管片裂纹分析与防治

管片裂纹分析与防治
管片裂纹分析与防治

管片裂纹分析与防治

发表时间:2018-01-10T16:16:57.390Z 来源:《建筑学研究前沿》2017年第21期作者:卢宝智

[导读] 因此管片裂纹防治技术也成为其中最重要的常见技术问题。

天津第一市政公路工程有限公司天津 300000

摘要:现代地铁施工普遍选用盾构法施工,地下隧道采用盾构机掘进,隧道内壁钢筋混凝土衬砌结构采用环状分片拼装方法施工,钢筋混凝土衬砌分片预制的构件叫做管片。由于盾构施工在工期、质量、安全等诸多方面的优势,一些城市的其它地下工程(过江隧道、输水管道等)也越来越多的采用盾构施工。但是由于盾构在隧道内拼装的钢筋混凝土管片需要提前预制,而且需要很高的抗压、抗渗、耐久性等要求,一旦管片本身出现致命的缺陷,可能就会产生灾难性的后果。因此管片裂纹防治技术也成为其中最重要的常见技术问题。

关键词:管片裂纹;分析;防治

1 管片裂纹分类

1.1 管片外弧面裂纹

管片外弧面裂纹主要有两种:一种是在水养之后出现的龟裂纹。龟裂纹在管片生产中是比较普遍的,同时也是管片最主要的裂纹。龟裂是一种微细裂纹,在混凝土表面干燥的情况下,其肉眼不可见(宽度<0.02mm),用水湿润时则可见,呈现为纵横交错状如龟壳纹样的裂纹。在初期经受干湿和冷热交替作用后,这种裂纹会由表面向纵深发展,而成为肉眼可见的裂缝,而且有发展成有害裂缝的可能。

另一种是在蒸养之后就出现的裂纹,属于浅表性裂纹,或表面收缩裂纹,该裂纹是由于混凝土表面温度不均造成的。

1.2 管片侧面裂纹

这种裂纹主要是混凝土在干湿交替、温度变化过程中混凝土碳化收缩产生的裂纹。混凝土表面的碳化[Ca(OH):的碳化]并不需要很长的时间,再加上干缩的叠加作用,当混凝土表面抗拉强度不足以抵抗收缩所产生的拉应力时,将导致混凝土的开裂,从而产生微细裂纹。一般说来,碱度越高,碳化越慢。这一规律是对混凝土的整体碳化而言的,混凝土的表面碳化并非如此。混凝土表面的主要成份为

Ca(0H)2,根据化学平衡原理,碱度[Ca(OH)2含量]越高,越有利于Ca(OH)2的碳化。因此,混凝土的表面碱度越高,则表面的碳化越快,收缩也越大,越易产生裂纹(特别是在早期)。

1.3 管片手孔部位裂纹

该裂纹主要是由于以下两方面原因综合导致:

①手孔断面设计较大,断面突变易产生裂纹;

②混凝土在水化过程中产生较大收缩与钢模受热膨胀产生温度集中应力的叠加,产生45°方向的表面收缩裂纹。

总之,由于管片体积大、厚度较厚且是弧面形状,易产生表面收缩裂纹。

2 常见裂纹的预防和处理

2.1 混凝土表面裂纹预防措施

2.1.1 防止塑性开裂措施

①混凝土入模后尽快用塑料膜覆盖,工作面保持最小,预防外露表面失水,是防止混凝土表面与大气产生湿度差的有效措施之一。

②降低混凝土的入模温度,浇筑温度最好规定不高于25℃。热天施工时如需适当放宽限制,也不宜高于32℃,并应同时调整混凝土的配合比,降低水泥用量以减少水化热。

③混凝土浇注收水完毕,适当的喷雾,湿润上方空气可有效的降低混凝土表面与大气的湿度差,防止混凝土裂纹的出现。

④浇筑前润湿模板和底板。管片在蒸养过程中,钢板的导热性好,比混凝土与大气环境产生的湿度差造成的危害更大,因此浇筑前润湿模板和底板是必需的工序之一。

⑤降低混凝土粉料总量。水胶比宜控制在0.45~0.60之间(有的工程低于0.35),或胶凝材料总量控制在300~450 kg/m3之间。

⑥降低用水量。尽量选择减水效果较好的减水剂,一般要求减水率在20%以上的为宜。

⑦外加引气剂。掺加引气剂有利于防裂,使温度下降4~5℃。

⑧通过抹面、压光消除早期塑性裂缝。

2.1.2 防止干缩裂缝措施

①设置构造钢筋。对管片的一些突变部位应设置构造钢筋,增加突变部位混凝土的抗拉强度,防止这些敏感部位因突变过大造成混凝土的表面抗拉强度较低而出现开裂。

②降低混凝土干燥速率,延缓表层水分损失。采取有效措施对混凝土表面进行保湿,同时尽量缩小混凝土表面与外部环境之间的湿度差。

③配置低收缩混凝土。减少拌和水量,减少浆体体积,加大粗骨量的最大粒径和骨料含量,降低拌料入模温度,选择低含碱量水泥,控制骨料含泥量。

④采用补偿收缩混凝土,或外掺减缩剂。

⑤提高混凝土抗裂能力。掺加钢纤维、尼龙纤维或聚丙烯纤维等可有效的提高混凝土抗裂能力。尤其是聚丙烯纤维可以提高水工混凝土的抗渗、防裂、耐磨、抗冲击、韧性、耐久性等综合性能。

2.1.3 防止温度收缩裂缝措施

①减少因水化热和环境温度引起的温升。通过掺加粉煤灰等掺合料,降低水泥的用量,控制水化热的过多产生。同时尽量选用低水化热的水泥。

②减少混凝土内外温差。混凝土内部和表面的温差一般不应超过20℃。混凝土表面无复盖层时,表面温度与大气温度的差别也不应超过20℃,混凝土表面与养护水温度不超过15℃。

③控制降温速度,防止温度骤然变化。根据其它大体积混凝土降温施工经验(建筑工程3.0~3.5℃/d,水坝1.5℃/d)以及小体积管片降

墙体裂缝成因分析及防治措施知识讲解

墙体裂缝成因分析及 防治措施

1 绪论 建筑施工的过程中经常会存在一些质量问题,建筑裂缝种类繁多、形态各异,墙体裂缝是混凝土结构中比较常见的一种,这些裂缝的存在不仅会降低建筑物的抗渗能力,影响建筑物的使用功能的实现,甚至造成混凝土结构破坏和建筑物倒塌,墙体裂缝问题应该得到解决。建筑工程的质量直接关系到人民生命财产安全、人身健康和公众利益等诸多方面,在关于商品房的质量投诉案件中,由于墙体裂缝、渗漏等涉及的纠纷或官司越来越多,墙体裂缝不仅影响建筑物的美观和使用功能要求(如引起建筑物透风、渗漏):还可能破坏墙体的整体性,影响结构安全;甚至会降低结构的耐久性。因此已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。墙体裂缝作为一种质量通病,对业主在观感和使用上造成不良影响,一直困扰着业主和开发商。因此分析墙体裂缝产生的原因,并制定相应的防治措施,已成为国家行政主管部门、房屋开发商及业主共同关注的课题。根据近几年对市民投诉的统计资料来看,与建筑物裂缝有关的占90%以上。因此,无论是从经济角度、观感角度及正常使用角度来说,建筑物的裂缝问题均是一个需要迫切解决的问题。

2 墙体裂缝的概述 2.1墙体裂缝的危害 墙体裂缝,特别是砖混结构住宅楼的现浇板裂缝、墙体裂缝、多层现浇框架填充墙裂缝,属于当前建筑物多发性、普遍性的质量顽症。许多混凝土结构、砌体结构等建筑物在建设和使用的过程中出现了不同程度、不同形式的裂缝。对于钢筋混凝土结构,裂缝使大气中的二氧化碳很快渗透到混凝土中去,加快了裂缝处混凝土的碳化速度,从而缩短了结构从制作到钢筋开始锈蚀(即碳化历程)所经历的时间。而化学介质、气体、氧分子及水分子等也同时侵入裂缝。破坏钢筋钝化膜,在钢筋表面发生电化学反应,引起钢筋锈蚀,影响结构的使用寿命。如:钢筋混凝土梁、柱构件出现胀锈裂缝时(纵向裂缝)表明混凝土保护层内钢筋己严重锈蚀,结构的安全度随之迅速降低,结构的使用寿命大大缩短。砌体结构的墙体裂缝则会引起建筑物的渗漏,降低建筑物的刚度、耐久性和抗震性能,若墙体裂缝进一步扩展,还可能会威胁到人的生命和财产安全。 2.2裂缝控制的要求 裂缝有宏观、微观之分,更有有害、无害之别,建筑物裂缝宽度小于O.05mm的属于微观裂缝,反之属于宏观裂缝。所谓裂缝的有害、无害之别,主要取决于建筑物的用途、性质、所处环境条件、裂缝所处部位、裂缝大小等。一般认为,凡引起下列后果的裂缝为有害裂缝,如:损害建筑物的功能;引起其它因素的破坏;降低结构刚度或影响建筑物的整体性;损害结构表面功能等。

盾构施工时管片产生裂缝的原因及对策

盾构施工时管片产生裂缝的原因及对策 摘要:管片作为盾构隧道的主体结构,其开裂必将造成隧道的质量问题,并最终影响地铁隧道的使用寿命。本文通过对隧道管片在盾构掘进施工时产生裂缝原因的分析,并提出相应的对策对指导施工具有重要意义关键词:盾构隧道管片开裂防治措施 随着社会经济的发展城市人口增多、规模变大现有的城市交通已经不能满足城市发展的需要.经济发达的城市开始修建地铁工程盾构施工技术普遍应用于地铁工程中。盾构法施工的隧道衬砌方式有两种:单层装配式衬砌和多层混合式衬砌。在盾构施工中.主要采用单层装配式衬砌.衬砌为钢筋混凝土管片构成盾构隧道的主体结构承受四周土体的荷载。 1盾构施工过程中出现的管片开裂 盾构掘进施工过程中隧道管片在盾构机千斤顶反作用力及同步注浆压力和周围土体的压力作用下部分管片出现裂缝裂缝的位置主要位于隧道中部以上其中隧道拱顶占多数。管片裂缝为纵向裂缝有两种类型: 1 .1前开裂 裂缝从管片前端开裂并向后延伸(见图I) ,主要集中在隧道拱顶位置。 1.2后开裂

裂缝从管片后端开裂并向前延伸(见图2),此类裂缝主要在隧道的两腰部位或偏上位置。 2管片开裂的原因分析 盾构隧道管片为钢筋混凝土结构其开裂主要为受力不均或受力过大所造成。在施工过程中,管片的受力状态与设计所考虑的不完全一致盾构机掘进过程中管片承受着千斤顶顶力盾尾密封刷的作用力和衬砌背后注浆的浆液压力等在这些荷载的相互作用下使盾构管片出现了不同的受力特征。通过对现场观察了解结合其它地铁工程中的经验造成管片出现上面开裂现象的主要原因可能有如下几种: 2 .1盾构机千斤顶总推力较大 作用于管片上的力是造成管片开裂的最基本因素其中盾构推进过程中总推力过大是致使管片开裂的最直接原因。目前,国内地铁盾构隧道施工中,淤泥质粘土层中总推力为8000 ~12000kN;细砂土地层中总推力为12000 ~15000kN,当总推力过大时,对于养护不好并且配筋小的管片则有可能开裂。 2 .2管片环面不平整 造成管片环面不平整主要有:管片制作精度误差管片纠偏时贴片不平整;盾构机推进时各区的千斤顶推力大小不等管片之间的环缝压缩量不一致等原因。因管片环面不平整盾构机千斤项作用于管片上将产生较大的劈裂力矩造成管片开裂(如图3所示)。 2 .3千斤顶撑靴损坏或重心偏位 盾构机通过千斤顶作用于管片上向前掘进.在千斤顶与管片接触处设置撑靴以减少管片压力,撑靴损坏后管片局部压力增大造成管片损坏或出现裂缝。 在盾构掘进过程中已拼装的管片中心线与盾构机本身的中心线重合为理想状态但在实际施工中两条轴线存在偏差千斤顶的中心没有作用在管片环的中心上,造成管片偏心受压(见图4)。 2.4盾构机姿态控制与线路曲线段不匹配 管片是在盾构机尾部内进行拼装,拼装完成后隧道管片在盾构机内部的长度约为2.3m管片外侧的空隙为5cm,盾构机在曲线段掘进时盾构机的姿态变化与管片的姿态变化不一致,盾尾密封刷挤压管片造成开裂(见图5)。

墙体开裂原因

房屋墙体产生裂缝的原因有很多种,有以下一些情况: 一、温差裂缝——形式有正八字缝、倒八字缝、水平缝等 以砖混多层房屋结构为例,当屋盖是钢筋混凝土板而墙体又为砖墙,则该墙体特别容易产生温差裂缝,特别是顶层及女儿墙根部。 因为屋盖材料为钢筋混凝土(线膨胀系数为10×10-6)和墙体材料的砖砌体(线膨胀系数为5×10-6),二者比较其线膨胀系数相差一倍;且屋面接受的太阳辐射热平均要比墙面大一倍左右,特别是在夏季。如果屋面保温处理不当,屋盖产生较大的温度膨胀变形(冬季会产生冷缩变形),使屋盖和墙体间产生较大的拉应力、剪应力。当剪、拉应力大于砌体抗拉、抗剪应力时,墙体便被拉裂。 正八字缝常出现在顶层纵墙的两端(一般在一至二开间的范围内),严重时可发展至房屋1/3长度内,有时在横墙上也可能发生。裂缝宽度一般中间大、两端小。当外纵墙两端有窗时,裂缝沿窗口对称方向裂开。裂缝有“两端重、中间轻、向阳重、背回轻”的特点。 水平裂缝一般发生在平屋顶屋檐下顶层圈梁2-3皮砖的灰缝位置,裂缝一般沿外墙顶部继续分布,两端较中间严重,在转角处纵、横塘水平裂缝相交而形成包角裂缝。 斜裂缝是当墙体一端伸胀受到限制时,八字缝转变成斜裂缝,斜裂缝多发生在山墙,缝宽上大下小。 有的房屋因屋顶冷缩作用在纵墙两端顶层产生倒八字缝。 总之温差裂缝的轻重程度与室内外温度。施工质量、伸缩缝间距大小、屋顶保温情况、开窗大小、墙体厚度等有关。 温差裂缝虽然与建筑物体型、材料性能、施工质量等多种因素有关,但主要原因是温差变化,为防止温差裂缝的发生,我们在设计与施工上采取了如下防治措施: 1、按标准设置伸缩缝,以减少屋面热膨胀的累积值。砖混结构设计规范对有保温层的规定每60米设伸缩缝,无保温层的屋面每40米设伸缩缝。这个规定是从整体结构考虑的。按规定设置伸缩缝,整体结构一般不出现异常情况,但屋面温差裂缝仍会发生。 2、为减少屋盖与墙体的温差,可在屋面上增设架空隔热板,其效果十分明显,也是控制温度裂缝的关键。 3、屋面保温的原材料要符合要求,选择保温性能优良的材料,并增加屋顶保温层的厚度,有效控制屋面板的温升速度。 4、改变屋顶做法,建议平屋顶改为坡屋顶,这样既可以改善顶屋的使用条件,又可以减少温差裂缝。 5、一般屋面防水是在油毡卷材上粘豆石做保护层或SBS防水层上不做保护层,受阳光辐射时吸收热量较多,使屋盖板温度增高。建议用银粉涂料代替豆石做保护层。面层涂银粉涂料对阳光有较强的反射作用,可有效地降低卷材表面温度。 6、适当提高顶层砌体砂浆标号,在砖砌体水平缝内增设一部分拉通锚固筋(对裂缝多发部位宜隔缝设置2φ6水平筋),也可适当加大端部纵墙的窗间墙及边垛宽度。 7、切实保证施工质量,砌体砌筑质量是出现裂缝的内因。施工人员要严格执行施工规定和操作规程,砖要认真湿润,不要干砖上墙,在大角处严禁留直搓,严格按规范规定放置拉结筋,提高砌体砂浆饱满度,保证设计标号,现场计量必须准确。

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

混凝土裂缝处理方法以及裂缝宽度分析报告

混凝土宽度分析以及裂缝处理方法 第一,启程前言 启程路桥和大家说说裂纹是固体材料中的一种不连续现象。在许多钢筋混凝土结构的施工和使用过程中,裂缝出现的程度不同,形式也不同。这是一个相当普遍的现象,也是长期困扰土木工程师的一个技术问题。在工程鉴定和加固中,经常会遇到各种形式的混凝土裂缝。混凝土裂缝的准确识别不仅是工程鉴定的主要内容,也是裂缝加固和修复的重要依据,因此显得尤为重要。 二、混凝土裂缝的主要类型 混凝土裂缝的基本原因可归纳为两类:一是由荷载变化引起的裂缝,包括施工阶段和使用阶段的静荷载和动荷载,另一方面是变形、温度、湿度、不均匀引起的裂缝。沉降、冻胀、钢筋锈蚀、化学反应膨胀等(1)。 根据裂缝产生的机理,建筑物裂缝的基本类型有塑性收缩裂缝、沉降收缩裂缝、温度裂缝、干缩裂缝、碳化收缩裂缝、化学反应裂缝、沉降裂缝、冻胀裂缝、蠕变裂缝。冷凝裂纹等。 三、混凝土裂缝识别的主要内容 建筑物的破坏,尤其是钢筋混凝土结构的破坏,从裂缝开始。但并非所有的裂缝都是建筑物的危险标志,只有影响接头的承载能力、稳定

性、刚度和连接可靠性的裂缝可能危及建筑物的安全。许多常见的裂缝,如温度和收缩裂缝,不会危及建筑结构的安全。因此,各种裂缝对建筑物的危害是不同的,因此对各种裂缝的处理应有所不同。因此,准确区分不同类型的裂纹是非常重要的。 从裂缝的现状、裂缝的发生时间和裂缝的发展三个方面对裂缝的识别进行了一般性的分析。(2)鉴定的主要内容如下: (1)裂缝现状调查 包括裂纹的产生、裂纹宽度、裂纹长度、是否穿透、裂纹中是否存在异物和裂纹宽度等。裂纹尖端位置是推断混凝土应力状态的重要参数。必须仔细观察它是看不见的。 1、裂缝宽度 裂缝宽度是确定裂缝对混凝土结构影响的一个重要参数。研究裂缝的成因,确定裂缝的修复和加固方法是一个重要的工程问题。 2、裂缝的位置和分布特征 一般认为,裂缝位于建筑物的一层,出现在构件(梁、板、柱、墙等)上,以及构件的位置处的裂缝,如梁端或中跨、顶面或底部。板。3、裂纹的方向和形状

关于墙裂缝的整改回复报告

关于墙裂缝的整改回复报告 篇一:整改回复报告 整改回复函 福州市公安消防支队: 福州市公安消防支队对东煌大厦28层E租宝办公室装修工程消防设计申报进行了检查,通过检查提出了整改意见,检查结束后我司立即组织消防设计单位进行了整改,现我司已按整改意见的要求将与消防设计相关的内容整改完毕,具体情况如下: 一、场所内疏散走道两侧的隔墙未完全采用耐火极限为 1h的不燃性构件。整改措施:已将场所内疏散走道两侧的隔墙均采用耐火极限为1h的不燃性构件。 建设单位:钰诚融泰(北京)商务咨询有限公司装修设计单位:福建正鼎建设工程有限公司 消防设计单位:浙江恒欣建筑设计股份有限公司 二0一五年九月十日 篇二:整改回复报告 致:张家界市绿城房地产开发有公司 张家界市华顺监理有限责任公司 绿城东城首座1#楼工程于XX年10月25日,完成了工程部及物业管理对1#楼墙面、地面、顶棚、门窗、栏杆、扶栏、安全玻璃、给排管安装、防水、电气等验收提出的各项

整改内容,等现已基本整改到位,其体内容如下:1-4-2主卧卫生间有凸灰, 1-10-1 主卧栏杆飘窗栏杆未安装 1-11-1 卫生间窗外墙面有1根凸出的钢筋 2-3-1客厅外边栏杆的安全玻璃未安装 2-7-2次卧室窗无锁 3-9-1次卧墙面有1根钢筋 3-4-1卫生间欠水嘴未安装 3-3-1客厅外边栏杆的安全玻璃未安装 4-6-1厨房存水弯破了 4-6-2大便器破了 4-7-1厨房存水弯开裂 4-11-2 大便器破了 4-15-1 主卧卫生间排气管有洞 3-3-1电气开关箱无盖子 以上查出问题已全部整改完毕,特此申请复查。 张家界好地建筑安装有限责任公司 东城首座项目部 XX年11月4日 致:张家界市绿城房地产开发有公司 张家界市华顺监理有限责任公司 绿城东城首座2#、4#楼工程于XX年10月25日,完成

二级齿轮轴齿面裂纹原因分析报告

二级齿轮轴齿面开裂原因分析报告 一、 情况简述:二级齿轮轴经试机运行后开箱检查发现齿面上存在裂纹缺陷,如1图所示:裂纹出现在分度圆与齿根之间沿着轴向伸长,其外观已呈开放型并以相同的形式分布在多个轮齿的同一侧齿面上。 该零件采用20CrMnTiH材料制造、模数m n=12,滚齿后经渗碳淬火热处理要求为:⑴ 磨齿 前硬化层深度 2.5~2.8mm(界限值550HV1),齿面经磨削加工后成品有效硬化层深度2.0~2.2mm(界限值550HV1);⑵ 齿表面硬度58~62HRC,心部硬度33~48HRC;⑶ 金相按JB/T6141.3《重载 齿轮渗碳金相检 验》,表层组织:马 氏体、残留奥氏体 1~4级合格,碳化 物1~3级合格;心 部组织1~4级合 格。为分析齿面裂 纹形成原因,在图 1所示多个白色印 记处割取试样检 查,结果报告如下: 二、金相分析及显 微硬度检查:从多 处切割试样观察裂 纹断面均呈现如图 2所示弧线形态, 图示裂纹环绕经过 齿面表层 1.60mm 深度范围,裂隙内 部及附近无夹杂 物、无疏松等材料 缺陷,浸蚀检查:⑴ 表层组织:多段查看裂纹及附近最表面层显现出断面为月牙状白色区域,如图3所示为其中较小的一处可窥见其全貌,是典型的磨削产生二次淬火组织,图4显示一条裂纹穿过二次淬火层的情形,图5为二次淬火层较深的部位:白色区域深度达到0.27mm,紧邻的次表层为深色过度回火组织(测得该处最低显微硬度值仅451HV1),此处测得复合型总变质层

深度接近1.6mm;检查渗碳淬火表层金相组织,马氏体及残留奥氏体2级,如图6所示为齿顶部位同时存在断续点状和细条状碳化物,呈不均匀的网状分布综合评定为4级;经磨削后的齿面表面碳化物级别为3级。⑵ 心部组织:如图7所示心部铁素体评为5级。 三、宏观硬度及硬化层深度检查:⑴ 表面硬度:从齿顶测量59.5,60.5,60HRC;⑵ 硬度梯度及硬化层深度:在齿分度圆处测量数据见表1,绘制硬度梯度曲线如图7,由此测得该齿轮轴成品齿面分度圆处有效硬化层深度:1.93mm (界限值550HV 1);由图可见因磨削烧伤从0.7mm 深度起,向 外硬度呈下降状态最表层硬度值低于400HV 1;⑶心部硬度:26.5,28,27HRC。 四、分析与结论:(1)以上检查显示齿轮轴齿面开裂处无原材料缺陷,齿面裂纹的产生明显由磨削引起。因磨削工艺控制不当使磨齿加工表面温度急剧上升,形成较深的二次淬火层和过度回火组织,随着组织改变材料的硬度、强度下降并带来表面比容变化产生较大应力,以及瞬间激烈热胀冷缩应力和切削加工力结合,超过此处材料仅有的强度极限,形成了与热处理淬火开裂状态相似的表面裂纹。(2)从检查中发现该零件自身存在热处理质量缺陷:a、表面碳化物呈网状分布,会加大材料开裂倾向;b、心部硬度偏低与心部组织不符合要求,降低轮齿抗弯曲疲劳能力。 五、改进措施与建议:(1)磨削烧伤区分布在分度圆下近齿根1/3带上,客观上表明该处磨削加工余量最大,使之成为磨削缺陷易产生部位,应考虑适当减少此处热后磨削量;(2)查找磨削工序上的原因,从机器、磨具、操作、冷却效果等方面降低磨削发热现象、抑制磨削热的过多产生;(3)加强对热处理零件内在质量的监察,同时加强对产品外观缺陷的检查,防止不合格品甚至废品混入最后工序。 XXXX有限公司 生产中心 工艺组 钢 件 部 质量组 2009-10-10 表1 齿面裂纹处硬度梯度测量数据 至表面距离mm 0.05 0.1 0.2 0.3 0.40.50.60.8 1.0 1.2 1.6 1.9 2.0 2.2 心部硬化层深度硬度值 HV 1 347 458 507 546 583 602 652 699 699 675 647 559 531 505 287 1.93mm

住宅楼墙体开裂渗漏的鉴定分析报告

住宅楼墙体开裂渗漏的鉴定分析随着我国经济水平的不断发展,墙体粉刷材料日益更新,档次快速提升,施工的要求也越来越高。但住宅楼墙体往往会产生一些开裂与渗漏,它直接影响了建筑工程的质量,也影响了房屋建筑的使用功能,造成室内装饰霉烂脱落与损失。这些渗漏的产生除了墙体砌筑、外墙砖铺贴不规范、窗台等细部节点构造工程处理不合理等原因外,墙体开裂也是造成渗漏的主要原因。 1、开裂部位及危害 墙体开裂一般出现的部位:外墙抹灰的勒脚上口,门窗洞口周边、分格条旁、内墙面、砼与砖交接处、阳台分隔处、砖混结构楼顶层两端房间范围、山墙以及基层平整偏差较大的部位等。其产生的危害:一是影响美观效果,二是降低了建筑无的抗震能力,在地震时容易引发墙体破坏,甚至墙体倒塌. 2、墙体裂缝产生的原因 2.1原材料选材及配料不当。 2.1.1一些施工单位在施工中对建筑物的梁板、柱等会选用较好的水泥和骨料,但错误的认为粉刷时不用考虑结构安全问题则采用低标号的水泥及细骨料,砂浆强度达不到设计要求,导致砂浆的收缩偏大而开裂。 2.1.2为改善粉刷砂浆的和易性,配料中掺入石膏或石灰粉,致使砂浆强度下降,抗剪切力和粘接强度也随之下降,更容易起壳(空鼓)开裂。 2.1.3砂浆使用不当,两种或多种砂浆混合使用,例如水泥砂浆抹在 混合砂浆上等。 2.2施工工艺不当或未按规范要求施工 221砂浆粉刷分格条分布不合理或嵌入太深,破坏外墙底层的整体性。2.2.2墙面勾缝处砂浆强度不够,厚度不够、疏密不均,砂浆搅拌不均或

采用人工拌和。 2.2.3砂浆外粉刷施工工序掌握不当,养护人员(基层处理过湿或过干)浇水不足或过度均会引起面层脱落或干缩。 2.2.4未掌握不同墙体材料如红砖、空心粘土砖,水泥空心砌块、加气混凝土砌块的材质、材性,应采用不同操作方法进行粉刷。 2.2.5砌筑过程中,灰缝的饱满度不够。砌墙时要随时检查.砌筑砂浆的饱满度,提高砌体质量,实心砖砌体水平灰缝的砂浆饱满度不得低于80%,竖向灰缝宜采用挤浆法,使其砂浆饱满。 2.2.6砂浆强度差、粘接力不够、不密实,留槎不正确,干砖上墙, 砌体整体性差或砌筑方法错误等而产生通缝、空缝、瞎缝。 2.2.7隔墙与砼交接处未按图纸和规范要求设拉结钢筋,沿交接处出现裂缝,由砌体裂缝导致抹灰开裂。 2.2.8基层处理不当或未清理干净。抹灰砂浆水灰比大,影响粘贴力。2.2.9未按操作规程分遍抹灰,为图快“一气呵成”造成每遍灰的收缩变形集中到面层,加大了几倍的变形量。 2.2.10夕卜墙脚手架眼在堵塞前要随时清理干净,并湿润,四周必须 用砂浆挤塞密实,或用细石砼分次填实,再抹墙面基层砂浆。 2.3墙体结构变形引起裂缝 231地基不均匀沉降引起墙体裂缝。一些工程中,由于不进行地基处理,或地基处理不当,人为地造成地基变形,引起基础的不均匀沉降,形成墙体裂缝。此类实例比较多。地基不均匀沉降引起的墙体裂缝主要有斜裂缝,窗间墙裂缝,房屋底层窗下墙竖直裂缝等。其

管片破损分析

关于锦绣路站~沪南路站区间上行线第41~48环管片质量问题分析报告 针对锦绣路站~沪南路站区间隧道上行线41~48环存在渗漏水,41~45环管片不同程度的破碎、裂缝情况,我部对发生问题的部位进行认真调查,并召开有盾构司机、拼装手、质检员、技术员、技术负责人参加的质量分析会,会议分析结果汇报如下: 1、质量问题描述: 41环D块内弧面破裂,B2块下后角10cm*10cm缺角,L1、L2块上后角15cm*10cm缺角,B1、B2渗水,L2滴漏; 42环D块左后角15cm*10cm缺角,F块左前角5cm*10cm缺角,B1、B2块渗水,L1、L2块滴漏; 43环D块内弧面破裂,B2块下前角15cm*10cm缺角,B1、B2渗水,L2滴漏; 44环D块内弧面破裂,B1块下前角10cm*10cm缺角,B2渗水,L2滴漏; 45环D块内弧面破裂,B2块下后角10cm*10cm缺角,B1、B2渗水,L2滴漏; 46环B2、L2渗水; 47环B1下前角5cm*10cm缺角,F块滴漏,L2块渗水; 48环D块下前角10cm*10cm缺角,F块滴漏,B1、B2块渗水; 2、主要原因如下: ①盾构姿态与管片姿态出现偏差,管片的环面与盾构推进方向存在夹角,其合力作用方向部位的管片发生破碎; ②安装不仔细以及偏心力的作用导致错台,错台造成节头密封接不紧,产生渗漏水。连续多环纠偏稍大导致连续几环管片错台,伴随管片在螺栓孔位置或边角处发生局部破裂; ③施工初期,由于工人经验不足,管片安装速度很慢,有时发生管片错台大、在管片边角或在螺栓孔处破裂的问题; ④封顶块安装时,由于先行安装的5块管片圆度不够,两邻接块间的间隙太小,封顶块强行顶入,未按要求在其两侧涂刷润滑剂,导致封顶块及邻接块接缝处管片破碎,破碎部位发生在邻接块上部及封顶块两侧; ⑤螺栓初紧、复紧不及时或者螺栓拧的不够紧,管片受力后,环向螺栓由垂直方向变倾斜,造成管片产生错台,从而出现边角部位的

房屋裂缝分析

一、结构形式 经现场踏查,大格拉及小格拉村房屋的结构形式主要以木结构住房为主,同时还有少量的砖混结构和砖木结构房屋,房屋全部为一、二层,其围护墙所采用的砌块主要有土坯、片石、烧结黏土红砖和混凝土空心砌块,屋盖为木屋架檩条上挂青瓦和石棉瓦。此类房屋的抗震级别较低 经调查,发生裂缝较严重的房屋一般建造时间较长,达二十年左右,土坯风化较严重。 二、裂缝特征 大部分房屋存在砌筑通缝,沿通缝出现竖向贯通裂缝,墙体竖向裂缝、室内抹灰层龟裂裂缝等,特别是在土坯墙与木柱搭接位置处开裂现象普遍存在,如图1、图2。 图1(小格拉村)图2 (大格拉村) 三、裂缝的成因分析 裂缝的成因主要归纳有以下几种: 1、房屋建筑上常见的温度裂缝,主要表现在以下几个方面:A、

砖墙与混凝土构件结合面上的裂缝,如图3;B、门窗洞口角部的水平或斜向裂缝,如图4;C、外墙裂缝较内墙严重等;此类裂缝普遍存在,相同结构房屋其裂缝数量,形式大致相同。 图3(小格拉村)图4(大格拉村) 2、结构构造措施不完善及砌筑方法普遍存在缺陷引起的裂缝,主要有以下几种情况:A、纵横墙交接面上无搭接措施所引起的裂缝,如图5;B、门窗洞口处未设置过梁所导致的裂缝,如图6;C、砖混结构房屋中独立梁下无垫梁或构造柱,由于局部受压所导致的梁下裂缝。 图5(大格拉村)图5(小格拉村)

图6(大格拉村)图6(小格拉村) 3、地基基础不均匀沉降引起的裂缝,其不均匀沉降的原因主要有: A、房屋直接建在回填土上,未经地基处理即分层夯实,如图7; B、房屋基础局部在挖方地段,局部在填方地段,导致房屋出现较大的沉降差,如图8。 图7 (大格拉村)图7 (小格拉村) 图8(大格拉村)

盾构隧道施工期管片开裂原因和相应对策

盾构隧道施工期管片开裂原因和相应对策 1 施工阶段管片受力分析 盾构隧道在施工过程中管片衬砌受到的主要荷载有千斤顶推力、注浆压力、上浮力、盾壳作用力、拼装荷载等。 (1)千斤顶推力 千斤顶推力是盾构隧道掘进的驱动力,它反过来作用在管片上,是施工过程中隧道衬砌在轴线方向最大的外力。在目前国内地铁盾构隧道施工中,淤泥质黏土层中总推力一般为8~12 MN,细沙土地层中总推力为12~15 MN,全断面砂土地层推力则为15~20 MN,复合地层推力有时候达到20 MN以上,大型跨江海盾构隧道千斤顶推力通常都在30MN以上。 (2)注浆压力 依据盾构工法的特性:拼装好的衬砌脱离盾尾后,由于盾壳原来占据的空间、为衬砌的拼装操作所留空隙、盾构推进时带走的部分粘附于盾壳上的土体所形成的空隙等,在衬砌环背面与实际开挖洞壁间存在环形空隙,使土体暂时处于无支护状态,该空隙即为盾尾间隙。盾尾间隙的大小是由盾构钢壳的厚度和盾尾操作空间决定的,一般为8~16 cm。盾构工法施工中,对盾尾间隙的处理,即壁后注浆是施工的关键。壁后注浆在填充盾尾间隙、加固土体的同时,对管片也产生了一定压力,该压力达到一定程度时,可能引起管片局部或整体上浮、错台、开裂、压碎或其他形式的破坏。 (3)上浮力 盾构隧道的壁后注入的水泥浆液一般需要5~7h的初凝时间,而通常情况下这期间盾构一直在向前掘进,如果周围地层满足一定条件,一定范围内的土体未能及时握裹住管片,那么在这几个小时内有一段管片是悬浮在注浆浆液中的(或者是水、泥浆等),这就产生了管片上浮力(浆液浮力扣除管片自重)。 (4)盾壳作用力 管片与盾壳之间存在着一定摩擦力,盾尾密封刷对管片环也存在一较为均匀的环向压力,一般情况下这些荷载不会对管片结构造成影响。但是,当盾构在曲线段掘进、纠偏,或者因其他原因造成盾构长时间停止掘进(造成盾构机“栽头”发生)时,盾壳对管片造成的荷载尤其是挤压荷载就变得不可忽视,如图1所示。 图1 盾壳作用力 (5)拼装荷载 拼装荷载主要是管片拼装过程中作用在管片上的装配器荷载。管片拼装器在拼装管片的过程中需要来回调整拼装位置以安装纵横向螺栓,若上一环管片断面不平整,管片位置不精确,会导致下环管片的受力不均匀,在带来螺栓安装困难问题的同时,亦在管片内部产生了不均匀次生应力。

工程质量事故调查报告范文

工程质量事故调查报告范文 自从钢筋混凝土结构在建筑中广泛使用至今,国内外发生过大量的质量事故,造成了巨大的人员伤亡及经济损失。 案例1xx公司综合楼底层为框架结构,层高为5.4m,2-5层为砖混结构,用作2个单元的多层宿舍,层高均为3.0m。在综合楼投入使用后,陆续发现墙体及2层楼盖框架梁出现裂缝。 案例2xx彩虹桥为中承式钢管混凝土提篮拱桥,桥长140米,主拱净跨120米,桥面总宽6米,净宽5.5米。该桥在未向有关部门申请立项的情况下,施工中将原设计沉井基础改为扩大基础,基础均嵌入基石中。主拱钢管由xx通用机械厂劳动服务部加工成8米长的标准节段,全拱钢管在标准节段没有任何质量保证资料且未经验收的情况下焊接拼装合拢。钢管拱成型后管内分段用混凝土填注。某日30余名群众正行走于彩虹桥上,另有22名武警战士进行训练,由西向东列队跑步至桥上约三分之二处时,整座大桥突然垮塌,桥上群众和武警战士全部坠人河中。 案例3xx重型机器厂计量处四楼会议室屋盖突然塌落,造成42人死亡、46人重伤,133人轻伤,直接经济损失300万元。该厂在原建的计量办公楼三层楼上接层,扩建成四层。会议室位于接层部分的东侧,长21.85米,宽14.9米,面积为325.6平方米,整体建筑为混合结构,现浇圈梁,轻型屋架,钢筋混凝土空心预制板屋面,室内水泥地面。 案例4xx省某车站已建成三座灯桥,每座灯桥8个孔,灯桥跨越铁

路,桥下可停火车和其他车辆。桥面横梁为V型折板,是主要承重构件。V型折板上铺板仅起横向支撑作用,也起传递上部荷载的作用。折板 与盖板以分布筋连接,架设拼装后灌注混凝土而连成整体。某日有一 辆列车从灯桥下通过时,最东端的一孔灯桥折板横梁突然从一端塌落,并砸断了第二根立柱,从而连带第二孔横梁塌落,幸好该孔有一货车 车厢停放,大梁砸到车厢上后就阻住了,仅引起第三柱的倾斜而未引 起更多的连续倒塌。 1、工程事故原因统计分析 事故案例分析说明,建筑倒塌事故原因基本可归纳一下几类: 1.1设计原因(如案例1) (1)勘查失误。工程地质勘察失误,不能反映实际情况或未查明不良地层特征,致使地基基础设计时采用不正确方案。导致结构失稳、 上部结构开裂甚至倒塌。 (2)设计计算方案失误。因任务急、时间紧、计算和绘图错误而 未认真校对;荷载漏算或少算;所涉及问题比较复杂,而作了不妥当的 简化;有的甚至认为原有设计有安全储备而任意减小断面,少配钢筋 或降低材料强度等级;设计时所取可靠度偏低等等。基础置于持力层 的承载力相差很大的两种或多种土层上而未妥善处理;如房屋长度过 长而未按规定设置伸缩缝等方案不妥的情况。 (3)对于结构构造细节处置不当。有些设计人员重计算、轻构造,认为构造处理不是很重要的,因而没有精心设计。如大梁下未设置梁垫;预埋件设置不当;钢筋锚固长度不够,节点设计不合理等等

墙体开裂问题报告

关于棚改一期装修完成后墙体局部开裂问题报告 尊敬的二十三冶棚改一期项目部领导: 你好! 针对2015年4月底接到6#楼个别住户反映有室内墙体局部开裂情况,我公司在贵司项目部的组织第一时间赶赴现场(6#楼704/703)观察开裂情况;事后我公司又组织技术人员多次去开裂户型内及开裂住户周边住户户内,观察墙体开裂情况及裂痕发展情况。 经我公司技术人员观察现场情况、反复分析对比、结合多年室内装修经验,得出产生裂痕原先如下: 1、配电箱处裂痕:安装班组墙体开槽未使用专业电动工具,线槽、配电盒 修补局部不符合要求。 2、墙体1m以下部分:安装班组在抹灰后开槽埋管(与工期不合理有必然 联系)。 3、剪力墙、柱与砖墙搭接处开裂、门窗洞口收口处裂痕、梁底处裂痕部分: 是因为工期要求太紧,所有工序都没有必要的施工间隙时间。墙体没有 度过干缩稳定过程而追求进度要求抹灰工程施工、刮腻子(部分楼层砌 体收口部分几乎与抹灰同时进行)。一旦砌体墙经过一个干燥期,砌体及 粘接砂浆水分蒸发墙体干缩,势必产生收缩。抹灰层干燥后也会产生干 缩,然而水泥砂浆与加气混凝土块收缩系数不一样。而这种收缩会使得 砌体与粘接砂浆接触面、砌体墙与抹灰砂浆接触面产生很大的应力。而 这种应力在没有经过施工必要的施工间隙时间强赶工期的情况下放大很 多倍。所以工期不合理是产生这一系列裂痕的最直接最主要的原因。 4、墙面局部龟裂(极少):是因为住户搬家时住户自己进行了装修,将原有 墙面腻子铲除,重新再刮腻子灰,然而住户施工腻子灰时可能没有使用 经验丰富且具有相关资质的装修队伍施工,造成腻子灰配合料比例有偏 差,拌合不够均匀,追求施工速度使得腻子灰厚度过厚等等。这些原因 在经过腻子灰材料干缩期是使装饰层内部应力不平衡,产生应力集中点 或集中线;厚度过后会使得收缩应力过大,腻子灰面层收缩明显收缩尺 寸偏大,即产生面层龟裂。 对此次产生墙面裂痕的最主要的原因分析为上述四条,望贵部着重考虑。我公司对此次质量事件表示诚挚的歉意,并承诺配合贵项目部的一切指示和要求,安排专业人员及时处理、修补。 谢谢! 汨罗市祥贤劳务有限公司 2015年5月5日

住宅楼墙体开裂渗漏的鉴定分析报告

住宅楼墙体开裂渗漏的鉴定分析 随着我国经济水平的不断发展,墙体粉刷材料日益更新,档次快速提升,施工的要求也越来越高。但住宅楼墙体往往会产生一些开裂与渗漏,它直接影响了建筑工程的质量,也影响了房屋建筑的使用功能,造成室内装饰霉烂脱落与损失。这些渗漏的产生除了墙体砌筑、外墙砖铺贴不规范、窗台等细部节点构造工程处理不合理等原因外,墙体开裂也是造成渗漏的主要原因。 1、开裂部位及危害 墙体开裂一般出现的部位:外墙抹灰的勒脚上口,门窗洞口周边、分格条旁、内墙面、砼与砖交接处、阳台分隔处、砖混结构楼顶层两端房间范围、山墙以及基层平整偏差较大的部位等。其产生的危害:一是影响美观效果,二是降低了建筑无的抗震能力,在地震时容易引发墙体破坏,甚至墙体倒塌. 2、墙体裂缝产生的原因 2.1原材料选材及配料不当。 2.1.1一些施工单位在施工中对建筑物的梁板、柱等会选用较好的水泥和骨料,但错误的认为粉刷时不用考虑结构安全问题则采用低标号的水泥及细骨料,砂浆强度达不到设计要求,导致砂浆的收缩偏大而开裂。 2.1.2为改善粉刷砂浆的和易性,配料中掺入石膏或石灰粉,致使砂浆强度下降,抗剪切力和粘接强度也随之下降,更容易起壳(空鼓)开裂。

2.1.3砂浆使用不当,两种或多种砂浆混合使用,例如水泥砂浆抹在混合砂浆上等。 2.2施工工艺不当或未按规范要求施工 2.2.1砂浆粉刷分格条分布不合理或嵌入太深,破坏外墙底层的整体性。 2.2.2墙面勾缝处砂浆强度不够,厚度不够、疏密不均,砂浆搅拌不均或采用人工拌和。 2.2.3砂浆外粉刷施工工序掌握不当,养护人员(基层处理过湿或过干)浇水不足或过度均会引起面层脱落或干缩。 2.2.4未掌握不同墙体材料如红砖、空心粘土砖,水泥空心砌块、加气混凝土砌块的材质、材性,应采用不同操作方法进行粉刷。 2.2.5砌筑过程中,灰缝的饱满度不够。砌墙时要随时检查砌筑砂浆的饱满度,提高砌体质量,实心砖砌体水平灰缝的砂浆饱满度不得低于80%,竖向灰缝宜采用挤浆法,使其砂浆饱满。 2.2.6砂浆强度差、粘接力不够、不密实,留槎不正确,干砖上墙,砌体整体性差或砌筑方法错误等而产生通缝、空缝、瞎缝。 2.2.7隔墙与砼交接处未按图纸和规范要求设拉结钢筋,沿交接处出现裂缝,由砌体裂缝导致抹灰开裂。 2.2.8基层处理不当或未清理干净。抹灰砂浆水灰比大,影响粘贴力。 2.2.9未按操作规程分遍抹灰,为图快“一气呵成”造成每遍灰的收缩变形集中到面层,加大了几倍的变形量。 2.2.10外墙脚手架眼在堵塞前要随时清理干净,并湿润,四周必须

管片破损分析

关于xx站~沪xx站区间上行线 第41~48环管片质量问题分析报告 针对锦绣路站~沪南路站区间隧道上行线41~48环存在渗漏水,41~45环管片不同程度的破碎、裂缝情况,我部对发生问题的部位进行认真调查,并召开有盾构司机、拼装手、质检员、技术员、技术负责人参加的质量分析会,会议分析结果汇报如下: 1、质量问题描述: 41环D块内弧面破裂,B2块下后角10cm*10cm缺角,L 1、L2块上后角15cm*10cm缺角, B1、B2渗水,L2滴漏; 42环D块左后角15cm*10cm缺角,F块左前角5cm*10cm缺角, B1、B2块渗水,L 1、L2块滴漏; 43环D块内弧面破裂,B2块下前角15cm*10cm缺角, B1、B2渗水,L2滴漏; 44环D块内弧面破裂,B1块下前角10cm*10cm缺角,B2渗水,L2滴漏; 45环D块内弧面破裂,B2块下后角10cm*10cm缺角, B1、B2渗水,L2滴漏; 46环 B2、L2渗水; 47环B1下前角5cm*10cm缺角,F块滴漏,L2块渗水;48环D块下前角10cm*10cm缺角,F块滴漏,

B1、B2块渗水; 2、主要原因如下: ①盾构姿态与管片姿态出现偏差,管片的环面与盾构推进方向存在夹角,其合力作用方向部位的管片发生破碎; ②安装不仔细以及偏心力的作用导致错台,错台造成节头密封接不紧,产生渗漏水。连续多环纠偏稍大导致连续几环管片错台,伴随管片在螺栓孔位置或边角处发生局部破裂; ③施工初期,由于工人经验不足,管片安装速度很慢,有时发生管片错台大、在管片边角或在螺栓孔处破裂的问题; ④封顶块安装时,由于先行安装的5块管片圆度不够,两邻接块间的间隙太小,封顶块强行顶入,未按要求在其两侧涂刷润滑剂,导致封顶块及邻接块接缝处管片破碎,破碎部位发生在邻接块上部及封顶块两侧; ⑤螺栓初紧、复紧不及时或者螺栓拧的不够紧,管片受力后,环向螺栓由垂直方向变倾斜,造成管片产生错台,从而出现边角部位的破碎以及裂缝等问题; ⑥注浆量不足或浆液配合比不合适引起管片破损。施工过程中由于注浆量不足,没能充分填充建筑间隙,管片产生移动,产生偏心力,引起管片局部应力超过强度。浆液的可泵性和稳定性较差,浆液填充不均匀,管片受力状态不理想,注浆压力作用过大,出现面板破损和管片产生大的变形。 3、质量整改措施 ①根据设计院审核的管片修补方案在设计要求时间内进行修补。 ②严格执行每日班前质量交底制度,提高作业班组质量意识。 ③加强对关键岗位人员技术培训,提高其技能。 ④制定质量奖罚制度,并认真执行。 ⑤定期进行质量检查,必要时安排技术人员全程跟踪监控。

裂缝报告

关于同大公寓墙体裂缝的调查报告 [内容摘要] 墙体作为建筑物的重要承重构件及围护结构,其质量好坏对建筑物的影响不容忽视。墙体裂缝是常见的房屋质量问题之一,裂缝程度轻重差别很大。轻则影响房屋正常使用和美观,严重的将形成结构安全隐患,甚至发生工程事故。因此,对墙体裂缝的产生原因、裂缝特征以及防治措施等问题进行分析研究十分有意义。现对同大公寓十三栋和十四栋公共大厅的墙体裂缝调查分析如下。 [关键词] 裂缝;墙体裂缝;成因;措施 1.工程概况 本工程为同大公寓十三栋和十四栋公共大厅,层数为一层。相连的十三栋和十四栋结构相同,层数为五层,本工程结构形式为砖混结构,抗震设防度为六度,主体结构合理使用年限为50年。 2.裂缝状况描述 成45度斜向发展的倒八字形裂缝, 还有少许外墙抹灰脱落下来等。 3.墙体裂缝原因分析 3.1地基不均匀沉降引起的裂逢 3.1.1成因 房屋在建成后,地基一般都会下沉。特别是 大厅左右端相连五层宿舍楼与中间一层的大厅高 差较大、荷载分布极不均匀,产生过大的不均匀沉 降,沉降大的部位与沉降小的部位发生相对位移,在墙体中产生剪力和拉力,当这种附加内力超过墙体本身的抗拉抗剪强度时,使墙体产生附加应力,就会产生裂缝。裂缝大致与主拉应力方向垂直,裂缝倾向一般朝沉陷大的部位,当房屋的两端沉降过大,就出现倒八字裂缝。 3.1.2措施 为防止地基不均匀沉降引起的墙体开裂,可采取以下措施。 (1)加强地基勘察。地质勘察时,要探明局部软弱土层。对照勘探报告,辨别土层成分,防止因未作土样分析而将某些特性土,如膨胀土、湿陷性黄土当作一般土处理。对发现的软弱土部分,应处理后,方可进行基础施工。 (2)设置沉降缝。沉降缝必须自基础起将两侧房屋在结构构造上完全分开,在荷载相差大部位设置沉降缝,可以在大厅与左右宿舍楼交界处设置沉降缝。 (3)采用桩基础或其他深基础。桩基础或其他深基础可以有效承担两端的荷载,减少两端过大的沉降。 (4)施工措施。在软弱的地基上进行工程建设,合理地安排施工程序,能收到减少或调整部分不均匀沉降的效果。应按照先重后轻的程序进行施工,先施工两端宿舍楼,再大厅,还可以在宿舍楼竣工后间歇一段时间,然后再建造大厅。 3.2温度变化引起的裂缝 3.2.1成因

框架填充墙裂缝分析报告

加气砼墙体的开裂原因分析及防裂措施 1. 加气混凝土砌块填充墙开裂分类1.1按裂缝是否贯穿填充墙可分为:贯穿性裂缝和表面裂缝。有些裂缝在填充墙的两面对称出现,基本可判定该裂缝贯穿墙体。斜裂缝和水平裂缝大多数为贯穿裂缝,而竖向裂缝有些只是墙体表面抹灰层开裂。贯穿性斜裂缝和竖向裂缝有以下几种情况砌块开裂、灰缝开裂以及砌块和灰缝同时开裂,但一般是砌块和灰缝同时开裂,贯穿性水平裂缝一般都是灰缝开裂。1.2按裂缝出现的时间,可以分为早期裂缝和后期裂缝。早期裂缝是指填充墙砌筑后到加气混凝土砌块含水率达到气干状态这一阶段(一般为填充墙砌筑后的6个月)出现的裂缝。早期裂缝多数是竖向裂缝和水平裂缝,斜裂缝很少。在此阶段加气混凝土的砌筑填充墙的裂缝主要是砌块和砂浆之间的粘结裂缝。填充墙墙体中部的水平裂缝多出现在早期;后期裂缝是指加气混凝土砌块达到气干状态以后(一般为填充墙砌筑后的6个月)出现的裂缝。此阶段竖向裂缝多出现在墙体中部及墙柱连接处,而斜裂缝多出现在门窗洞口、管线穿凿处和填充墙墙体开洞处。水平裂缝多出现在梁与墙交接处、门窗洞口的过梁下方。一般清况下,加气混凝土砌块填充墙早期裂缝相对较小,而后期裂缝相对较多。砌体裂缝通常是由受约束的变形引致,而变形则主要起源于材料本身,比如:体积、湿度、温度变化造成的缩胀,或由于与之毗连或支承材料,梁或楼板的变形。最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝,还有由

温度和干燥收缩共同作用而产生的裂缝。干燥收缩变形引起的裂缝在建筑砌体中分布广、数量多、裂缝的程度也比较严重。 2. 加气混凝土砌块墙体开裂的机理分析对于框架结构和框剪结构来说,每一堵墙包括梁、柱、门窗洞口和填充墙、抹灰层、外墙装饰层等,都是一个有机结合的“整体墙”。在这个“整体墙”中,由于许多的内在因素的影响,从而产生多样的内应力,这些内应力从墙体砌筑完成便已开始形成并慢慢在墙体中发生变化。当变化过程中较大的内应力集中在墙体的某一部位,而该处的抗拉强度不足以抗衡的情况下,则会产生裂缝从而释放应力。 2.1墙体材料及砂浆等产品(材料)的干缩变形而产生的内应力的大小与实际干缩值成正比,而实际干缩值的大小则与新墙材的标态干缩值、实际含水率是同方向变化,与产品的龄期是反方向变化。 2.2砌体的沉缩而产生内应力。砌体在砌筑过程及砌筑完成后都会形成沉降收缩,它包括砌体在自重作用下产生的砂浆塑性变形而下沉,也包括墙体材料和砂浆的干燥收缩。其内应力的大小与砌体的沉缩量成正比。 2.3温度应力而产生的内应力。温度的变化会引起材料的热胀、冷缩,钢筋混凝土的温度线膨胀系数为砌体温度线膨胀系数的两倍。当温度变化时,钢筋混凝土与砌体的变形不同步,由于建筑物是超静定结构,约束条件下温度变化引起足够大的变形时,建筑物将产生温度应力,即在“整体墙”产生内应力。内应力的大小与温度的变化成正比,这种温度应力在红砖墙体中同样会形成。当作用于构件的温度应

裂纹分析报告

焊缝裂纹产生原因分析以及预防焊接裂纹是焊接应用中较为普遍而又十分严重的问题,下面针对最为常见的热裂纹和冷裂纹结合实际进行分析. 具体情况下产生裂纹的原因是不同的,有时可能是几种因素共同作用的结果。然而,不管是热裂纹,冷裂纹,它们都具有一个共同的规律,即、焊接时由于各种原因在熔池内部常发生变化,在一定条件下会发生作用而形成裂纹。在气保焊中我们要通过裂纹的特征来判断裂纹的类型, 一、热裂纹 热裂纹是在焊接高温下产生的,分为结晶裂纹,液化裂纹和多边化裂纹。主要为结晶裂纹,结晶裂纹的产生主要由以下几个方面: 1. 冶金因素方面 (1)结晶温度区的范围越大,则可增加脆性温度区的区间,增加裂纹的倾向。结晶温度区的大小与合金含量有很大的关系,即随着合金成分的增加,合金温度区间也增大。 (2)碳在钢中是影响结晶裂纹的主要因素,碳含量越大,则增加裂纹倾向,并能加剧其他元素的有害作用,硫、磷几乎在各种钢中都会增加结晶裂纹的倾向。 2. 预防措施 控制焊缝中硫、磷、碳等有害杂质含量。YJ502(E71T-1)药芯焊丝选用药芯焊丝专用冷轧钢带生产,碳、硫、磷含量很低,药粉也严格控制碳、硫、磷含量,因此焊缝熔敷金属碳含量小于0.05%,硫、磷含量也很低,大大低于国家标准规定要求,一般不会因为焊缝碳、硫、磷含量超标

造成结晶裂纹。在焊接母材时,特别是焊接不同牌号、级别的钢板时,由于两种母材的合金成份等各方面有差异,尽管焊丝与母材是匹配的,但是不同母材之间、焊材和母材之间合金差异造成裂纹倾向较大,在焊接时要加强改善焊接工艺,防止裂纹的产生。 3. 工艺因素方面 工艺方面主要是焊接工艺参数、预热、接头型式和焊接顺序等,用工艺方法防止结晶裂纹主要是改善焊接时的应力状态。 (1)焊接工艺及工艺参数生产经验证明,尽管在冶金因素方面做了很多努力,但采用的焊接工艺和规范不当时,同样也会产生裂纹,因此必须重视焊接工艺。适当增加焊接线能量和提高预热温度,即可减小焊缝金属的应变率,从而降低结晶裂纹的倾向,但增加线能量会使近缝区的金属过热,提高预热温度又会恶化劳动条件,所以采用这种方法受到限制。 (2)焊接接头形式不同,将影响接头的受力状态、结晶条件和热的分布等,因而结晶裂纹的倾向也不同,这一点在设计和施工时应特别注意。对于厚板焊接结构,施工时采用多层焊,裂纹倾向比单层焊有所缓和,但对各层的熔深应注意控制。另外,在接头处应尽量避免应力集中(错边、咬肉、未焊透等),也是降低裂纹倾向的有效办法。 (3)焊接次序施工时焊接次序是很重要的,同样的焊接方法和及焊接材料,只是因为焊接次序不同,可能具有不同的结晶裂纹倾向。总的原则是尽量使大多数焊缝能在较小刚度的条件下焊接,使焊缝的受力较小。 (4)严格按照要求使用焊接设备,电流电压调整,CO2气体的预热等总之,焊接工艺制定部门要根据生产实际,制定出合理的,严谨的焊

相关文档
最新文档