污染程度越小,反渗透膜的清洗周期越长。SDI15值测定方法是向Φ45mm的0.45μm的微孔滤膜上连续加入一定压力(30PSI,相当于2.1kg/cm2)的被测定水,记录下滤得500ml水所需的时间T0(秒)和15分钟后滤出500ml 水所需的时间T t(秒),按下式计算得SDI15值。

SDI15=(1-T0/T t)×100/15

试验中,RO进水为MBR系统产水,实验期间共获得MBR出水SDI15值数据共43个。MBR 出水SDI值的变化曲线如图2所示。从图中可以看出其出水SDI值最大4.33,最小1.62。

图2 RO系统进水SDI变化曲线图

由于来水受前处理蒸氨设备和生化系统稳定性影响,难以保持相对均匀的进水水质条件。实验中第25d-37d系统来水为未经过蒸氨的焦化废水,原水加入地表水后配水运行,导致MBR产水SDI指数有明显剧烈波动。在实验初期和配水运行阶段(调试阶段和配水运行阶段如在图中标示)SDI偏高,原因可能与配水后生化产水水质偏移有关。在停止配水运行后无论SDI指数还是T0值均恢复稳定时状况。从图中绿线可以看出实验期间在进水水质相对稳定时SDI均小于3,总体SDI<3比例达到80%。同时实验证实在进水水质无显著变化情况下改变MBR膜通量对SDI值影响不大。

3.2 RO系统脱盐率变化情况

反渗透数据记录每小时1次,在400L/h通量下累积运行55h,500L/h通量运行120h,600L/h运行77h。反渗透进出水电导率变化曲线和脱盐率曲线如图3。

图3 RO进出水电导率和脱盐率变化曲线

从图中可以看出,反渗透脱盐率随通量提高而提高,经浓水循环后表观脱盐率最高可达98.5%。实验期间进水和浓水压差为0,RO膜过水流道无污堵现象。反渗透不同产水量时具有不同的脱盐率,原因在于产水量越高时,进水压力越高,导致脱盐率越高。

3.3进水温度和pH的变化对RO系统的影响

RO系统进水的温度和pH对膜通量以及反渗透产水水质都会有较大影响。试验期间测得的反渗透进水温度和pH曲线如图4所示

图4 RO系统进水水温和PH情况

从图中可以看出,进水水温波动较大对进水压力有一定的影响,在实验接近完成阶段,预处理生化工艺段受pH冲击,硝化细菌大量失活造成MBR系统来水pH在8.2~8.5之间,进入RO系统来水出现人为加酸不足,经过连续两晚运行后,RO系统在进水电导变化不大时出现压差上升(相对先前进水压力,ΔP约为0.7bar)。因此严格控制RO系统运行pH是其能稳定产水关键之一。从实验结果看,温度低于34℃,进水pH控制在6.8~7.5之间时可保持RO系统稳定。

3.4 RO系统产水水质情况

经过MBR生化处理后的焦化废水COD在200~300mg/L的水平,同时含盐量高,成分复杂,硬度和氟离子等结垢离子的含量也高,具有很高的结垢倾向。为了模拟工业系统的实际状况,RO系统采用浓水循环的方式运行,实验期间在保持系统70%回收率条件下。此时该膜元件的工况和工业系统中工况最差的最后一只膜类似。RO系统产水水质情况如表2所示。

表2 RO系统产水水质

产水COD受进水COD含量影响,对COD去除率可达到98%以上,氨氮去除率约为90%。RO系统在通量自400L/h提升到600L/h各运行周期内均无发现有明显污堵现象,无水质冲击的进水条件下产水水质达到预期目标。RO系统产水水质较好,在通过混床之后,可以做为锅炉回用水,节约了生产成本。

3.5 RO系统标准化产水情况分析

由于进水水质中温度、电导、COD、氨氮等含量波动较大,难以直接衡量RO系统的稳定运行情况,因此采用陶氏RO膜产水标准化程序对RO系统产水进行标准化分析。产水情况如图5。

图5 RO系统标准化产水

由图5可以看到,试验期间产水量非常稳定,说明RO系统运行比较稳定,在运行周期内没有较明显的污堵情况发生。

四结论

在整个试验过程中,本组合工艺运行稳定,处理效率高,出水COD、氨氮,浊度等指标都很低,出水水质已达到或优于城市杂用水水质标准。

1、MBR膜组件产水水质好,出水SDI基本保持在3以下,大部分时候在SDI<2的水平,为RO系统的稳定运行提供了保障。

2、RO系统脱盐率随着膜通量的提高而提高,脱盐率可以达到98.5%

3、当控制进水pH在6.8~7.5之间时,RO膜元件表现出很好的抗污染能力。在设定的膜通量和回收率下运行,跨膜压差和产水量能保持稳定。

4、RO出水COD<20 mg/L, NH3-N<3 mg/L ,RO产水水质可以达到很高标准,可经过混床离子交换后用于锅炉补给水。

焦化废水处理设备

焦化废水处理设备 摘要:焦化废水来源于炼焦生产中煤在高温干馏、煤气净化以及化工产品精制过程,其水质复杂排放量大。文章对国内外常用的焦化废水处理技术,如传统生化处理技术进展和新型焦化废水处理技术进行了探讨。 关键词:焦化废水设备;生化法;超临界水氧化;天一水务;传统生化处理技术;新型焦化废水处理技术 一、当前国内外焦化废水的治理技术及其存在问题 (一)焦化废水的处理技术主要分为生化法、化学氧化法和物理化学方法生化法方面主要有活性污泥法,SBR法,A-O(缺氧-好氧)法,以及新兴的生物强化技术、生物膜、生物流化床技术和各种生物脱氮组合工艺。化学氧化法主要有催化湿式氧化法、光化学氧化法、化学药剂氧化、臭氧氧化法等,因焦化废水处理量大,这些方法处理工业废水目前更多的是实验研究或者处理中试阶段,尚未真正投入工业运用。物理化学方面有混凝、萃取、活性炭吸附、膜分离以及超声波声化学法等,一般作为生化法的预处理或后处理方法。 (二)焦化废水的处理方式虽然很多,但目前各国应用最广泛的还是生化法 1.它利用微生物的新陈代谢使废水中的有机物分解。然而,生化处理法虽然有处理量大,适用范围广,维护费用低等优点,但也因焦化废水水质水温波动较大而处理效果受到影响。如细菌

等微生物对废水的温度要求特别高,一般水温需控制在10℃~40℃之间,而地处我国南方的夏季进水水温通常在50℃左右。也同时受废水的pH值,污染物浓度的影响,所以对操作条件要求比较严格。 2.国内外所采用的生化处理技术大体相同,只不过国外在二级生化处理之前采取了更为复杂的预处理和其他方法控制进入生化系统的水质,防止有毒污染物浓度过高,并在生化处理流程之后采取三级净化系统。如美国美钢联的加里公司炼焦厂将生产的焦化废水收集后,再用等量的湖水稀释。该系统包括脱焦油、游离蒸氨、后蒸氨、调节槽、废水调节储存槽以及活性污泥处理系统等。加拿大Dofasco和Stelco公司的焦化厂采用经蒸氨去除游离氨和加碱去除固定铵后进行生化处理与深度处理。日本大部分焦化厂的废水使用活性污泥法,由于日本特有的排海优势,因此在焦化废水处理时,首先考虑降低废水中的有毒物质,在调节池中先加3~4倍稀释水,以降低NH4+-N和COD浓度。在进入曝气池之前,再进行pH值调整,加入磷酸盐,然后进行约10h 的曝气,再经沉淀后的水排入海洋水体。欧洲的焦化废水处理工艺普遍采用以预处理去除油与焦油,气提法除氨,生物法去除酚、氰化物、硫氰化物、硫化物,并进行深度处理后排放。 3.当前国内对焦化废水的处理普遍采用预处理加生化处理的二级处理工艺,国外进一步利用活性炭、生物膜技术等进行三级的深化处理。我国在20世纪60年代末,冶金部冶金研究总院

焦化废水处理方案

第二章方案设计 2.1 概述 2.1.1 工程概况 ****焦化污水处理工程,焦化厂在生产过程中产生有毒害污水及部分生活污水,处理后达到《炼焦生产设计技术规范》的要求,并且全部用于熄焦,不外排达到零排放。 2.1.2 设计依据 (1)****焦化厂的提供的原始资料; (2)提供每天产生的废水水质、水量等基本资料; (3)《炼焦生产设计技术规范》要求; (4)《室外排水设计规范》GBJ14-87; (5)《建筑给排水设计规范》GBJ15-88; (6)《城市区域环境噪声标准》GB3096-93; (7)《工业自动化仪表工程施工及验收规范》(GBJ93-86); (8)《给水排水工段结构设计规范》(GBJ69-84); 2.1.3 设计范围 2.1. 3.1本改造工程设计范围包括废水处理站的工艺、设备制造、安装调试、电气与自控等专业的内容。 2.1. 3.2 电线、电缆以污水处理站设备电控柜为交接点。 2.1.4 设计原则

(1)采用成熟、可靠的废水处理工艺,确保处理出水的各项指标达到国家的有关 排放标准(氰化物不能处理达标)。 (2)废水处理设施力求占地面积小,工程投资省,运行能耗低,处理费用少。 (3)废水处理设施在运行上有较大的灵活性和可调节性,以适应水质水量的变化, 同时设置事故应急排放管道,供紧急、特殊情况下使用; (4)采用性能稳定,技术先进的控制系统,主要部分实现自动化管理,减轻工人 劳动强度,使废水处理工程出水稳定,易操作,易管理,易维护。 (5)设计时充分考虑废水处理系统配套设备的减振、降噪措施,废水处理过程中 产生的剩余污泥经好氧消化稳定后浓缩处理,再经板框压滤机压成泥饼含水率低利于装运,避免产生二次污染。 2.1.5 其他配套条件 2.1.5.1 蒸氨塔(由业主委托化工设计院进行设计) 焦化废水中含有剩余氨水,废水中NH3-N 很高,必须进行蒸氨预处理,并且要加碱脱除固定氨。其目的一是为了回收剩余的NH3-N,充分利用资源;目的二是将焦化废水中的NH3-N 浓度降低至200mg/L 以下,避免对后续生化处理产生不利影响。高浓度的进水NH3-N会导致:①硝化菌负荷过高,活性受到抑制;②耗氧量大而出现供氧量不足,导致硝化过程不彻底,出水NH3-N 超标; ③为保证供氧充足而导致能耗高;④碳酸钠消耗量太大,从而导致运行成本很高。蒸氨废水中NH3-N 浓度决定于蒸氨塔的处理效率,蒸氨塔效率越高,废水中NH3-N 浓度越低,处理难度和能耗也就越低。

焦化废水处理技术及其发展文献综述

焦化废水处理技术及其发展文献综述 前言:焦化废水的定义是焦化厂在炼焦过程中各环节所产生的废水的统称,废水的主要来源有三个,分别是在煤干馏时期、荒煤气的回收和净化阶段以及化学产品的回收阶段。废水中含有大量的氮、磷、硫等无机盐污染物,另外也含有大量的不可降解的有机物如酚类、油类、联苯类、吡啶、吲哚和喹啉等。这些污染物的超标排放会对水产业,农业以及人类的生活饮水带来巨大危害,因此,如何治理焦化废水成为焦化行业所面临的一个重要的问题。本文就目前各种焦化废水的治理方法做一个综述,介绍一下近年来焦化废水治理技术的发展。 主题:焦化废水处理技术主要包括物理化学法、生物化学法和化学处理法,由于焦化废水中所含的污染物的种类多,污染量大,导致目前大多数技术只是出于实验室的中试阶段,并未大量投入到工业生产中。 1物理化学处理法 物理化学法主要包括吸附法和混凝法和其他的一些新的方法。 吸附法 吸附法处理废水的原理是利用了吸附剂的多孔特性,吸附废水中的一种或多种物质,将污染物从废水中除去,常用的吸附剂主要有活性炭[1]、硅藻土[2]和粉煤灰[3]等。活性炭[4]是一种多功能材料由于活性炭具有表面积大、疏松多孔[5]的特性,这使得它成为最好的吸附剂[6]。而硅藻土由于具有独特的壳体结构、比表面积大、孔隙度高等优点,也被广泛应用于废水的处理上面。至于粉煤灰,则是由燃煤锅炉及火力发电厂所排放出的工业废渣,它的成分因来源不同而各不相同,作为一种新型的废水处理剂,可以很好的去除废水中的各种阴、阳离子及有机污染物[7]。 混凝法 混凝法是通过向废水中加入混凝剂[8],通过混凝剂的水解作用产生氢氧化物胶体和水合配离子,这两种物质能使水中的污染物发生凝聚作用,产生沉淀,然后被除去。常见的混凝剂有铝盐、铁盐[9]等,还有一种新型的碱式稀土混凝剂[10],通过与其他传统的混凝剂如聚合硫酸铁相比较,碱式稀土混凝剂有着更为理想的效

焦化废水处理工艺说明

50t/h 焦化废水 设 计 方 案 中国城镇水网w w w .c h i n a c i t y w a t e r .o r g

目 录 一、工程概况 二、设计依据 三、设计原则 四、废水处理量及废水性质 五、废水及污泥处理工艺流程简图 六、废水处理工艺 七、系统工艺说明 八、主要设施技术参数 九、控制系统说明 十、系统用电设施 十一、运行费用 十二、废水处理设施布置 十三、防渗措施 十四、生产班制与人员安排 十五、服务及培训计划 中国城镇水网w w w .c h i n a c i t y w a t e r .o r g

一、工程概况: 焦化废水的来源主要有:煤夹带入水,反应生成水和焦化产品蒸馏、洗涤加入的蒸汽和新鲜水,在与煤气和产品水接触后冷凝或分离出来的废水,包括集气管喷淋分离液和初冷液组成的剩余氨水;氨水工艺中洗氨的富氨水。这两部分废水蒸氨(回收)后排出。硫氨工艺中的终冷洗苯水;苯、焦油、古马隆等化工产品加工的分离水。 煤中碳、氢、氧、氮、硫等元素,在干馏过程中转变成各种氧、 氮、硫的有机和无机化合物,使煤气中的水分及蒸汽的冷凝液中含有多种有毒有害的污染物。由于煤中含氮物多,所以废水中含很高的氮 和酚类化合物以及大量有机物、CN、SCN 及硫化物等。焦化废水水量 大,污染物复杂、浓度高。 二、设计依据: 1、根据《中华人民共和国环境保护法》的有关文件。 2、、室外排水设计规范GBJ14—87。 3、建筑给排水设计规范GBJ15—88。 4、城市区域环境噪声标准GB3096—93。 5、地面水环境质量标准GB3838-88。 6、根据国家《污水综合排放标准》GB8978-96中的二级排放标准。 三、设计原则: 1、排入废水处理设施的废水为焦化废水,其它废水不得混入,废水经处理后达到国家有关标准后方可纳入水域或市镇管网。 2、采用国内目前较为先进成熟的物化+生化法结合专利药剂的新颖处 理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况。并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 3、废水处理设施具有较大适应性、应急性,可以满足水质、水量的 中国城镇水网w w w .c h i n a c i t y w a t e r .o r g

污水处理历史意义

2011年03月10日

1、毕业设计(论文)选题依据(选题意义、国内外发展现状分析、主要参考文献目录) 1.1选题意义 随着工农业生产的迅速发展和人民生活水平的不断提高,用水紧张和污水排放的问题已越来越突出。目前,我国城镇大部分的生活污水采用直接排放的方式,没有采取应有的治理措施,加重了对环境的污染。在国家可持续发展的新政策下,环境保护已受到各级政府和全国人民的重视,对污水进行彻底的治理以保护人类赖以生存的环境的重要性越来越大,高效节能的城市污水处理技术与工艺已能为国民经济的发展起到较大的推动作用。 建立城镇污水处理厂对改善城镇水环境,保障城镇经济发展起着举足轻重的作用。随着经济的发展,城市化进程的不断加速,人口和经济增长、粗放型发展模式、无组织大面积排施污染物、污水处理率偏低,以及牺牲环境和资源去追求眼前利益等,均是造成水污染日趋严重的原因。大量未经充分处理的污水被用于灌溉,已经使农田受到重金属和合成有机物的污染。据农业部在占国土面积85%的流域内,通过372个代表性区域取样调查,发现全国粮食总量的1/10不符合卫生标准。污水灌溉还造成粮食产量低,污染加大,营养成分下降。长期的污染水灌溉使病原体、致突变、致癌物质通过粮食、蔬菜、水果等食物迁移到人体内,严重危害了人体健康。水污染还对养殖业造成极大的危害,水源污染使原有的水处理工艺受到前所未有的挑战。 根据我国经济发展和环境保护需求,结合我国环境保护最新研究成果和国际环境保护技术水平和发展趋势,提出一套合理、经济、运转效率高的工艺流程对污水进行处理,以达到标准排放。对于保护环境,减轻环境污染,遏制生态恶化趋势,有着重要的意义。 1.2国内外发展现状分析(写2~3页) (1)关于活性污泥法 当前流行的污水处理工艺有:SBR法、氧化沟法、普通曝气法、CASS 法、A2/O 工艺等,这几种工艺都是从活性污泥法派生出来的,且各有其特点。 (1)CASS法 CASS(Cyclic Activated Sludge System)工艺是间歇式活性污泥法的一种变革,是由SBR(序批式活性污泥法)工艺发展而来,集合了ICEAS和CAST工艺的优点。CASS

焦化废水处理技术分析

焦化废水处理技术分析 摘要:焦化废水是一种典型的难降解有机废水。介绍了预处理技术,二级处理技术的物化法、生物法、化学法和循环利用法的应用和研究进展。 关键词:焦化废水处理技术 焦炭是高耗水产业,每年全国焦化废水的排放量约为2.85亿t。其成分复杂,毒性大,它的超标排放对人类、水产、农作物都可构成很大的危害。总之,焦化废水污染,是工业废水排放中一个突出的环境问题,也是摆在人们面前的一个急需解决的课题。 目前焦化废水一般按常规方法先进行预处理,然后再进行生物脱酚二次处理。针对这种状况,近年来国内外出现了许多比较有效的焦化废水治理技术。这些方法大致分为物化法、生物法、化学法和循环利用等4类。 一、焦化废水的预处理技术 焦化废水中部分有机物不易生物降解,需要采用适当的预处理技术。 常用的预处理方法是厌氧酸化法。这是一种介于厌氧和好氧之间的工艺,其作用机理是通过厌氧微生物水解和酸化作用使难降解有机物的化学结构发生变化,生成易降解物质。焦化废水经厌氧酸化预处理后,可以提高难降解有机物的好氧生物降解性能,为后续的好氧生物处理创造良好条件。 二、焦化废水的二级处理技术 (一)物理化学法 (1)吸附法。吸附法处理废水,就是利用多孔性吸附剂吸附废水中的一种或几种溶质,使废水得到净化。常用吸附剂有活性炭、磺化煤、矿渣、硅藻土等。这种方法处理成本高,吸附剂再生困难,不利于处理高浓度的废水。 (2)利用烟道气处理焦化废水。由冶金工业部建筑研究总院和北京国纬达环保公司合作研制开发的“烟道气处理焦化剩余氨水或全部焦化废水的方法”已获得国家专利。该技术将焦化剩余氨水去除焦油和SS后,输入烟道废气中进行充分的物理化学反应,烟道气的热量使剩余氨水中的水分全部汽化,氨气与烟道气中的SO2反应生成硫铵。 该方法投资省,占地少,以废治废,运行费用低,处理效果好,环境效益十分显著,是一项十分值得推广的方法。但是此法要求焦化的氨量必须与烟道气所需氨量保持平衡,这就在一定程度上限制了方法的应用范围。 (二)生物处理法 生物处理法是利用微生物氧化分解废水中有机物的方法。这种方法是让生物絮凝体及活性污泥与废水中的有机物充分接触;溶解性的有机物被细胞所吸收和吸附,并最终氧化为最终产物(主要是CO2)。非溶解性有机物先被转化为溶解性有机物,然后被代谢和利用。

焦化废水处理设计方案

焦化废水处理设计方案 二零零九年三月 焦化废水处理项目? 方案设计 目录 1. 项目概述...................................................................... . (1) 1.1 项目业主简 介 ..................................................................... .............................................. 1 1.2 项目背 景 ..................................................................... ...................................................... 1 1.3 项目的来 由 ..................................................................... .................................................. 1 2. 设计水量、水质及设计要 求 ..................................................................... (1) 2.1 废水的来 源 ..................................................................... .................................................. 1 2.2 设计水 量 ..................................................................... ...................................................... 3 2.3 原水水 质 .....................................................................

污水处理工艺水质净化效果分析

污水处理工艺水质净化效果分析 发表时间:2019-06-10T11:38:47.517Z 来源:《防护工程》2019年第5期作者:朱琳[导读] 但五日生化需氧量和总磷三种污染物的处理能力,效率明显高于A厂B处理厂,因此认为B厂工艺更适合该地区污水废水的处理。山东泉建工程检测有限公司山东济南 250014 摘要:对某新区两座不同处理工艺的污水处理厂长达一年的进出水水质比较,发现两种工艺对氨氮和总氮处理效率相当,但是在化学需氧量、五日生化需氧量和总磷三类污染物处理能力方面,B厂处理效率明显高于A厂。我们认为B厂工艺更加适合处理该地区的污废水。 关键词:污水处理;水质净化效果;处理工艺随着大量污水处理厂的建设和投入使用,新的污水处理厂迫切需要提高符合条件的排放的操作和操作水平。然而,就目前的国际废水处理技术而言,每一种方法都有一个适用性问题。 一、国内污水处理工艺概况 自工业革命以来,废水处理已经被越来越多地被关注,从原始的自然处理到简单的初级处理,到各种先进技术的使用,到废水的深层处理和再利用。处理过程也从传统的活性污泥法、氧化污水法、A/O、A2/O、AB、SBR(包括CASS过程)等方法发展,以满足不同的疏散要求。目前,二次废水处理通常使用活性污泥法、生物膜法和生态处理法,以补充微生物有氧代谢在废水中去除有机物。日本已经开发出生物反应器,能够有效地消除工业和家庭废水中的氮化合物,并将氮化合物转化为氮。在20世纪90年代,美国开发了先进的电絮凝废水处理技术,这些技术运行良好,水质稳定;到20世纪末,欧盟国家已经开发出了等离子污水处理技术,其耗电量是一般臭氧发生器的十倍以上。由于卫生条件要求过高或成本过高,这些先进的废水处理工艺尚未大规模投入使用。与发达国家相比,废水处理在我国初始阶段,与污水处理厂生物处理工艺作为主体工艺,也有部分地区采用化学、物理强化一级处理、土地处理法等。 二、工程概况与工艺 1.再生水厂。A厂是近几年建成的,设计污水处理能力为20000 m3/d,采用h20工艺,出水水质达到《城市污水处理厂污染物排放标准》A级标准。该装置近年来运行良好,整个处理过程如图l所示。A20工艺简单,总水力滞留时间比其他类似工艺短,工艺交替进行厌氧(缺氧)和好氧。不适合丝状菌繁殖,污泥膨胀,不需要加药等。但是,提高除氮效果比较困难,污泥生长受到一定的限制,使得提高除磷效果比较困难等缺点。 2.B可再生水厂。B厂也是近几年建成的,工艺流程分为预处理、生物处理、深度处理、污泥处理和脱臭五个部分。流程流程如图2所示。主要处理工艺为卡塞尔氧化沟3000。再生水厂的出水水质应符合《北京市水污染排放标准》(DBl 1/307-2005)B级标准,并符合国家和北京市有关标准。Carussel氧化沟是荷兰DIN公司开发的,它是为了满足在较深的氧化沟中使混合料充分混合,并能保持较高的传质效率,克服氧化沟浅、混合效果差等缺陷而开发的。实践证明,该工艺具有投资少、效率高、可行性好、管理方便、运行维护成本低等优点。 2.抽样和分析方法。样本收集和存储根据水质检测中心水和废水监测分析方法相关要求Ⅲ,每月固定指向一个瞬时样本,分析化学需氧量(cod)生化需氧量(CODcr、)、5(bod)、氨氮(NH5 N)、总氮(TN)、总磷(TP),共有五个指标。进口采样点为沉淀池出口,出口采样点为二次沉淀池出口。样品分析。水质分析方法:CoDcr采用GB/t22597-2008重铬酸盐法,BODs采用hj505-2009稀释接种法,nh3-n采用hj535-2009 Nash试剂分光光度法,TN采用GB/Tl 1894-1989碱性过硫酸钾消解紫外分光光度法,TP采用GB/t11893-1989钼酸铵分光光度法。 三、结果与讨论 1.入口水温分析。相关研究表明,进水温度对污水处理效果有一定的影响。每年6月瞧水温较高,21℃~28℃;1~3个月和12月水温很低,低于12℃;至少1个月,低于5℃。但水温不影响A、B工艺的处理效果。 2.化学需氧量。城市污水处理厂的主要功能之一是减少污水中的有机污染物,减少污染物总量。浓度。在图2中(a)和(b)为两个处理厂进水和出水的CODcr变化。从图中可以看出,两厂的处理效果非常好,出水水质保持稳定,达到了《城市污水处理厂污染物排放标准》(gbl8918-2002)B级标准所憎恶的1。TN采用Hj535-2009 Nash试剂分光光度法,GB/Tl 1894-1989碱性过硫酸钾消解紫外分光光度法,TP 采用GB/t1183-1989钼酸铵分光光度法。B厂进水水质较A厂差,B厂最大COD进水达到550mg l-1,A厂最大COD进水达到300mg l-1。A厂年均进水浓度为90mg/L,B厂年均进水浓度为216mg/L。5 mg/L、A、B工厂年平均加工效率可达88。和94年的9%。两厂出水CODcr均低于25mg l-1,温度和进水浓度对两种工艺处理效果无显著影响。出水完全符合排放要求。 3.五日生化需氧量。图1(C)和(d)显示了两种植物的bod进出水的变化。从图中可以看出,BOD和COD。,两者之间存在着密切的相关性。两种指标的进水浓度具有一致的波动特征。B厂进水浓度明显高于A厂,A厂进水浓度年均值为30。4毫克/升,B工厂是98。1 mg/L,B 厂的水是A厂的3倍,两厂最大进水浓度分别为104mg/L和379 mg/L,也是A厂的3倍左右。对比化学需氧量浓度分布图,可以看出水体具有良好的生物降解性。根据出水指数,A厂处理后的年平均浓度为4。8 mg/L,B厂年平均出水浓度仅为2。在3 mg/L时,平均处理效率达到84。和97年的2%。7%,可以看出植物B的治疗效率高于工厂,但是工厂的废水水质可以满足排放要求,不到20 mg/L,出水水质稳定,外部条件的变化没有显著影响的效果。

焦化废水处理工艺

焦化废水处理工艺综述 张玉婷 摘要:焦化废水成分复杂,有酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等污染物,是一种较难处理的工业废水。本文主要介绍了近年来焦化废水的一些新工艺的开发和应用,包括预处理,常见组合工艺和深度处理技术。 关键词:焦化废水;组合工艺;深度处理 Summary of Coking Wastewater Process Y uting Chan Abstract:There are many pollutants in coking wastewater, such as phenols, polycyclic aromatic hydrocarbons, and heterocyclic compound containing nitrogen, oxygen and sulfur, which makes the coking wastewater hard to degrade. This article mainly introduced some new process in development and application of coking wastewater in recent years, including pretreatment,the common combined process and depth processing. Key word:Coking wastewater; combined process;depth processing 1、引言 焦化废水是炼焦、煤气净化及副产品回收过程中产生的废水。其污染物组成复杂、浓度高、毒性大,是一种典型的含难降解有机污染物的工业废水。这种废水主要来源于剩余氨水、粗苯分离水、终冷富余水、焦油分离水四部分[1,2]。废水量大、水质成分复杂,除含有高浓度的酚、氰、油、氨氮等物质外,还含有喹啉类、苯类及其衍生物等多环或杂环类化合物。污染物形成的色度高,在水中以真溶液或准胶体的形式存在,性质非常稳定,COD及色度去除困难。 随着环保意识的不断强化,国家已把“节能减排”工作提上了重要的议事日程,并提出严格要求。在《污水综合排放标准》(G8979—96)中规定,外排污水中的氨氮质量浓度小于15mg/L,对排入重点保持水域的具有致癌性的BAP一类污染物要求小于30mg/L由于焦化污水中大量存在氨氮及一些致癌性芳烃及稠环芳烃,其超标排放将对环境造成严重污染。因此,开发经济有效的焦化污水净化技术是当务之急。

二氧化氯在污水处理中作用

论二氧化氯在废水处理中的作用 齐翔东北煤炭环境保护研究所 一、二氧化氯的性能与特点 二氧化氯在常温下是一种带有辛辣气味的黄色气体,易溶于水形成黄绿色溶液,浓度为107.9g/L,能迅速杀灭细菌和病毒,不与酚类反应生成有害化合物,能降低或消除氯气易形成的致诱变和致癌的三氯甲烷,是稳定的使用单体。二氧化氯对病毒芽孢及水中的异氧菌、硫酸盐、还原菌和真菌均有较好的消毒效果。它的主要作用是对细胞壁的吸附和通过功能,可有效的氧化细胞酶的系统,并快速的控制微生物蛋白质的合成。 ClO2气体的性质极不稳定,在一定的浓度和压力下(当空气中ClO2浓度大于10%易于爆计炸)具有爆炸的危险,不易储存和运输,因此,要求在使用的现场制备。目前,制作二氧化氯的设备有电解法和化学法及高纯度二氧化氯发生器。 二二氧化氯的机理 1、二氧化氯的杀菌机理, 细菌表面带有一定的负电荷,这些负电荷可以避免细菌收到带负电荷的杀菌剂的影响。ClO2以中性单分子形态存在并进入细胞内部,其效果不受细胞表面负电型的影响。ClO2透过细胞膜的方式为单纯扩散,不需要载体蛋白(渗透酶)的参与,所以无论细菌的代谢活力如何,ClO2均可起到杀菌作用。另外ClO2能破坏微生物的葡萄糖氧化酶,使其不能参加氧化还原活动并导致细

胞的代谢机能发生障碍。ClO2还可以与细菌中的部分氨基酸发生氧化还原反应,是氨基酸分解破坏,进而控制蛋白质的合成,最终导致细菌死亡。 2、脱色机理 用ClO2处理废水主要利用其强氧化性。ClO2与有机物的反应都是自由基氧反应,高沸点的有机物大部分被氧化成为较低沸点的中小分子的有机物,其中部分被分解为可挥发的有机物、CO2和H2O。在脱色工艺中,ClO2可是染料中的某些家断裂形成电子,电子跃迁能力很大,最大吸收波长已移到可见光外,于是颜色便消失。由于水中的分子数目减少,水对同一波长的吸收减弱,吸光度值减小,这样就达到了脱色的目的。 3、除酚机理 在除酚工艺中,ClO2可使酚类化合物分解位醌类化合物和简单的有机酸,其中的一部分可以进一步分解为CO2和H2O。MN2+、CN-等无机物和酚类、腐殖质等发生反应并有效地去除这些物质,达到降低色度、分解酚类等物质的目的。 三二氧化氯在污水处理中的应用 二氧化氯在医院污水处理中的应用 医院污水不可避免的含有多种细菌、病毒、寄生虫卵和有害物质,如不进行有效的处理就排放,细菌病毒会严重污染水体,传播大量的疾病。目前:医院污水消毒有几种方法,如液氯消毒法、次氯酸钠消毒法、抽烟消毒法、二氧化氯消毒法。一般液氯

焦化废水处理工艺流程及特点

焦化废水处理工艺流程及特点 焦化废水特点: 焦化废水所含污染物包括酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等,是一种典型的含有难降解的有机化合物的工业废水。焦化废水中的易降解有机物主要是酚类化合物和苯类化合物,砒咯、萘、呋喃、眯唑类属于可降解类有机物。难降解的有机物主要有砒啶、咔唑、联苯、三联苯等。焦化废水的水质因各厂工艺流程和生产操作方式差异很大而不同。一般焦化厂的蒸氨废水水质如下:CODcr3000-3800mg/L、酚600-900mg/L、氰10mg/L、油50-70mg/L、氨氮300mg/L 左右。 焦化废水处理: 预处理 生物处理前的预处理方法通常是物理和化学方法,如气浮法、吹脱法、混凝沉淀法、折点氯化法等,主要目的是使二级生化处理工艺的进水达到可生化处理的范围。在预处理工艺中,吹脱法主要是用于蒸氨,气浮法用于除油 生物处理 SDN工艺 SDN(强化反硝化/硝化)工艺是先进的生物脱氮技术应用到焦化废水治理领域的一种生物处理工艺,使氨氮和COD去除率达到90~96%以上,比较以往的治理工艺,SDN具有系统适应能力强,运行稳定、操作简单、成本低、去除污染物范

围广的特点。废水经处理,回用于熄焦、洗煤等,大大减少新鲜水的用量,既减少了污染物排放总量,又能节约用水,具有明显的经济效益。 SDN焦化废水处理工艺由预处理、生物处理、深度处理、污泥处理四工段组成,功能分区清晰,便于操作管理。其中生化处理段采用由强化缺氧和好氧两部分组成的SDN工艺。该工艺氨氮和COD去除率达到90~96%以上,彻底解决了传统处理工艺中氨氮、COD去除率低下,生化系统不稳定,投资和运行成本据高不下等难题。 HSB工艺 HSB(High Solution Bacteria)是高分解力菌群的英文缩写,是由100多种菌种组成的高效微生物菌群,其中47种经中国台湾经济部标准局的专利认可,专门应用于废水处理。根据不同废水水质,对微生物筛选及驯化,针对性的选择多种微生物组成的菌群并将其种植在废水处理槽中,通过对微生物生长不息、周而复始的新陈代谢过程,分解不同污染物形成相互依赖的生物链和分解链,突破了常规细菌只能将某些污染物分解到某一中间阶段就不能进行下去的限制。其最终产物为CO、H2O、N2等,达到废水无害化的目的。该技术具有以下优点:Ⅰ.HSB技术对COD、NH 3-N等降解性能好,经投加HSB菌种后不仅COD、NH3-N 能达标排放,酚、氰等也有较大的降解; Ⅱ.投资费用少。由于HSB高效菌种能够有效的处理高浓度COD及NH3-N,可将原活性污泥法的气浮除油出水直接进入HSB处理装置,不再添加稀释水。不仅减少处理设施容积,减少占地面积,而且节省大量水资源;

焦化废水处理现状

焦化厂可分为独立焦化厂(煤气厂)和钢铁、化肥等联合企业的焦化厂两种形式,其规模从几万吨、几十万吨/年到几百万吨/年大小不等。 1 焦化废水的来源、特点及处理方式: 1.1 废水来源: 焦化生产过程中排放出大量含酚、氰、油、氨氮等有毒、有害物质的废水。焦化废水主要来自炼焦和煤气净化过程及化工产品的精制过程,其中以蒸氦过程中产生的剩余氨水为主要来源。蒸氨废水是混合剩余氨水蒸馏后所排出的废水。剩余氨水是焦化厂最重要的酚氰废水源,是含氨的高浓度酚水,由冷凝鼓风工段循环氨水泵排出,送往剩余氨水贮槽。剩余氨水主要由三部分组成:装炉煤表面的湿存水、装炉煤干馏产生的化合水和添加入吸煤气管道和集气管循环氧水泵内的含油工艺废水。剩余氨水总量可按装炉煤14%计。剩余氨水在贮槽中与其它生产装置送来的工艺废水混合后,称为混合剩余氨水。混合剩余氨水的去向,有的是直接蒸氨,有的是先脱酚后蒸氨,有的是与富氨水合在一起蒸氨,还有的是与脱硫富液一起脱酸菜氨,脱酸蒸氨前要进行过滤除油。焦化厂还含一些其它废水,其所占比例不大,污染指标也较低,这里就不介绍了。 1.2 废水特点 焦化废水所含污染物包括酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等,是一种典型的含有难降解的有机化合物的工业废水。焦化废水中的易降解有机物主要是酚类化合物和苯类化合物,砒咯、萘、呋喃、眯唑类属于可降解类有机物。难降解的有机物主要有砒啶、咔唑、联苯、三联苯等。 焦化废水的水质因各厂工艺流程和生产操作方式差异很大而不同。一般焦化厂的蒸氨废水水质如下:CODcr3000-3800mg/L、酚600-900mg/L、氰10mg/L、油50-70mg/L、氨氮300mg/L左右。如果CODcr按3500mg/L计,氨氮按280mg/L计,则每吨焦炭最少可产生0.65kgCODcr和0.05kg氨氮,全国机焦产量为7000万吨,则每年可产生45500吨CODcr和3500吨氨氮,如果污水不处理,将对环境造成多么大的污染。 1.3 废水处理方式 目前焦化厂废水处理有多种方式,首要方式应将焦化废水处理综合考虑。如建厂时选择厂址就应论证废水处理方案,充分考虑厂址的上、下游及周围的情况,不要设在给水水源附近和有特殊要求的地方;能否将经处理后的水送附近洗煤厂、钢铁厂的综合废水处理厂、城市污水处理厂,使废水处理方案更趋合理也是必须考虑的问题。 其次是废水处理不能单一考虑,而应与煤气净化工艺等统一考虑设计方案。从产生废水的装置开始处理,每道工序均按要求设计,减轻最终废水处理装置的负担。如上海宝钢三期工程将蒸氨工段与废水处理合并为一个车间,使真能达标排放。 将处理后的废水尽量在厂内利用,如送作熄焦补充水、除尘补充水、煤场洒水等,从而减少外排水量,同时采取措施防止对环境及设备产生不良影响。 2 焦化废水处理的几种常规方法和其装备水平 2.1 焦化废水处理的发展概况 我国焦化废水处理自五十年代起的发展过程,是一个从无到有、逐步提高、逐步完善的过程。五十、六十年代处于低水平阶段,仅有几个大型焦化厂对酚水进行简易的机械处理。如鞍钢化工总厂、包钢焦化厂等,仅设有平流沉淀池或圆形带刮泥机的沉淀池去除浮油和重油,处理后将部分酚水送去作熄焦补充水。进入七十年代后,运用了国内外的生化技术,在首钢焦化厂兴建了生物脱酚装置,同时一批大、中、小型焦化厂都相继设立了生物脱酚装置,当时的重点是脱酚,处理方式和流程也比较简单。 一九七八年改革开放到八十年代又为一个阶段。当时由于国家对环保工作的重视,使焦化废

废水处理

废水处理技术相关进展 贺成志 指导老师欧阳玉祝 (吉首大学化学化工学院湖南吉首416000) 摘要:废水处理就是利用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以至达到废水回收、复用,充分利用水资源。本文介绍了高浓度有机废水,农村生活污水,焦化废水三大类废水的处理技术。 关键词:废水;处理技术 Advances in the research on wastwater treatment He Chengzhi Teacher Ouyang Yuzhu (College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan, 416000) Abstract:Wastewater treatment is the use of physical, chemical and biological methods of wastewater treatment, purification of waste water, reduce pollution, as well as to wastewater recycling, reuse, make full use of water resources. Key words:wastwater;processing 1 高浓度有机废水处理技术 1.1 化学处理技术 1.1.1 焚烧法 焚烧法利用燃料油、煤等助燃剂将有机废水单独或者和其他废物混合燃烧,焚烧炉可采用各种炉型。效率高,速度快,可以一步将有害废水中有机物彻底转化为二氧化碳和水。但设备投资大,处理成本高,除某些特殊废水(如医院废水)以外难以采用。 1.1.2 Fenton氧化法 Fenton试剂具有很强的氧化能力,因此Fen2ton氧化法在处理废水有机物过程中发挥

反渗透在焦化废水处理中的应用研究修

反渗透在焦化废水处理中的应用研究 摘要:进行了(5~10m3/d)“A2/O+MBR(膜生物反应器)+反渗透(RO)”组合工艺用于焦化废水深度处理的试验研究。试验结果表明,该组合工艺处理效果优良,RO系统能够长期稳定运行。在进水CODcr平均浓度高达3000ppm,NH3-N浓度220ppm时, RO出水COD<20 mg/L, NH3-N<3 mg/L。 关键词:A2/O工艺;MBR;RO;焦化废水;蒸氨废水; 前言 焦化废水是在生产焦炭、煤气、焦油及焦化产品的过程中产生的废水,含有多种污染物质。其中有机物以酚类化合物为主,占总有机物的一半以上,有机物中还包括多环芳香族化合物和含氮、氧、硫的杂环化合物等。无机污染物主要以氰化物、硫氰化物、硫化物铵盐等为主。其中蒸氨废水是焦化废水中浓度最高,处理难度最大的废水,属难降解的高浓度有机工业废水类。传统处理工艺都是,将其与生活污水或其他低浓度工艺废水混合稀释后,一起进行生化处理,达标排放。 本次试验将RO工艺引入焦化蒸氨废水的深度处理,国内在此尚未有成功的研究报道。1试验装置与方法 1.1、试验装置 试验采用的中试装置在现场完成组装,其中MBR膜分离装置和RO装置都是一体化设备,能够选择手动和自动运行两种方式。 MBR装置采用的是DOWTM FLEXELL-20中空纤维膜,膜平均过滤孔径为0.1μm。装置使用了2支FLEXELL-20膜软件,膜通量在10~20L/m2.h,处理能力为5~10m3/d。 RO装置使用的是DOW FILMTECTM BW30-365-FR膜元件。装置产水量为5~8 m3/d。连续运行,膜池来水加还原剂和阻垢剂后进入系统。系统设置的回收率为65%,70%和80%。图1是中试试验所采用的工艺流程。 1.2试验方法 蒸氨废水先经过调节池,调节池主要是加酸调节pH,调节池出水进入气浮池除油。除油后的废水进入水解酸化池。水解酸化池的作用主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。酸化后的出水进入缺氧池,缺氧池带搅拌机,主要是起到反硝化的作用,缺氧池的出水在好氧池被有效的生化降解后进入膜池;在膜池进行泥水分离,产水进入RO装置进行进一步的脱盐处理,活性污泥混合液回流到缺氧池进行反硝化。 蒸氨废水→调节池→A2/O→MBR一体化装置→RO系统(加盐酸、阻 垢剂)→混床 图1 中试系统工艺流程图 2试验水质及运行参数 试验废水来源为山东焦化集团铁雄能源煤化有限公司二分厂蒸氨废水。表1为该废水水质情况。 表1 山东焦化二分厂蒸氨废水水质

焦化废水处理技术

焦化废水处理技术- 污水处理 【摘要】鉴于焦化厂的废水中存在有多种有毒物质,而且对生态环境、社会、人类、农业都具有十分巨大的危害,如果这些废水不经任何处理而直接排放到外界的话,对于整个生态环境都会形成极大的危害,本文结合焦化厂废水处理中的实际状况,提出加强废水处理管理工作的建议。 【关键词】有机工业焦化废水氨氮类物质 焦化废水中存有大量的有机物质,同时这些物质中多数是具有危害和毒性的,这其中主要有酚类、氰化物、硫胺类物质、氨氮类物质、焦油、BOD5等多种有机物,废水中这些有机物指标超高会直接影响人类的生存环境。 近年来随着我国科学技术的不断进步和研发力度的加大,在一些项目建设上给与一些试验的发展,从科研投入方面给与更多的实践的指导,这些都是在很大程度上提供宝贵的实践经验。但是在诸多的技术上,消除氨氮类物质和CODCr都存在着难以解决的技术难题,这些问题在业内已经形成一种共识,已成为制约行业发展的一个瓶颈。在目前的两阶段处理方案中,如何更好的实施废水处理工作,关键是废水能否进入到深度处理阶段,一方面有些指标的检测就需要做到控制在一定范围内,如CODCr要在达到国家排放标准上的指标,目前为200mg/L;另一方面氨氮类物质处理的问题上,焦化废水本身氨氮类物质含量较高,同时在废水处理各个环节中又有大量的氨类有机物质产生,如在一些过程中部分有机物质中也会合成这种氨氮类物质,这

就大大的增加了除去氨氮类物质的难度。随着国家对于环境保护政策的相继提出,相关部门也将会给出更多更严格的有机物排放指标的要求,这些无疑会督促焦化厂加大污水处理力度,针对厂内氨氮类物质的排放要求作出新的调整,并且订制有关的解决策略,进而完成技术实施。 1 焦化废水的来源 焦化厂废水的来源主要是针对煤炭加工处理过程中各个环节中,所出现的一些问题进行综合阐述。 废水产生主要是集中在几个部分:一个是除尘部分,在备煤环节中需要对煤炭除尘,在此处形成一定量的除尘污水;同时在焦炭处理的过程中,推焦环节中也会出现一部分除尘污水。另一个是炼焦化学产品之一――焦油加工部分,其一是焦油氨水分离环节中,剩余的氨水可以利用,但是大多数会成为了废水的来源,其二在进行焦油的深加工环节中,出现的焦油精制分离水,也会成为废水的一部分,其三是在进行焦油深加工处理过程中出现的苯类物质,该类物质对于环境有极高的破坏力,加之生产中对于这部分物质要进行不断的提纯和冶炼,不仅需要耗掉大量的水资源,而且会形成了污水,其四是对于粗苯之后的精苯物质的加工,如古马隆的生产,此环节需要更多的水来过滤和处理,自然也会成为一个大量污水的来源。再一个是煤气加工部分,焦炉煤气的制冷环节中需要大量冷水,随之就产生了煤气初冷水和煤气终冷污水,同时对于煤气需要进一步提炼,经由管道处理,将形成的煤气进行不断地加工处理,此操作需要用水将对应的煤气管

焦化废水处理工艺

焦化废水处理工艺 焦化废水的处理一直是国内外污水处理领域的一大难题。该污水中污染物成分复杂,含有挥发酚、多环芳烃和氧硫氮等杂环化合物,属于难生化降解的高浓度有机工业废水。焦化废水用常规的活性污泥法处理,对去除酚、氰、油及其它易于生物降解的污染物一般来说是有效的,但对氰化合物及构成毒性的某些污染物却难以处理。 表1 焦化废水有机物组成 表2 焦化工艺各段水质水量表

目前,国内焦化厂的废水处理系统主要采用一级处理和二级处理,采用三级处理的还很少。一级处理是指从高浓度污水中回收利用污染物,其工艺包括氨水脱酚、隔油等。二级处理主要指酚氰污水无害化处理,主要以活性污泥法为主,还包括强化生物处理技术,这对提高处理效果有一定的作用。三级深度处理是指在生化处理后的水仍不能达到排放标准时所采用的再次深度净化。其主要工艺有活性炭吸附法、膜法及氧化塘法等。 由于焦化废水的水质特点,因此脱氮是这类废水处理的关键。污水中氮主要以氨氮和有机氮形式存在,通常只含有少量或没有亚硝酸盐和硝酸盐形态的氮,在未经处理的污水中,氮有可溶性的,也有非溶性的。可溶性有机氮主要以尿素和氨基酸的形式存在。一部分非溶性有机氮在初沉池中可以去除。在生物处理过程中,大部分的非溶性有机氮转化成氨氮和其他无机氮,却不能有效地去除氮。废水生物脱氮的基本原理就在于,在有机氮转化为氨氮的基础上,通过硝化反应将氨氮转化为亚硝态氮、硝态氮,再通过反硝化反应将硝态氮转化为氮气从水中逸出,从而达到脱氮的目的。微生物脱氮转化过程如图1所示。 细菌分解氧化氧化蛋白质、尿素氨氮亚硝酸盐氮硝酸盐 水解作用脱硝反硝化 异化作用同化作用 (有机碳) 细菌细胞氮气 (有机氮)

宝钢焦化废水处理技术发展与现状_金亚飚

35 CHINA ENVIRONMENTAL PROTECTION INDUSTRY 2013.12 用 金亚飚,肖丙雁 (宝钢工程技术集团有限公司,上海 201900) 摘 要:焦化废水的处理一直是国内外废水处理领域的难题之一。文章以宝钢为例,介绍并分析了该企业焦化废水处理技术的发展与现状。 关键词:钢铁企业;焦化废水;废水处理技术;宝钢 中图分类号:X703 文献标志码:A 文章编号:1006-5377(2013)12-0035-03 宝钢焦化废水处理技术发展与现状 1 概述 焦化废水是煤制焦炭、煤气净化及焦化产品回收过程中产生的高浓度有机废水。焦化废水成分复杂,废水中除有氨、氰、硫氰根等无机污染物外,还有大量的有机污染物,有机污染物的种类以苯酚类及其衍生物、喹啉类及其衍生物和吲哚类及其衍生物为主。焦化废水危害大,部分多环芳烃以及杂环化合物还是“三致”物质。 建国以来,国内钢铁企业焦化废水处理技术的发展经历了艰难曲折的过程。20世纪50~60年代,焦化废水处理处于低水平阶段,沿用的是前苏联的焦化废水处理技术,简易的机械处理:平流沉淀池或圆形带刮泥机的沉淀池, 去除浮油和重油,简单回用于熄焦。20世纪70年代,首钢焦化厂首先建设了一套生物脱酚装置,传统的焦化废水处理工艺均是以生物脱酚为重点。20世纪80年代,以消化、吸收宝钢引进日本的处理技术为主。20世纪90年代,以脱氮及降低COD为主,在生物脱酚基础上的A/O及A 2/O工艺等,提出了焦化废水零排放的要求。 进入21世纪以来,国内加快了有关高效、快速处理设备的研发工作,并将“焦化废水达标排放与回用技术”列入“国家重大技术装备研制和重大产业技术开发专项规划”。《炼焦化学工业污染物排放标准》(GB16171-2012)也明确规定新建焦化企业的酚氰废 水不得外排。焦化废水处理技术将进入全新的领域。本 文就宝钢焦化废水处理技术的发展与现状进行了相关介绍。 2 焦化废水水质及宝钢焦化废水的特点 焦化废水主要来源于原料煤表面水及化合水、焦化生产过程中的用水及蒸汽等。主要来源的焦化废水水质见表1。 表1 主要来源的焦化废水水质表 目前,焦化废水中已检出的有机污染物种类约为70~250种。宝钢焦化废水的主要有机污染物组分见表2。

相关文档
最新文档