混流式水轮机

混流式水轮机
混流式水轮机

https://www.360docs.net/doc/9c18150200.html,/trade/pay_success.htm?biz_order_id=213979720000462&out_trade_no=T

200P213979720000462&dealing=T

第一节混流式水轮机结构

一、概述

混流式水轮机是反击式水轮机的一种,其应用水头范围很广,从20~700m水头均可使用。它结构简单,制造安装方便,运行可靠,且有较高的效率和较低的空蚀系数。现以图2-1所示的混流式水轮机为例来介绍这种水轮机结构。水轮机的进水部件是具有钢板里衬的蜗壳,座环支柱也称固定导叶1,在转轮四周布置着导水机构导叶2。座环支柱具有坚固的上环a和下环b,蜗壳和上下环焊接在一起。导叶轴颈用衬套(钢或尼龙材料)支承在底环3和固定于顶盖4的套筒5上。底环固定于座环的下环上面。顶盖用螺钉6与座环的上环连接。导水的传动机构是由安置在导水叶上轴颈的转臂12,连杆13和控制

环14组成。导叶的开度0a(从导叶出口边端到相邻导叶背部的最短距离)的改变是通过导水机构的两个接力器16和控制环连接的推拉杆15传动控制环来实现的。

图2-1 HL200-LJ-550水轮机剖面图(高度单位:m,尺寸单位:

mm)

1—固定导叶;2—导叶;3—底环;4—顶盖;5—套筒;6—螺钉;

7—主轴法兰;8—主轴;9—上冠;10—下环;11—叶片;12—转臂;13—连杆;14—控制环;15—推拉杆;16—接力器;17—导轴承;18—泄水锥;a

19,b

19—上,下迷宫环;a—坐环上环;b—坐环下环;20—连接螺栓

由于混流式水轮机应用水头较高,导叶承受的弯曲载荷大,因此导叶的相对高度0b与轴流式水轮机比较起来做得短一些,以减小跨度。此外,随着水头增高,相同功率下水轮机的过流量减小,这样有可能减小流道的过流载面。0b一般随水头增加而减小。

导叶和水轮机顶盖4及底环3之间的间隙及相邻导叶在关机时的接合面都会有漏水现象。一般采用橡胶的或金属制成的密封件,可使导水机构关闭时的漏水量最小。在高水头的水轮机中,有时采用专门的管状密封装置,在关机时其内腔充以压缩空气,能使端面完全密封。

转轮是水轮机将水流能量转换为机械能的核心部件。水流通过导水机构进入转轮。转轮由上冠9,下环10和叶片11组成。一般混流式水轮机有14~19个叶片。叶片、上冠和下环组成坚固的整体钢性结构。转轮上冠与主轴8的下法兰连接。泄水锥18与上冠连接,用于消除水流旋蜗。

转轮密封a

19,b

19是安置在转轮上冠和下环上的多槽环。水轮机工作时,转轮前后的水流个别为高压与低压,转轮后常形成真空。因此,水轮机工作时有部分水流经过转动与不转动部件之间的间隙无益地漏掉,从而使水轮机效率降低。密封环就是为了减少流量漏损。当水经过密封环空间时,受到突然扩大和缩小的局部水力阻挡,产生水力损失,从而减小流速,使通过缝隙的流量减小。

减压孔联通转轮上腔和转轮下面的低压区,从而减小由推力轴承承受的轴向推力,当有减压孔(图2-1上的20)时,转轮上冠必须设置密封装置。

图2-2为混流式水轮机水平剖面图,座环的固定导叶数量通常为导叶数一半。

图2-2 混流式水轮机水平剖面图

二、转轮

转轮是各种型式水轮机将水能转变成机械能的核心部件。转轮也直接决定水轮机过流能力、水力效率、空蚀性能和工况稳定性等工作性能。因此转轮各部分应满足水力设计的型线要求,有足够的强度和刚度,制造的转轮应具备有抗空蚀损坏,耐泥沙磨损的性能。

对于不同的水头,水轮机的形状是不同的,有轴流式,混流式和冲击式等几大类水轮机。划分这几大类水轮机的根本原因是通过转轮的过流量和转轮的强度及刚度等因素。低水头下工作的水轮机可以具有较大的过流量,尽管水轮机气蚀系数大一些,仍旧可以得到合理的安装高程。轴流式水轮机过流量大,转轮叶片承悬臂梁状。由于工作水头不高,强度,刚度也能满足要求。当水头增加,由于气蚀及强度条件不够,轴流式水轮机不适应了,转轮就应该做成有上冠和下环的形状。

混流式水轮机适用水头范围极广。由于水头和流量的不同,其转轮形状也各不相同。一般说来,水头愈高转轮叶片高度减小,长度增加,水流在转轮中愈趋于幅向流动。随着工作水头降低,转轮叶片变短,高度增加,水流愈趋于轴流方向。图2-3表示不同比转速的混流式水轮机轴面投影,一般来说水轮机适应水头愈高,它的比数愈小,不同比转速的转轮其形状是不同的。

图2-3 不同比转速的混流式水轮机轴面投影

不管什么形状的混流式水轮机,其转轮基本上由上冠、下环、叶片、上下止漏装置,泄水锥和减压装置组成,图2-4是混流式转轮结构示意图。

图2-4 混流式转轮示意图

1— 压装置;2、6—止漏环;3—上冠;4—叶片;5—泄水锥;

7—下环

1.转轮上冠

转轮上冠的作用除了支承叶片外,还与下环构成过流通道。上冠形似圆锥体,其上部中间为上冠法兰,此法兰的上面与主轴相连,其下面固定泄水锥,在上冠上固定有均匀分布的叶片。在上冠法兰的外围开有几个减压孔,在其外侧面装有减压装置。上冠流线可以做成直线形和曲线形两种,如图2-5所示。直线型上冠具有较好的工艺性,但其效率特别是在负

荷超过最优工况时低于曲线型上冠。此外采用曲线型上冠可增加转轮流道在出口附近的过水断面积,因而使水轮机的单位流量增加。试验证明,转轮上冠曲线的倾斜角θ越小单位流量越大。当然不能过小,否则会破坏整个流道的光滑性。不同上冠曲线转轮的工作特性)(11Q f =η如图2-5所示。由此可见,倾斜度小的上冠曲线应得到更广泛的应用。当然,无论采用哪一种上冠曲线,都应当使泄水锥部分与轴心线的交角不过大,以免引起水流剧烈的撞击。

图2-5 转轮上冠曲线形状 2.转轮叶片

叶片的作用是直接将水能转换为机械能。叶片断面形状为翼形,转轮叶片数1Z 的多少对水力性能和强度有显著的影响,随比转速的不同叶片数1Z 在9~21的范围内。表2-1绘出了叶片数与比转速的关系,这是实践统计资料,可供设计时参考。叶片上端与上冠相连,下端与下环连成一个整体。在其它尺寸(如叶片厚度,叶型长度)不变的条件下,增加叶片数目会增加转轮的强度和钢度。因此当水轮机应用水头提高时转轮叶片数亦相应增加,但叶片的厚度在流道中又起排挤空间的作用,叶片数增加减小过水断面面积,致使转轮的单位流量减小。试验表明,叶片数的改变不仅改变最优工况时的单位流量11Q ,同时也改变出力限制线的位置。图2-6说明了上述分析。

表2-1 混流式转轮的叶片数与比转速的关系

图2-6 叶片数不同时的)(11Q f n =曲线

叶片数对汽蚀性能的影响没有一定规律。在叶片长度L 不变的情

况下,增加1Z 意味增加转轮叶栅稠密度τL

,即增加叶片的总面积,从而降低单位面积叶片负荷,降低叶片正背面压差,这将改善汽蚀性能。但因混流式转轮叶栅的τL

本来就较大,所以因1Z 增加使汽蚀得到的改善并不显著,同时Z 1增加,必然引起叶片对流道的排挤增加,流道中流速增加,又使得空化性能变坏,因此叶片数增加对汽蚀性能的影响要看哪个因素起主要作用而定。

3.转轮下环

转轮下环的作用是增加转轮的强度和刚度并与上冠形成过流通

道。下环形状及转轮出口直径2D (见图2-3)对转轮出口附近的过水断面面积影响很大,因而它影响转轮的过水能力及汽蚀性能。低比转速水轮机的转轮下环呈曲线形,12D D 值小于1,进口边的高度和导叶的高度一样。这样的转轮单位过流量必然很小,强度和刚度有充分保证。由于叶片比较长,叶片单位面积上的负荷就比较小,空化系数减少。实践表明,对120~60=S n 的低比转速转轮,12D D =0.6~0.7时具有良好的汽蚀性能和效率。

比转速较高的混流式转轮,下环通常采用具有锥角(图2-5a )的直线形。锥角α越大出水截面积越大,可提高过流能力和改善汽蚀性能,但α越大会引起脱流,使水力损失增大效率下降。图2-7和图2-8绘出了具有不同下环锥角α的转轮的汽蚀和能量特性的曲线。

图2-7 不同下环锥角转轮的η-11Q 和η-11N 曲线

1—α=3°;2—α=6°;3—α=13°

图2-8 不同下环锥角转轮的11Q -α曲线

1—α=3°;2—α=6°

(1)下环锥角α加大则曲线)()(1111N f Q f ==ηη和均右移,α角越大,曲线右移越多。此时最高效率移向较大流量区域,而在小于最优工况的低负荷区效率下降。因而转轮需长期在部分负荷下工作,则锥角α不宜太长,以免平均的运行效率下降。

(2)下环锥角α由3°增加到6°时,在实际上不改变水轮机最高效率情况下可使转轮的过流能力11Q 增加2.5%,而其出力可增加2%左右,当α角由6°增至13°时,虽然11Q 和11N 增加更多,但效率开始下降。因而锥角α不宜过大,一般不应大于13°。

(3)从图2-8中可看出,α角的增加能使汽蚀系数下降,改善汽

蚀性能。这是因为α角加大后增加了转轮出口附近的过水截面积,降低了流速而造成的。

根据实践在表2-2和表2-3中给出了12D D ,锥角α角与比转速的关系。采用这些数据是有利的,但随着生厂技术的发展,这些关系是可以变化的。

表2-2 转轮进出口直径的关系

表2-3 转轮下环锥角

4.泄水锥

泄水锥的作用是引导经叶片流道流出的水流迅速而顺畅的向下渲泄,防止水流相互撞击,以减少水力损失,提高水轮机效率。其外形呈倒锥体。它的结构型式有铸造和钢板焊接两种。里面空心,下面开口,以便排除通过止漏环的漏水及橡胶导轴承的润滑水(有的转轮将泄水控开在泄水锥的外侧),还作为主轴的中心补气和有的转轮的顶盖补气通道之用。

5.止漏装置

止漏装置的作用是用来减小转动部分与固定部分之间的漏水损失。止漏装置分为固定部分和转动部分,为防止水流向上和向下漏出,水轮机上一般装有上、下两道止漏环。上止漏环固定部分装在顶盖上,其转动部分装在上冠上,下止漏环的固定部分一般装在底环上,转动部分装在转轮的下环上。目前广泛采用的止漏环结构型式有间隙式,迷宫式,梳齿式和阶梯式四种,如图2-9所示。

图2-9 止漏装置型式

)(a 间隙式;)(b 迷宫式;)(c 梳齿式;)(d 阶梯式迷宫

(1)止漏环的材料和固定方式

止漏环的材料一般采用ZG30或A3钢板,泥沙较多的电站采用不锈钢。

止漏环的固定方式有直接车制和红套固定两种。对一些水质干净,转轮尺寸较小的转轮,可以直接在上冠和下环上车制迷宫环。一般在整铸转轮上为考虑折卸方便,采用红套固定。

(2)止漏环型式的选择

使用水头200

使用水头200>H m 的混流式水轮机,常采用梳齿式止漏环,它的转动环和固定环的截面为梳齿状,两个环的截面形成交错配合,图2-9)(c 是这种型式的止漏装置。当水流经过梳齿时,转了许多直角弯,增加了水流阻力,使漏水量减少。梳齿式止漏环的间隙为2~1=δmm ,平面间隙h h ,1+=δδ为允许抬机的高度,一般取10~15mm 。其缺点是止漏环与转轮的同心度不易保证,间隙测量困难,安装不便,它一般与间隙式止漏环配合使用。

阶梯式止漏环也多用于水头200>H m 的水电站[见图2-9)(d ],其止漏效果好,因它具有迷宫式及梳齿式止漏环的作用。另外,这种止漏环与转轮的同心度好,安装测量比较方便。

(3)止漏环的安装

止漏环的间隙值不但影响止漏效果,影响机组效率,还会对机组运行稳定性产生较大影响。止漏环单边间隙δ(见图2-9)一般可取转轮直径的10005.0,具体数值参见表2-4。

在安装时,应仔细测量止漏环的单边间隙,当转轮位于安装的最终高程,各止漏环间隙的允许值应符合表2-5的要求。

表2-4 止漏环单边间隙表

表2-5 混流式转轮止漏环间隙允许偏差

当水头超过200m ,采用梳齿密封的混流式水轮机(图2-10),由于运行中机组摆度的影响,圆周方向的间隙21,a a 不均匀,可能导致B A ,腔内水流压力波动,严重时会引起机组振动,因此间隙值21,a a 一般采用适当加大。也可采用加联通管,进口外圆车制环槽等措施来均衡B A ,腔压力值。

图2-10 梳齿密封

1—上梳齿;2—下梳齿;3—A 腔排水管;4—B 腔联管;5—环

行槽

6.减压装置

减压装置的作用是减小转轮上的轴向水推力。其形状为环形减压板,分别装在顶盖下面和上冠的上方。

水流经过混流式转轮时会产生轴向力。设计水轮机时,除了要知道水轮机转轮和主轴的重量外,还要知道轴向水推力。

根据混流式特点,总的轴向水推力为:

)(4321N F F F F F E +++= (2-1) 式中 1F ——转轮流道内水流作用产生的推力;

2F ——作用于转轮上冠因水压力产生的水推力;

3F ——作用于下环因水压力产生的推力;

4F ——浮力。

在实际设计中,往往用经验公式来计算作用于转轮的轴向推力。对混流式水轮机有:

max 21341081.9H D K F t π

?=(N ) (2-2)

式中系数K 与水轮机型号有关,其值可参考表2-6。

表2-6 水轮机轴向力系数K 与水轮机型号的关系

混流式水轮机转轮重量可按下式近似计算。

311)]10(025.05.0[D D W R -+=(t ) (2-3) 分瓣结构的转轮重量按(2-3)结果增加10%。

主轴重量S W 的近似计算,高水头混流式水轮机可取R S W W =,中水头混流式水轮机可取R S W W )5.04.0(+=,(较低水头或大机组取小值);对发电机与水轮机同一轴的机组,混流式可取R S W W )8.07.0(+=。

水轮机总的轴向推力:

)(1081.93S R t W W F F +?+=α (N) (2-4)

在高水头混流式水轮机中,为了降低机组推力轴承的负荷,在结构上主要采用减小作用在上冠外面轴向水推力的措施。

常用的减压装置结构形式有两种,如图2-11所示,图)(a 为引水板和泄水孔的减压方式;图)(b 为顶盖排水管的转轮泄水孔的减压方式。

图2-11)(a 型式中,上下环形引水板分别装在顶盖下方和上冠的上面,当漏水进入顶盖引水板与上冠引水板之间的间隙c 时,由于转轮旋转受离心力的作用,漏水被逸至顶盖引水板上,经泄水孔排至尾水管。此型式的减压效果与引水板面积、间隙E 和的大小及泄水孔的直径d 有关。一般认为引水板和泄水孔面积越大,间隙E 和c 越小,减压效果越显著。泄水孔最好开成顺水流方向倾斜??=30~20β。

在图2-11)(b 型式中,顶盖和尾水管内有数条排水管相连,使上冠上面的漏水一部分经排水管泄至尾水管,另一部分经转轮上的泄水孔排入尾水管。自转轮泄水孔排入尾水管的漏水有的直接排至尾水管,见图2-11)(b 所示;有的经泄水锥内腔排入尾水管,见图2-11)(c 所示。经转轮上的泄水孔排入尾水管,使转轮上面的压力降低,从而减轻作用在转轮上的轴向力推力。但如图2-11)(b 所示的方式可能在泄水锥的过流表面上产生空蚀损坏和磨损。而图2-11)(c 所示的方式又有可能影响补气的效果。

图2-11 减压装置

7.转轮的结构型式

由于混流式水轮机的转轮应用水头和尺寸大小不同,它们的构造型式,制作材料及加工方法均不同。

混流式转轮的结构型式主要是指上冠,叶片和下环三部分的构造型式,基本上分为整铸转轮,铸焊转轮,组合转轮三种。

(1)整铸转轮

整铸转轮是指上冠,叶片和下环整体铸造而成的转轮,如图2-12所示就是整体转轮,这种结构在中小型机组中广泛采用。低水头的中小型混流式转轮材料采用优质铸铁HT20~40或球墨铸铁整铸;高水头的中小型转轮和低水头的大型转轮,则采用ZG30整铸。对高水头的水轮机转轮,为提高其强度和抗空蚀损坏,耐泥沙磨损的性能,采用了不锈钢材料。有些采用普通碳钢的转轮,在其容易空蚀和磨损的过流部位,例如在叶片表面和下环内侧,堆焊抗空蚀耐磨损的材料。

图2-12 整铸转轮

整铸转轮当尺寸不大时,它的生产周期短,成本较低,且有足够的强度,所以广泛采用。缺点是容易产生铸造缺陷,铸造质量不易保证,尤其当转轮尺寸大时,需要铸造设备的能力也大。

(2)铸焊转轮

在混流式转轮制造中,目前广泛采用焊接结构。如图2-13所示就是其中的一种结构形式。转轮的上冠、叶片和下环三部分单独铸造后,经过一定的生产工艺流程,焊接而成。这

图2-13 铸焊转轮

1—上冠;2—叶片;3—下环;4—焊缝

种焊接结构具有良好的技术经济效果,可对不同部位采用不同的钢种,例如对上冠和下环采用普通铸钢而叶片采用不锈钢,这样做既提供了转轮的抗空蚀能力,又节省了镍铬等金属。

铸焊结构转轮,由于铸件小,形状较简单,容易保证铸造质量,同时降低了对铸造能力的要求。但铸焊结构转轮焊接工作量大,对焊接工艺要求高,要确保每条焊缝的质量,避免和消除焊接温度应力等。

大型混流式转轮除采用手工焊外,还采用叶片与上冠电渣焊、下环与叶片手工焊的结构型式。目前已成功地制成了叶片与上冠、下环全部采用管极熔嘴全电渣焊的大型转轮。

(3)组合转轮

当转轮直径大于5.5m时,因受铁路运输的限制,或因铸造能力不足,必须把转轮分半制作,运到现场再组合成整体。

根据转轮各部分的组合连接方式不同,也分几种型式。我国主要采用上冠螺栓连接、下环焊接结构,在上冠连接处有轴向和径向的定位销,如图2-14所示。

图2-14 组合转轮

1—组合螺栓;2—组合定位螺栓;3定位销;4—下部分剖面;

5—上部分剖面;6—临时组合发兰;7—下环分瓣面

高水头混流式水轮机结构特点

高水头混流式水轮机结构特点 【摘要】高水头混流式水轮机由于其运行水头高、额定转速高和过流部件流速高等特点,要求水轮机主要部件的结构与中低水头的混流式水轮机相比有明显的区别。 【关键词】高水头;混流式水轮机;结构 1 水轮机主要部件的结构特点 1.1 转轮 转轮采用抗空蚀、抗磨蚀和具有良好焊接性能的ZG00Cr13Ni5Mo不锈钢制造,上冠、下环和叶片均采用VOD精炼整铸成型,三者焊为一体,消除残余应力后,用五轴数控机床加工,从而保证叶片型线与模型的完全相似。 为减少高水头机组顶盖的压力,转轮上冠设有泵板,充分排泄转轮上冠与顶盖间止漏环处的漏水,以减小转轮的轴向水推力。 转轮上冠为梳齿式止漏环,下环为台阶式迷宫止漏环,上下转动止漏环与上冠下环一体,与转轮相同材料。泄水锥与转轮上冠采用相同的材料,与上冠通过螺栓把合联接。 1.2 导叶 高水头混流式水轮机一般采用带翼板导叶,材料为ZG00Cr13Ni5Mo,电渣熔铸,带翼板导叶具有优良的水力性能和抗磨蚀性能,可以减少导叶端面的漏水量及减少端部的空蚀及磨损。 由于高水头水轮机水压高,顶盖变形大和泥沙的磨损作用,使导叶端面间隙扩大很快,所以在导叶上、下过流端面设有铜压环自补偿密封,这样能有效减小漏水量。 1.3 导水机构 顶盖、底环和控制环均采用钢板焊接结构,具有良好的刚度。顶盖与底环上设置螺栓把合的固定止漏环,其硬度与转轮止漏环的硬度差一般在40HB以上,这样可有效防止转轮研损。 在中低水头水轮机上,顶盖和底环抗磨板一般采用螺钉连接的结构,但在高水头水轮机上,由于搞水头的作用,螺钉连接的抗磨板容易发生局部变形,使得导叶端面间隙不易达到高水头水轮机的要求,会导致导叶端面磨损,从而增大导叶端面漏水量。所以对高水头混流式水轮机的顶盖一般采用对焊不锈钢抗磨板的

水轮机课程设计

目录 第一章基本资料 (1) 第二章机组台数与单机容量的选择 (2) 第三章水轮机主要参数的选择与计算 (5) 第四章水轮机运转特性曲线的绘制 (10) 第五章蜗壳设计 (13) 第六章尾水管设计 (17) 第七章心得体会 (20) 参考文献 (20) 第一章基本资料 基本设计资料 黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头205 m。 经水能分析,该电站有关动能指标如表1所示: 表1 动能指标 第二章机组台数与单机容量的选择 水电站的装机容量等于机组台数和单机容量的乘积。根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则: 机组台数与工程建设费用的关系 在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。另外,机组台数多,厂房所占的平面尺寸也会增大。一般情况下,台数多对成本和投资不利。因此,较少的机组台数有利于降低工程建设费用

机组台数与设备制造、运输、安装以及枢纽安装布置的关系 单机容量大,可能会在制造、安装和运输方面增加一定的难度。然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。 机组台数对水电站运行效率的影响 水轮机在额定出力或者接近额定出力时,运行效率较高。机组台数不同,水电站平均效率也不同。机组台数较少,平均效率越低。机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显着。当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。当水电站担任系统尖峰负荷并且程度调频任务时,由于负荷经常变动,而且幅度较大,为使每台机组都可以在高效率区工作,则需要更多的机组台数。 另外,机组类型不同,高效率范围大小也不同,台数对电厂平均效率的影响就不同。对于高效率工作区较窄的,机组台数应适当多一些。轴流转浆式水轮机,由于单机的效率曲线平缓且高效区宽,台数多少对电厂的平均效率影响不明显;而混流式、轴流定浆式水轮机其效率曲线较陡,当出力变化时,效率变化较剧烈,适当增加台数可明显改善电厂运行的平均效率。 机组台数与水电站运行维护的关系 机组台数多,单机容量小,水电站运行方式较灵活机动,机组发生事故停机产生的影响小,单机轮换检修易于安排,难度也小。但台数多,机组开、停机操作频繁,操作运行次数随之增多,发生事故的几率也随之增高,对全厂检修很麻烦。同时,管理人员多,维护耗材多,运行费用也相应提高。故不能用过多的机组台数。 机组台数与其他因素的关系 对于区域电网的单机:装机容量较小≯15%系统最大负荷(不为主导电站);装机容量较大≯10%系统容量(系统事故备用容量),因而,单机容量与台数选取不受限制。 根据设计规范要求,机组单机容量应以水轮机单机运行时其出力在机组的稳定运行区域范围内确定为原则。不同型式的水轮机的稳定运行负荷区域如表1。 表2 不同型式的水轮机的稳定运行负荷区域

(完整word版)水轮机结构

水轮机结构 一、简介 (一)、简介水轮机是水电厂将水轮转换为机械能的重要设备。 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型利用水 流的压能和动能,冲击型利用水流动能。 2、反击式中又分为混流、轴流、斜流和贯流四种; 3、冲击式中又分为水斗、斜击和双击式三种。 1)、混流式:水流从四周沿径向进入转轮,近似轴向流出应用水头范围:30m~700m 特点:结构简单、运行稳定且效率高 2)、轴流式水流在导叶与转轮之间由径向运动转变为轴向流动应用水头:3~80m 特点:适用于中低水头,大流量水电站分类:轴流定桨、轴流转桨 3)、冲击式 转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。 水头范围:300~1700m 适用于高水头,小流量机组。 (二)、水轮机主要类型归类 二、水轮机主要基本参数 1、水轮机主要基本参数

水头:Hg、H、Hmax、Hmin、Hr (设计水头) 流量:Q 转速:f=np/60 出力:N=9.81QH n(Kw) 效率:n 2、水轮机型式代号 混流式:HL 斜流式:XL 轴流转桨式:ZZ 轴流定桨式:ZD 冲击(水斗式):CJ 双击式:SJ 斜击式:XJ 贯流转桨式:GZ 贯流定桨式:GD 对于可逆式,在其代号后增加N 3、混流式水轮机 型号:HL100—LJ—210 HL :代表混流式水轮机 100:转轮型号(也称比转速) LJ:立式金属蜗壳 210:转轮直径(210 厘米)

4、轴流式水轮机 ZZ560—LH —1130 ZZ:轴流转桨式水轮机 560:转轮型号 LH :立式混凝土蜗壳1130:表示转轮直径为1130 厘米 5、冲击式水轮机 CJ47—W—170/2X15.0 CJ:冲击式 W :卧轴 170:转轮直径170cm 2: 2 个喷嘴 15.0:射流直径三、水轮机主要部件(一)、组成 引水部件、导水部件、工作部件、泄水部件 1、引水部件 组成:引水室(蜗壳)、座环作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。 2、导水部件 组成:导叶及其操作机构、顶盖、底环 作用:调节进入转轮的流量和形成转轮所需的环量 3、工作部件

卧式混流式水轮机安装

卧式混流式水轮机安装 卧式机组安装前,除作好设备验收,清点工作外,还要根据制造厂说明书和设计图纸对预埋的引水管口、尾水管预留孔位及各基础螺栓孔位置进行测量检查,及早发现问题及时处理。 卧式混流式水轮机安装的主要项目有:埋设部分的安装,蜗壳安装,基座及轴承的安装,水轮机转动部分的安装,轴线调整等项。 一、埋设部分的安装 卧式混流式机组埋设部分包括主阀、伸缩节、进水弯管。通常把这几件组合成一体,吊装就位后进行一次性调整,以减少调整工作量。调整台格后,加以固定,浇注二期混凝土。 二、蜗壳安装 卧式混流武水轮机的蜗壳通常与座环浇铸(焊)成整体,并与导水机构组装成整体到货的。蜗壳安装仍然是将这些部件分解清扫组装成整体后进行的,这样使部件组装更为方便,更能保证装配质量。 蜗壳的吊装就位是在埋设部分的二期混凝土养生合格后进行的。为了保证连接质量,减少调整工作量,也可以与进水弯管、伸缩节、主阀连成整体一次调整,如图4 -3所示。 1.蜗壳的垂直调整 蜗壳的垂直度,直接影响到机组轴线的水平以及转轮与固定止漏环的同心性,要严格控制。调整方法有: (1)方形水平仪法:用方形水平仪直接靠在蜗壳的加工面上测量,方法比较简单,精度可达到0.02~0.04mm/m。 (2)吊线电测法:在靠近加工面2、4两点(图4-4)处悬吊一根钢琴线,用听声法测量2-2、4-4两点的距离。这种方法的精度可达到0.02rnm/m。 考虑到安装尾水管可能把蜗壳拉斜,因此,一般使蜗壳向顶盖方向倾斜0. 05 -0.1mm/m。 2.蜗壳左右偏斜调整 蜗壳左右偏斜要求精度不高,可以用水下尺测量加工面上1.3两点的水平腰即可,如图4- 4所示。如果偏斜太大,可用支承架12上的7进行调整(图4-3)。

论混流式水轮机各部件功能及其安装程序和要求

论混流式水轮机各部件功能及其安装程序和要求 导叶:由导叶体和导叶轴两部分组成。为减轻导叶重量,常做成中空导叶。导叶的断面形状为翼型。导叶轴颈通常比连接处的导叶体厚度大,在连接处采用均匀圆滑过渡形状,以避免应力集中。 导叶轴承:上、中、下轴套,高水头机组为防止导叶上浮力超过导叶自重,保证导叶上端面间隙,在导叶套筒的法兰上一般设有止推装置(止推压板或止推块)。 导叶传动机构:导叶传动机构由控制环、连杆、导叶臂三部分组成,用于传递接力器操作力矩,使导叶转动,调节水轮机流量。该机构形式有叉头式受力情况较好和耳柄式受力情况相对较差。导水叶外围,座环的蝶形边与蜗壳相连,并被蜗壳包围。导轴承位于顶盖上,控制环口通过推拉环与接力器相连。在座环下发布置有基础环,通过锥形环与尾水管相连。混流式水轮机附属装置还有布置在顶盖上的真空破坏阀、吸力补气阀和放水阀等。 水轮机的导水机构是有导叶、传动机构(转臂、连杆、控制环)、接力器、和推拉杆等组成。 水轮机的底环是由上环、下环、和固定导叶三部分组成,它既是水轮机的通水部件,机组安装时的基准部件,又是机组运行的承重部件。要求具有水力损失小,具有一定的强度和刚度。 混流式水轮机的转轮主要由上冠、叶片、下环、止漏环、泄水锥和减

压装置等组成。 水轮机的转轮包括转体、叶片、泄水锥等。 立轴混流式水轮机引水室采用金属焊接蜗壳,其进口与压力水管相连接,其余各节与座环相连。为了便与检修,在蜗壳上开有专门进人孔(蜗壳人孔门),其底部并有排水孔和阀门,以便排出蜗壳积水。 座环位于蜗壳里,布置导水机构,它是水轮机的承重部分,又是过流部件在安装时它还是一个主要基准件,因此它要符合水力,强度和刚强等诸方面的要求。 基础环埋在混凝土内,是转轮室的组成部分,早机组安装和检修拆卸转轮时,用来支撑水轮机转轮。混流式转轮上叶片(24),呈空间扭曲状,断面为流线型,是直接将谁能转换为机械能的最主要部件。止漏装置 止漏装置的作用是用来减小转动部分与固定部分之间的漏水损失。止漏装置分为固定部分和转动部分,为防止水流向上和向下漏出,水轮机上一般装有上、下两道止漏环。上止漏环固定部分装在顶盖上,其转动部分装在上冠上,下止漏环的固定部分一般装在底环上,转动部分装在转轮的下环上。目前广泛采用的止漏环结构型式有间隙式,迷宫式,梳齿式和阶梯式四种,止漏环又称迷宫环,作用是阻止水流从转轮上、下间隙处漏出,分转动和固定部分。 水轮机导轴承的作用:一是承受机组在各种工况下运行时由主轴传来

轴流式水轮机的结构

轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶

图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。 二、转轮体

轴流式水轮机的结构

一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。

1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢 轴;6—转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

混流式水轮机

https://www.360docs.net/doc/9c18150200.html,/trade/pay_success.htm?biz_order_id=213979720000462&out_trade_no=T 200P213979720000462&dealing=T 第一节混流式水轮机结构 一、概述 混流式水轮机是反击式水轮机的一种,其应用水头范围很广,从20~700m水头均可使用。它结构简单,制造安装方便,运行可靠,且有较高的效率和较低的空蚀系数。现以图2-1所示的混流式水轮机为例来介绍这种水轮机结构。水轮机的进水部件是具有钢板里衬的蜗壳,座环支柱也称固定导叶1,在转轮四周布置着导水机构导叶2。座环支柱具有坚固的上环a和下环b,蜗壳和上下环焊接在一起。导叶轴颈用衬套(钢或尼龙材料)支承在底环3和固定于顶盖4的套筒5上。底环固定于座环的下环上面。顶盖用螺钉6与座环的上环连接。导水的传动机构是由安置在导水叶上轴颈的转臂12,连杆13和控制 环14组成。导叶的开度0a(从导叶出口边端到相邻导叶背部的最短距离)的改变是通过导水机构的两个接力器16和控制环连接的推拉杆15传动控制环来实现的。 图2-1 HL200-LJ-550水轮机剖面图(高度单位:m,尺寸单位: mm)

1—固定导叶;2—导叶;3—底环;4—顶盖;5—套筒;6—螺钉; 7—主轴法兰;8—主轴;9—上冠;10—下环;11—叶片;12—转臂;13—连杆;14—控制环;15—推拉杆;16—接力器;17—导轴承;18—泄水锥;a 19,b 19—上,下迷宫环;a—坐环上环;b—坐环下环;20—连接螺栓 由于混流式水轮机应用水头较高,导叶承受的弯曲载荷大,因此导叶的相对高度0b与轴流式水轮机比较起来做得短一些,以减小跨度。此外,随着水头增高,相同功率下水轮机的过流量减小,这样有可能减小流道的过流载面。0b一般随水头增加而减小。 导叶和水轮机顶盖4及底环3之间的间隙及相邻导叶在关机时的接合面都会有漏水现象。一般采用橡胶的或金属制成的密封件,可使导水机构关闭时的漏水量最小。在高水头的水轮机中,有时采用专门的管状密封装置,在关机时其内腔充以压缩空气,能使端面完全密封。 转轮是水轮机将水流能量转换为机械能的核心部件。水流通过导水机构进入转轮。转轮由上冠9,下环10和叶片11组成。一般混流式水轮机有14~19个叶片。叶片、上冠和下环组成坚固的整体钢性结构。转轮上冠与主轴8的下法兰连接。泄水锥18与上冠连接,用于消除水流旋蜗。 转轮密封a 19,b 19是安置在转轮上冠和下环上的多槽环。水轮机工作时,转轮前后的水流个别为高压与低压,转轮后常形成真空。因此,水轮机工作时有部分水流经过转动与不转动部件之间的间隙无益地漏掉,从而使水轮机效率降低。密封环就是为了减少流量漏损。当水经过密封环空间时,受到突然扩大和缩小的局部水力阻挡,产生水力损失,从而减小流速,使通过缝隙的流量减小。 减压孔联通转轮上腔和转轮下面的低压区,从而减小由推力轴承承受的轴向推力,当有减压孔(图2-1上的20)时,转轮上冠必须设置密封装置。 图2-2为混流式水轮机水平剖面图,座环的固定导叶数量通常为导叶数一半。

混流式水轮机转轮裂纹原因分析及预防措施

混流式水轮机转轮裂纹原因分析及预防措施 发表时间:2019-10-18T16:27:10.287Z 来源:《知识-力量》2019年11月46期作者:董哲[导读] 近些年,在我国快速发展的背景下,人们的生活水平不断提高,人们对水电厂各项设备安全性的重视度越来越高。转轮是水电厂混流式水轮机的核心部件,其运行的安全性对水电厂的生产运营有着重要的影响。在水电厂混流式水轮机的实际运行过程中,转轮经常会出现一些问题,例如裂纹、泥沙磨损以及气蚀等,这些都给水电厂的生产造成了很大的隐患。本文主要先对水电厂混流式水轮机转轮常见的 破坏问题及产生原因进行分析,进而探讨相应的维修 (华北水利水电大学,河南省郑州市 450045) 摘要:近些年,在我国快速发展的背景下,人们的生活水平不断提高,人们对水电厂各项设备安全性的重视度越来越高。转轮是水电厂混流式水轮机的核心部件,其运行的安全性对水电厂的生产运营有着重要的影响。在水电厂混流式水轮机的实际运行过程中,转轮经常会出现一些问题,例如裂纹、泥沙磨损以及气蚀等,这些都给水电厂的生产造成了很大的隐患。本文主要先对水电厂混流式水轮机转轮常见的破坏问题及产生原因进行分析,进而探讨相应的维修措施。 关键词:混流式水轮机;裂纹原因;维修措施 引言 随着我国经济的不断发展,资源消耗的速度也在不断的加快,水电站的发展越来越普及,成为了社会主义建设中不可或缺的重要组成。转轮是抽水蓄能电站混流式水轮机中的核心部件,在实际的运行过程中,由于机组发电和抽水工况频繁正转和反转,运行工况复杂,混流式水轮机转轮作为混流式水轮机重要受力结构部件,该区域在机组运行中容易发生裂纹,近些年混流式水轮机转轮出现多起裂纹问题,使机组被迫停役。转轮裂纹的出现,不仅为机组的安全稳定运行带来了极大的威胁,为抽蓄电站的正常经营带来了经济损失和社会损失,所以要想确保水电站安全稳定运行,必须通过无损检测技术对混流式水轮机转轮定期探伤,及时发现并有效处理转轮裂纹问题。采取有效的预防控制措施,确保机组运行安全性和稳定性。 1混流式水轮机之转轮概述 转轮是各种类型水轮机正常运行不可缺少的核心部件,其主要功能就是将水能转换为机械能。而且转轮也在一定程度上直接决定着水轮机的过流能力强弱、水力效率高低、运转工况的稳定与否以及汽蚀性能是否良好的关键因素。在实际操作中,转轮的各个部分设计和制造必须要充分满足水力设计的型线要求,必须要具有高强度且具备较强的抗汽蚀的能力以及耐磨损的性能。根据水轮机转轮所转换水流能量的形式不同,可以将水轮机分为反击式和冲击式水轮机两大类。将水流的位能、压能和动能转换成固体机械能的水轮机称为反击式水轮机。根据转轮区域水流运动方向的特征,反击式水轮机又可分为轴流式水轮机、混流式水轮机、斜流式水轮机以及贯流式水轮机。其中混流式水轮机由于水头型号和流量大小的不同,其配备的转轮形状也存在区别。一般而言,水头越高的话转轮的叶片高度就要适当减小且长度要相应增加,水流的流动在转轮中越加趋于幅向流动。随着水头高度的降低,转轮的叶片长度要相应变短且高度要逐渐增加,如此水流流动的方向就越来越趋于轴流方向。然而,不论是什么形状的转轮一般都是由转轮上冠、转轮下环、转轮叶片、上下止漏装置以及泄水锥和减压装置组成。 2水电厂混流式水轮机转轮常见的破坏问题及产生原因分析 2.1裂纹 裂纹是水电厂混流式水轮机转轮常见的破坏现象。调查发现,混流式水轮机在运行一定的时间之后,其转轮都或多或少地会出现一些程度不一的裂纹,其中最容易出现裂纹的地方是转轮叶片与轮毂之间的过渡区,其次还有焊接缝和母材交接的部位、焊接根部受力最为集中的部位等。裂纹的产生不仅会给混流式水轮机的运行带来巨大的隐患,而且还会给水电厂造成严重的损失。裂纹破坏的出现主要有以下几方面的原因。 2.2铸造焊接不足 在转轮的实际运行过程中,当对设备施加一定的外部力量时,砂眼、铸造气孔等的存在会使得转轮产生裂纹。另外,转轮叶片在受冷产生缩孔时会出现松动的情况,这种情况与转轮的上冠及下环的厚度有着重要的关联。在铸造混流式水轮机的转轮时,如果焊接人员没有严格按照焊接工艺的要求进行焊接,或是没有正确应用焊接工艺,都会使得混流式水轮机转轮在焊接缝间或是受热影响区产生裂纹。 3水电厂混流式水轮机转轮裂纹的维修措施 3.1裂纹控制措施 3.1.1制定有效的修复焊接工艺,并对焊接工艺进行评定。在叶片焊接修复过程中严格按照工艺技术要求进行; 3.1.2裂纹修复过程中,严格把控确保裂纹彻底清除,裂纹清除后进行PT或MT检测确认;裂纹清除时碳刨表面必须用 风动砂轮机或椭圆型磨头将气刨表面打磨出金属光泽,以消除表面渗碳层; 3.1.3为了减少焊接后的变形和残余应力,尽量选择低应力的焊材,焊条直径尽量选择小直径焊条;待修复区域及附近应进行焊前预热,预热温度100℃以上;焊接时采用多层多道焊,焊接层间温度控制在100~150℃之间,尽量控制焊接变形量到最小,同时应采用不锈钢风铲锤击的方法消除焊接应力;焊接完成后立刻用石棉布保温补焊区,缓慢冷却,避免冷却速度过快,产生冷裂纹; 3.1.4尽量减少氢的来源和消除气体的来源。选用低氢或碱性焊条,将待焊区域坡口及其附近油污、水等有害杂质清除干净;焊条进行烘干、去水、干燥处理,以便彻底除去水分;考虑在转轮基坑内的湿度较低时施焊;尽量选用低强匹配的焊材,这样可降低焊接接头的拘束应力,降低冷裂纹的形成几率。 3.2焊接修复 3.2.1焊前预热 在焊接前,应对需要焊接区域的相关范围(一般为150mm)内的母材进预热,不可使预热区域骤然升温,应以均匀的方式,直至其温度达到110℃。当温度达到标准温度时,则焊前预热完成,接下来便可开始进行焊接修复工作。但要注意的是,在焊接过程中应使得母材的温度保持在标准温度的水平;在焊接修复完成后,还须做好保温措施(2h以上)。

浅谈混流式水轮机的选型

浅谈混流式水轮机的选型 发表时间:2018-10-17T09:25:05.843Z 来源:《基层建设》2018年第27期作者:陈书敏1 孙安伟2 [导读] 摘要:混流式水轮机的选型,是大型和中小型水轮机厂面对电力客户第一道面试题,转轮选型适合电站要求与否,关系整个电站能否最高效利用潜在的水能与机组的稳定运行。 重庆水轮机厂有限责任公司重庆 402260 摘要:混流式水轮机的选型,是大型和中小型水轮机厂面对电力客户第一道面试题,转轮选型适合电站要求与否,关系整个电站能否最高效利用潜在的水能与机组的稳定运行。也是机械设计中的第一步功率参数设计,事关方案全局。 关键词:混流式水轮机;选型;水电站 引言 伴随着黄河,长江,大渡河,乌江,金沙江等河流中的水电站不断开发,一些水头段转轮也被人们开发了好多次,引发了人们对一个个新型转轮的思索,中小型水轮机厂不断套用这些转轮运用到中小型电站中,几多新型高效转轮源源不断地推动小水电滚动向前发展。混流式水轮机选型随着时代变迁,经济发展,也几经人们的思考,大致经历了两个阶段。 1 九十年代混流式水轮机的选型 因改革开放刚刚开始,水电开发还是仅处于萌芽状态,国家整策对水电项目特别小水电,不要求招投标。那时客户对水电站经济发展处于懵懵懂懂状态,只是注重出力,对水轮发电机组效率不太敏感。水轮机选型转轮直径通常选型较小,大多数情况是在模型综合特性曲线中出力限制线附近选择转轮直径即可。 2 2003年后混流式水轮机的选型 改革春风吹遍大江南北,水电开发呈现爆炸式生长,水电设备厂家数量也增加了3到4倍,国家整策要求水电项目进行招投标。竞争很激烈,所有发电机组的转轮性能参数如模型转轮效率,模型转轮气蚀系数,水头范围,应用电站实例等被罗列在投标书上。尤其小水电行业,电力客户一味追求转轮效率高,很多水电设备厂只好把转轮直径选大,把额定工况点直接选在最优工况区内,以便获得客户订单。 现阶段混流式水轮机选型工作面临着两类不同水电站,需要采用不同策略方法选型,才能满足不同客户需求,在众多竞争对手中,才能胜出一筹。 (1)新建水电站选型 首先从电站的水头运行范围和客户要求模型转轮效率筛选出4到5个转轮,额定工况点最好选在最优工况区内最优效率右上方,水头运行范围最好包含最优工况区,安全地避开震动区。如: 最用现在客户大多倾向10年内新开发的大型电站验证过的转轮,甚至是最优效率94%的转轮。选型前一定要广泛的翻阅水头相近的电站资料,然后作出对比方案。如: 对比额定工况点效率,最小水头出力,气蚀系数方面数据,本着额定工况效率高,最小水头出力大,气蚀系数低原则甄别出最优方案。气蚀系数低预示转轮抗空化能力强,最小水头出力大和额定工况效率高都可以增加电站经济效益,这样选出的转轮方能符合标书要求。达到专家评审高分。 (2)改造水电站转轮选型 对于改造电站,客户和设计院最关注两方面;(1)增加出力。改造电站大多情况是水头发生了变化,原来水电站水工部分不做变动,水轮机流道还沿用原电站。(2)电站按装高程不作变动。新机组的转轮能否适合旧机组的高程。 解决第一问题:马上面临着新高效转轮和与旧电站流道匹配难题。20年前用的转轮很多时候难以满足客户不断上升的高效率转轮要求,大多数考虑东电,哈电,水科院近10年开发的电站所用的高效转轮。这几个单位都在低水头,高水头开发一些新转轮。如:

混流式水轮机及其附属设备规范技术

FBW00103 FBW 水轮发电机组及其附属设备 国际招标文件X本 第7章技术规X 3A 混流式水轮机及其附属设备 专用技术规X 水利水电勘测设计标准化信息网 2001年4月 1 / 55

水轮发电机组及其附属设备 国际招标文件 第7章技术规X 3A 混流式水轮机及其附属设备 专用技术规X 年月 目次 2 / 55

7.3.1 概述 (4) 7.3.2 混流式水轮机 (5) 7.3.3 结构特性和技术要求 (8) 7.3.4 备品备件 (25) 7.3.5 专用工具 (26) 7.3.6 工厂组装和试验 (27) 7.3.7 自动化元件化 (28) 7.3.8 水轮机模型试验 (29) 7.3.9 调速器油压装置控制系统 (34) 7.3.10 进水阀 (45) 7.3.11 现场试验 (53) 7.3 混流式水轮机及其附属设备专用技术规X 7.3.1 概述 7.3.1.1 X围及界限 (1)本节技术规X规定了对_____台套立式混流式水轮机及其附属设备和卖方提供的其它随机配套设备的设计、制造、模型试验、工厂试验、包装和设备交付、安装、现场试验等的技术要求。 (2)混流式水轮机及其附属设备应用的标准、材料、材料试验、工作应力、工艺、焊接、无损检验和其它一般技术要求应满足本技术规X的要求。本节未提到的应满足7.2节“一般技术规X”的要求。 (3)混流式水轮机及其附属设备的安装和现场试验均在卖方的技术指导和监督下,由买方选定的安装承包商完成。卖方应为混流式水轮机及其附属设备的安装和运行提供包括安装程序、技术要求和建议的安装进度等内容详细的安装指导文件、运行、维护说明书和图纸,并派员现场服务。 7.3.1.2 供货X围 (1)本合同供货X围自上游侧_____开始至尾水管里衬末端的_____台套水轮机及其附属设备。每台套设备包括水轮机、调速系统设备及其操作控制系统、进水阀及其操作控制系统、补气装置、调相充气压水装置、顶盖排水、顶盖取水装置、自动化元件、阀门、表计、各种管路及管路附件、电缆以及设备的基础埋件等。 1)水轮机本体包括: 3 / 55

轴流式水轮机的结构

轴流式水轮机的结构 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6— 转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比

水轮机的基本组成结构

水轮机 一、水轮机的基本参数 1)工作水头(H): 水轮机的工作水头就是指水轮机的进、出口单位能量差,也就是上游水位与下游水位之差,用H表示,其单位为m其大小表示水轮机利用水流单位能量的多少。 2)流量(Q:在单位时间内流经水轮机的水量,称为流量,用Q表示,其单位为m3 /s 。其大小表示水轮机利用水流能量的多少 3)出力(P):具有一定水头和流量的水流通过水轮机便做功,而在单位时间内所做的功率称为水轮机的出力,用P表示,其单位KW 水轮机的出力为:P=9.81QH 4)效率(n)目前混流式水轮机的最高效率95% P=9.81QHq 5)比转速指工作水头H为1m发出的功率P为1kw时水轮机所具有的转速,故称为比转速。 二、水轮机的类型与代号 我们根据水流能量的转换的特征不同,把水轮机分为两大类,及反击型和冲击型水轮机。 反击型水轮机,具有一定位能的水流主要以压能的形态,由水轮机转变为机械能。按其水流经过转轮的方向不同,反击型水轮机可分为以下几种类型: 反击型:轴流(定桨、转桨)水轮机、混流式水轮机、贯流式水轮机、斜流式水轮机 冲击型:水流不充满过流流道,而是在大气压力下工作,水流全部以动能

形态由转轮变为机械能。按射流冲击水斗的方式不同,可分为如下几种类型:冲击型:水斗式水轮机、斜击式水轮机、双击式水轮机 我国水轮机式的代号,有三部分组成,第一部分由水轮机型式及转轮型号组成,并由汉语拼音表示。 水轮机型式的代号 以本电站为例:水轮机型号:HL(247) —LJ—235,表示混流式水轮机,转轮型号为247,立轴,金属蜗壳,转轮直径为235 cm。 三、混流式水轮机 1定义:水流从径向流入转轮,在转轮中改变方向后从轴 向流出的水轮机。其叶片固定,不能转动调节。 2混流式水轮机-结构特点 混流式水轮机主要应用于20—450米的中水头电厂, 其结构紧凑,效率较高,能适应很宽的水头范围,是目前 世界各国广泛采用的水轮机型式之一。 当水流经过这种水轮机工作轮时,它以辐向进入、轴向流出 所以也称为辐向轴流式水轮机。

水轮发电机组选型设计_毕业设计 精品

第1章 水轮发电机组选型设计 1.1、机组台数及型号选择 1.1.1、水轮机型式的选择 已知参数 6.25max =H , 8.22min =H , 3.23av =H , MW 200=N 保证出力:MW 35=b N ,利用小时数:h 2225 取设计水头3.23av r ==H H 按我国水轮机的型谱推荐的设计水头与比转速的关系, 混流式水轮机的比转速s n : )(kW m H n s ?=-=-= 394203 .232000 202000 轴流式水轮机的比转速s n : )(4773 .232300 2300kW m H n s ?=== 根据原始资料,适合此水头范围的水轮机类型有轴流式和混流式。 轴流式和混流式水轮机优点: (1)混流式结构紧凑,运行可靠,效率高,能适应很宽的水头范围,是目前应用最广泛的水轮机之一。 (2)轴流式水轮机s n 较高,具有较大的过流能力,轴流转桨式水轮机可在协联方式下运行,在水头、负荷变化时可实现高效率运行 根据表本电站水头变化范围m H 6.25~8.22=查《水电站机电设计手册—水力机械》 选择适合的水轮机有244/260A HL 、503JK 和500ZZ 。三个水轮机参数如下: 转轮型号 推荐使用水头 H(m) 模型转轮直径 1 D cm 最优工况 限制工况 ' 10 n r/mi n ' 10 Q s m /3 η % ' 10 Q s m /3 η % σ 模型试验水头 H(m) 单位飞逸转速' R n 1 (r/min) 水推力系数K HL260/A244 35~60 35 80 1.08 91.7 1.275 86.5 0.15 3 158.7 0.34~0.41 JK503 26 35 135 903 90.8 1800 87 0.63 10 340 0.87 ZZ500 18~30 46 128 0.98 89.5 1.65 86.7 0.585 3 352 0.87 1.1.2、拟订机组台数并确定单机容量 因为设计电站是无调节电站,所以工作容量等于保证出力MW 35=b N 选用混流式机组的单机容量不得超过 MW 8.7745.035 = 选用轴流式机组的单机容量不得超过 MW 10035 .035 = 确定机组台数4台和5台 方案列表如下: 水轮机组选型及台数汇总表 台数 4 5 转轮型号 HL260/A244 JK503 ZZ500 HL260/A244 JK503 ZZ500 单机容量(MW) 50 50 50 40 40 40

水轮机原理及构造

水轮机原理及构造 1、概述混流式水轮机工作原理: 水流经压力钢管在开启蝶阀后进入蜗壳形成封闭的环流(形成环流是为了使水流作用转轮时,使转轮各方向受力均匀,达到机组稳定运行的目的),在导叶开启后,水流径向进入转轮又轴向流出转轮(所以称之为混流式水轮机),在这个过程中由水流和水轮机的相互作用,水流能量传给水轮机,水轮机开始旋转作功。水轮机带动直流励磁的同步发电机转子旋转后,根据电磁感应原理(问题),在三相定子绕阻中便感应出交流电势,带上外负荷后便输出电流。 注:电磁感应闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生感应电流,这种现象叫做电磁感应,产生的电流叫做感应电流。 ①产生感应电流的必要条件是:a、电路要闭合;b、闭合电路中一部分导体做切割磁感线运动,缺一不可;若是闭合电路的一部分导体,但不做切割磁感线运动则无感应电流,若导体做切割磁感线运动但电路不闭合,导体上仍无感应电流则导体两端有感应电压。 ②感应电流的方向跟磁场方向和导体切割磁感线运动方向有关三者互相垂直,改变磁场方向或改变导体切割磁感线方向都会改变感应电流的方向。 ③在电磁感应现象中机械能转化为电能。 应用:发电机是根据电磁感应原理制成的,它使人们大规模获得电能成为现实。 ①交流发电机主要由转子和定子两部分组成,另外还有滑环、电刷等。 ②交流电的周期与频率周期和频率是用来表示交流电特点的两个物理量,周期是指交流发电机中线圈转动一周所用的时间,所以单位是“秒”;频率是指每秒钟内线圈转动的周数,它的单位是“赫”。我国使用的交流电周期为0.02秒,频率是50赫,其意义是发电机线圈转一周用时0.02秒,即1秒内线圈转50周,因为线圈每转一周电流方向改变两次,所以,频率为50赫的交流电在1秒钟内方向改变100次。 2、水轮机的主要类型: 水轮机基本类型有:反击式 冲击式 反击式:

相关文档
最新文档