深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记
深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记

https://youtu.be/MPU2HistivI

上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。

今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。

道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。

本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。

一、神经网络

1.1 神经元和神经网络

神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。

由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。

神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。

1.2 BP算法

神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。

建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

1.3 小结

人工神经网络就是根据人的神经元模型而构建的一个感知算法,利用大量的神经元组合对人的认知行为进行拟合。目前我们仍然无法精确的知道它为什么能工作、如何工作,如同我们仍然无法精确知道人的大脑是如何工作一样。

在摸索过程中,我们好像应该更多地思考人类自己是怎么去“看”的,这会更有助于设计更好的算法。比如本文开头的视频识别算法,它很快,但是不够精确,而有些可以“看清”细节的算法,就会非常慢。就像我们人类自己,走马观花只能看到概貌,驻足观赏才能看清细节。

我们越了解自己,就越能做得更好。

二、卷积神经网络

2.1 简介

卷积神经网络(Convocational Neural Network,CNN)是一个特殊的深层神经网络,目前在计算机视觉领域广泛使用,可以认为它是一个二维向量(图片就是一个二维向量)的感知器。

CNN算法的核心是对图像(二维向量)进行矩阵卷积运算,这就相当于是对图像进行加权求和。为了减小计算量,CNN采用了局部感知和权值共享的方法。局部感知,就是用一个N×N(如N=3)的矩阵(称为卷积核)去滑动扫描图像,进行卷积运算。权值共享,就是扫描图片的滑动矩阵的权值是共享的(相同的)。在实际运算中,这个卷积核相当于一个特征提取的过滤器(filter)。举例来说,假设一个10×10的图像,用一个3×3的卷积核以步长1做一次卷积运算,那么会得到一个8×8的特征图(feature map)。为了使得到的feature map和原图等大小,一般给原图进行扩充为12×12,这样卷积一次以后,得到的仍然是10×10大小的图像。在这个例子中,如果不采用权值共享,则一共需要100个权值参数,权值共享后,只需要3×3=9个权值参数。

在实际中,一个RGB图像是三个通道,而卷积核也可能有多个。这样计算起来会比上面的例子复杂些,但基本原理是一样的。

2.2 CNN计算流程

一个典型的CNN算法的流程大概是这样的:首先是输入,然后是n个卷积和池化的组合,最后全连接层感知分类。

在这个流程里,卷积运算主要是用来提取特征。一个典型的卷积计算如下图所示。

<卷积计算示意图>

图中input是同一个图像的三个通道,周边有填充0;有两个卷积核Filter W0和Filter W1,一个filter滑动到一个位置后计算三个通道的卷积,求和,加bias,得到这个filter在该位置的最终结果;每个filter的输出是各个通道的汇总;输出的个数与filter个数相同。在这里还要加上激活函数,对计算结果进行非线性变换。常用的激活函数有tanh、ReLU、sigmoid等。激活函数的作用好像可以解释为:过滤掉一些可以忽略的不重要因素,以避免其对决策产生过度影响。

池化是为了降维,有最大池化(Max Pooling)和平均池化(Average Pooling)。一个2×2最大池化的示例如下图。

最后是全连接层,它将前面卷积层提取的特征映射到样本标记空间,它输出一个分类的概率,也就是最终的结果。

2.3 典型的CNN模型

LeNet,最早用于数字识别的CNN,用5×5卷积核,2×2最大池化,识别输入为28×28的灰度点阵,网络结构是(CONV—POOL—CONV—POOL—CONV—FC)。

AlexNet,2012 ImageNet比赛第一名,准确度超过第二名10%。网络结构如下图。5个CONV、3个POOL、2个LRN、3个FC,卷积核分别是11×11、5×5、3×3,采用ReLU作为激活函数。

VGG,有跟多的卷积层(16~19),使用3×3卷积核。

GoogLeNet,采用Inception来减少参数(用1×1卷积核降维)。

ResNet,很多很多层的网络,从152层到据说上千层。采用残差网络来解决多层网络难以训练的问题。

以上网络的对比如下表。

2.4 训练集

应该可以感受到,人工智能也好,深度学习也好,算法的优劣是一方面,而训练数据集的好坏,对最终的效果影响更大。而训练集又非常难做,需要大量的数据,且标记这些数据需要巨大的工作量(过去的8年ImageNet就在做这个工作)。逐渐,一些数据集就慢慢出了名。很多算法的性能数据都会指明是在哪个数据集上训练的。一些有名的数据集如下。

MNIST:深度学习领域的“Hello World!”,一个手写数字数据库,有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28。数据集以二进制存储,不能直接查看。数据集大小为12M。

ImageNet:MIT李飞飞团队过去几年的成果,目前有1400多万幅图片,涵盖2万多个类别。数据集大小为1T。ImageNet根据WordNet层次(目前只有名词)组织的一个图像数据库,其中每个节点的层次结构是由成千上万的图像描绘。目前,有平均每个节点超过五百的图像。

COCO:Common Objects in Context,是一个新的图像识别、分割、和字幕数据集,由微软赞助,具有上下文识别、语义描述等特点。数据集大小为40G。

PASCAL VOC:图片集包括20个目录,数据集图像质量好,标注完备,非常适合用来测试算法性能。数据集大小为2G。

由于数据集生成有一定难度且工作量巨大,两年来GAN(Generative Adversarial Nets,生成对抗网络)快速发展,并在很多应用场景的训练集生成产生了巨大作用,比如车牌识别。

三、物体检测

3.1 检测流程

在实际场景中,我们需要在一副图像中找出有哪些物体,这是一个多对多的映射(所谓的回归)。按照已有的CNN方法,常规的检测流程就是:先找到哪些区域有物体,然后再用CNN来对其分类。

区域选择最原始的办法就是用不同大小的滑动窗口对整幅图像进行扫描。这样不但计算量大,也容易造成误判。一个改进的方法是所谓Region Proposal,即预先找出物体可能在的位置。这里需要提到以下几个概念。

IoU:Intersection over Union,Region Proposal与Ground Truth的窗口的交集比并集的比值,如果IoU低于0.5,那么相当于目标还是没有检测到。Ground Truth 就是实际物体真实的区域。

mAP,mean Average Precision,平均精度均值。是对多个验证集求PR曲线的均值。PR曲线是Precision和Recall作为横纵坐标轴的曲线,Precision是准确率,即检测出的样本有多少是正确的,Recall是召回率,即应该被检测出的样本有多少被检测出来。PR曲线越高,说明算法越好,即又多又准。

3.2 典型的算法

从2014年的R-CNN(Region proposal+CNN)开始,出现了一系列目标检测算法,从R-CNN到fast R-CNN和faster R-CNN,以及SPP-NET,R-FCN,还有YOLOv1~v3和SSD、DSSD。

R-CNN:采用selective search方法(一种Region Proposal方法,Region Proposal的方法有selective search、edge box)进行区域选择,选出2000个左右。将每个区域缩放至227×227,再送入CNN计算特征,最后由SVM(支持向量

机)分类。很明显,R-CNN很慢。

SPP-NET:为了加快R-CNN的速度,采取对一副图像的多个Region Proposal 一次提取特征。这就要求网络必须适应不同尺寸的图像。方法是在全连接层之前加入一个网络层,让它对任意尺寸的输入产生固定的输出(将图像分成16、4、1个块)。SPP-NET训练步骤繁琐,并且仍然不够快。

fast R-CNN:与R-CNN相比,fast R-CNN在最后一个卷积层后加了一个ROI pooling layer,同时损失函数使用了多任务损失函数(multi-task loss),将边框回归直接加入到CNN网络中训练,最后用softmax替代SVM进行分类。fast R-CNN 不是真正的端到端训练测试,还是需要selective search来进行Region Proposal,所以还是不够快,不能做实时的检测。

Faster R-CNN:采用RPN(Region Proposal Networks)用Anchor机制和边框回归直接得到多尺度多长宽比的Region Proposal。Fast R-CNN做到了真正的端到端,但可惜的是仍然不能达到实时检测。RPN需要详细了解一下。

R-FCN: Object Detection via Region-based Fully Convolutional Networks,基于区域的全卷积网络物体检测。嫁接ResNet的卷积层,采用RPN获取ROI,针对每个ROI,在POOL之前加入位置信息(通过score map)。R-FCN的score map 计算有点绕,需要慢慢理解。

YOLO:虽然精度不是最好,但确是目前实时性最好的算法,可以在视频中实时检测出很多物体。倒也符合人类视觉的特点,一眼望去先看个大概,要想看细节,那就定格仔细看吧。YOLO系列的算法后面详细总结。

SSD:SSD结合了YOLO中的回归思想和Faster R-CNN中的anchor机制,使用全图各个位置的多尺度区域特征进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster R-CNN一样比较精准。

一般后续出现的算法都会与之前的算法做性能对比,SSD和YOLOv1比,YOLOv2、v3又和SSD比,在不同的训练集上也有不同的mAP,看起来真是眼花缭乱。因为机缘巧合,我先接触到YOLO系列算法,在自己的电脑上运行DEMO,也仔细看了YOLO的发展,于是给一个稍微详细的总结。

3.3 YOLO系列算法

YOLO算法主要是针对以往物体检测算法速度较慢的弊端,利用一个单独的

端到端网络,将原始图像输入,直接输出物体位置和类别。YOLO没有显式的求取Region Proposal的过程(R-CNN和Fast R-CNN采用selective search获取,Faster R-CNN和R-FCN则采用了RPN)。YOLO的名字也来自于其核心特征:You Only Look Once,只看一次。

从2015年到2018年3月,YOLO一共出了三个版本v1、v2(YOLO9000)、v3,性能逐渐提高,mAP与其它算法持平或略胜一筹。

3.3.1 YOLOv1

YOLO将对象检测框架化为空间分离边界框和相关类别概率的回归问题。单个神经网络在一次评估中直接从完整图像预测边界框和类概率。由于整个检测流水线是单个网络,因此可以直接针对检测性能端到端地进行优化,使得统一架构非常快。

基础YOLO模型以45帧/秒的速度实时处理图像。较小版本的网络Fast YOLO每秒处理可达155帧,同时实现其他实时检测器的mAP的两倍。与最先进的检测系统相比,YOLO产生更多的定位误差,但不太可能预测背景上的误报。最后,YOLO表现出对目标识别很好的通用性。

YOLO检测网络有24个卷积层,其次是2个完全连接的层。交替的1×1卷积层减少了来自前面层的特征空间。在分辨率的一半(224 * 224输入图像)上预分割ImageNet分类任务上的卷积图层,然后将分辨率加倍以进行检测。

YOLO将输入图像分成S×S个格子,若某个物体Ground truth的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体。

每个边界框由5个预测组成:x,y,w,h和置信度。(x, y)坐标表示相对

于网格单元边界的框的中心。宽度和高度是相对于整个图像预测的。最后,置信度预测表示预测框与任何ground truth框之间的IOU。

每个网格单元还预测C条件类概率Pr(Classi|Object)。这些概率取决于包含对象的网格单元。仅预测每个网格单元的一组类概率,而不管箱B的数量。在测试时间,将条件类概率和单个盒子置信度预测相乘,

这给出了每个盒子的类别特定置信度评分。这些分数编码该类出现在盒子中的概率以及预测盒子如何适合该对象。YOLO的输出维度为S×S×(B×5+C)。检测中采用了S=7,B=2,C=20。

YOLO对占比较小的目标检测效果一般。虽然每个格子可以预测B个bounding box,但是最终只选择IOU最高的bounding box作为物体检测输出,即每个格子最多只能预测出一个物体。当物体占画面比例较小,如图像中包含鸟群时,每个格子包含多个物体,但却只能检测出其中一个。

YOLO训练时的Loss函数如下

其中λcoord=5,λnoobj=0.5,是权重系数。公式包括三部分,分别是坐标误差、IOU误差和分类误差。

3.3.2 YOLO9000

YOLOv2对之前的版本做了改进。取消了dropout,在卷积层全部使用Batch Normalization;采用448×448的分辨率训练检测网络;借鉴Faster R-CNN的思想预测bbox的偏移,移除了全连接层,并且删掉了一个POOL层使特征的分辨率更大。

网络结构图如下:

YOLOv2的性能比v1有了提升,具体数据在v3部分进行对比。

3.3.3 YOLOv3

YOLOv3是2018年3月25号发布的,里面对当前各种物体检测算法做了性能对比。

在320 * 320分辨率下,YOLOv3达到28.2 mAP、22 ms,与SSD一样精确,但速度提高了三倍。对旧的0.5 IOU mAP检测指标YOLOv3表现不俗。在Titan X上,它达到了51 ms、57.9 AP50,而RetinaNet则是198 ms、57.5 AP50,性能相似,但是快了3.8倍。

YOLOv3主要在多尺度预测、基础分类网络及分类器上做了改进。

采用多尺度预测,每种尺度预测3个box(类似FPN)。anchor的设计方式仍然使用聚类,得到9个聚类中心,将其按照大小均分给3中尺度。尺度1:在基础网络之后添加一些卷积层再输出box信息。尺度2:从尺度1中的倒数第二层的卷积层上采样(×2)再与最后一个16×16大小的特征图相加,再次通过多个卷积后输出box信息。相比尺度1变大两倍。尺度3:与尺度2类似,使用了32×32大小的特征图。

基础网络采用了Darknet-53,这个新网络比v2的Darknet-19强大得多,但仍比ResNet-101或ResNet-152更高效。

边框预测采用之前的logistic。

YOLO的优点很明显,就是速度快、简单,背景误检率低,通用性强。对于非自然图像物体的检测率远远高于DPM和RCNN系列检测方法。

但相比RCNN系列物体检测方法,YOLO的缺点是物体位置精准性较差,且召回率低。

YOLO系列算法可以在Ubuntu上运行,我自己在Windows 10上也跑起来了,硬件:Nvidia Geforce MX150,软件:Visual Studio 2015+CUDA9.1+OpenCV3.0。

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

基于深度学习的目标检测技术

基于深度学习的目标检测技术 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN 在过去的几年中,典型的PASCAL VOC数据集上测量的对象检测性能已经趋于平稳。最好的执行方法是复杂的集成系统,通常结合多个低级别的图像特征与高层次的背景。在本文中,我们提出了一个简单的和可扩展的检测算法,提高了平均准确率(MAP)超过30%,相对于先前的最佳结果VOC 2012实现53.3%的平均准确率。我们的方法结合了两个关键的见解:(1)可以将高容量卷积神经网络(CNNs)应用到自下而上的区域建议中,以便定位和分割对象;(2)当标记的训练数据很少时,监督辅助任务的预训练,然后进行特定领域的微调,可以显著提升性能。由于我们将区域建议与CNNs结合起来,我们称我们的方法为RNCN:具有卷积神经网络特征的区域。我们还将R-CNN与OverFeat进行比较,最近提出的滑动窗口检测器基于类似的卷积神经网络架构。我们发现R-CNN在200级ILSVRC2013检测数据集上大大优于OverFeat。 object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。 object detection技术的演进: RCNN->SppNET->Fast-RCNN->Faster-RCNN 从图像识别的任务说起 这里有一个图像任务: 既要把图中的物体识别出来,又要用方框框出它的位置。

零基础入门深度学习(5) - 循环神经网络

[关闭] 零基础入门深度学习(5) - 循环神经网络 机器学习深度学习入门 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。 文章列表 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 零基础入门深度学习(3) - 神经网络和反向传播算法 零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络 往期回顾 在前面的文章系列文章中,我们介绍了全连接神经网络和卷积神经网络,以及它们的训练和使用。他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列;当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。这时,就需要用到深度学习领域中另一类非常重要神经网络:循环神经网络(Recurrent Neural Network)。RNN种类很多,也比较绕脑子。不过读者不用担心,本文将一如既往的对复杂的东西剥茧抽丝,帮助您理解RNNs以及它的训练算法,并动手实现一个循环神经网络。 语言模型 RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以为语言模型来建模。那么,什么是语言模型呢? 我们可以和电脑玩一个游戏,我们写出一个句子前面的一些词,然后,让电脑帮我们写下接下来的一个词。比如下面这句:我昨天上学迟到了,老师批评了____。 我们给电脑展示了这句话前面这些词,然后,让电脑写下接下来的一个词。在这个例子中,接下来的这个词最有可能是『我』,而不太可能是『小明』,甚至是『吃饭』。 语言模型就是这样的东西:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。 语言模型是对一种语言的特征进行建模,它有很多很多用处。比如在语音转文本(STT)的应用中,声学模型输出的结果,往往是若干个可能的候选词,这时候就需要语言模型来从这些候选词中选择一个最可能的。当然,它同样也可以用在图像到文本的识别中(OCR)。 使用RNN之前,语言模型主要是采用N-Gram。N可以是一个自然数,比如2或者3。它的含义是,假设一个词出现的概率只与前面N个词相关。我

神经网络及深度学习

可用于自动驾驶的神经网络及深度学习 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 作者:来源:电子产品世界|2017-02-27 13:55 收藏 分享 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 如今,车辆的很多系统使用的都是机器视觉。机器视觉采用传统信号处理技术来检测识别物体。对于正热衷于进一步提高拓展ADAS功能的汽车制造业而言,深度学习神经网络开辟了令人兴奋的研究途径。为了实现从诸如高速公路全程自动驾驶仪的短时辅助模式到专职无人驾驶旅行的自动驾驶,汽车制造业一直在寻求让响应速度更快、识别准确度更高的方法,而深度学习技术无疑为其指明了道路。 以知名品牌为首的汽车制造业正在深度学习神经网络技术上进行投资,并向先进的计算企业、硅谷等技术引擎及学术界看齐。在中国,百度一直在此技术上保持领先。百度计划在2019 年将全自动汽车投入商用,并加大全自动汽车的批量生产力度,使其在2021 年可广泛投入使用。汽车制造业及技术领军者之间的密切合作是嵌入式系统神经网络发展的催化剂。这类神经网络需要满足汽车应用环境对系统大小、成本及功耗的要求。 1轻型嵌入式神经网络 卷积式神经网络(CNN)的应用可分为三个阶段:训练、转化及CNN在生产就绪解决方案中的执行。要想获得一个高性价比、针对大规模车辆应用的高效结果,必须在每阶段使用最为有利的系统。 训练往往在线下通过基于CPU的系统、图形处理器(GPU)或现场可编程门阵列(FPGA)来完成。由于计算功能强大且设计人员对其很熟悉,这些是用于神经网络训练的最为理想的系统。 在训练阶段,开发商利用诸如Caffe(Convolution Architecture For Feature Extraction,卷积神经网络架构)等的框架对CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在CPU、GPU 或FPGA上生成网络及原型,尤其是执行浮点运算以确保最高的精确度。 作为一种车载使用解决方案,这种方法有一些明显的缺点。运算效率低及成本高使其无法在大批量量产系统中使用。 CEVA已经推出了另一种解决方案。这种解决方案可降低浮点运算的工作负荷,并在汽车应用可接受的功耗水平上获得实时的处理性能表现。随着全自动驾驶所需的计算技术的进一步发展,对关键功能进行加速的策略才能保证这些系统得到广泛应用。 利用被称为CDNN的框架对网络生成策略进行改进。经过改进的策略采用在高功耗浮点计算平台上(利用诸如Caffe的传统网络生成器)开发的受训网络结构和权重,并将其转化为基于定点运算,结构紧凑的轻型的定制网络模型。接下来,此模型会在一个基于专门优化的成像和视觉DSP芯片的低功耗嵌入式平台上运行。图1显示了轻型嵌入式神经网络的生成

目标检测方法简要综述

龙源期刊网 https://www.360docs.net/doc/9c8362319.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

吴恩达深度学习课程:神经网络和深度学习

吴恩达深度学习课程:神经网络和深度学习[中英文字幕+ppt课件] 内容简介 吴恩达(Andrew Ng)相信大家都不陌生了。2017年8 月8 日,吴恩达在他自己创办的在线教育平台Coursera 上线了他的人工智能专项课程(Deep Learning Specialization)。此课程广受好评,通过视频讲解、作业与测验等让更多的人对人工智能有了了解与启蒙,国外媒体报道称:吴恩达这次深度学习课程是迄今为止,最全面、系统和容易获取的深度学习课程,堪称普通人的人工智能第一课。 关注微信公众号datayx 然后回复“深度学习”即可获取。 第一周深度学习概论: 学习驱动神经网络兴起的主要技术趋势,了解现今深度学习在哪里应用、如何应用。 1.1 欢迎来到深度学习工程师微专业 1.2 什么是神经网络? 1.3 用神经网络进行监督学习 1.4 为什么深度学习会兴起? 1.5 关于这门课

1.6 课程资源 第二周神经网络基础: 学习如何用神经网络的思维模式提出机器学习问题、如何使用向量化加速你的模型。 2.1 二分分类 2.2 logistic 回归 2.3 logistic 回归损失函数 2.4 梯度下降法 2.5 导数 2.6 更多导数的例子 2.7 计算图 2.8 计算图的导数计算 2.9 logistic 回归中的梯度下降法 2.10 m 个样本的梯度下降 2.11 向量化 2.12 向量化的更多例子 2.13 向量化logistic 回归 2.14 向量化logistic 回归的梯度输出 2.15 Python 中的广播 2.16 关于python / numpy 向量的说明 2.17 Jupyter / Ipython 笔记本的快速指南 2.18 (选修)logistic 损失函数的解释 第三周浅层神经网络:

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/9c8362319.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

使用深度学习和OpenCV 进行视频目标检测

使用深度学习和OpenCV 进行视频目标检测 使用 OpenCV 和 Python 上对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能。 本文分两个部分。在第一部分中,我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中。这个任务会通过 VideoStream 类来完成。 深度学习目标检测教程:http://pyimagesearch/2017/09/11/object-detection-with-deep-learning-and-opencv/ VideoStream 类教程:http://pyimagesearch/2016/01/04/unifying-picamera-and-cv2-videocapture-into-a-single-class-w ith-opencv/ 现在,我们将开始把深度学习+目标检测的代码应用于视频流中,同时测量 FPS 处理速度。使用深度学习和 OpenCV 进行视频目标检测 为了构建基于 OpenCV 深度学习的实时目标检测器,我们需要有效地接入摄像头/视频流,并将目标检测应用到每一帧里。 首先,我们打开一个新文件,将其命名为 real_time_object_detection.py,随后加入以下代码: 我们从第 2-8 行开始导入封包。在此之前,你需要 imutils 和 OpenCV 3.3。在系统设置上,你只需要以默认设置安装 OpenCV 即可(同时确保你遵循了所有 Python 虚拟环境命令)。Note:请确保自己下载和安装的是 OpenCV 3.3(或更新版本)和 OpenCV-contrib 版本(适用于 OpenCV 3.3),以保证其中包含有深度神经网络模块。 下面,我们将解析这些命令行参数: 与此前的目标检测项目相比,我们不需要图像参数,因为在这里我们处理的是视频流和视频——除了以下参数保持不变:

数字图像处理和边缘检测

中文译文 数字图像处理和边缘检测 1.数字图像处理 数字图像处理方法的研究源于两个主要应用领域:为便于人们分析而对图像信息进行改进;为使机 器自动理解而对图像数据进行存储、传输及显示。 一幅图像可定义为一个二维函数(,)f x y ,这里x 和y 是空间坐标,而在任何一对空间坐标(,)x y 上 的幅值f 称为该点图像的强度或灰度。当,x y 和幅值f 为有限的、离散的数值时,则图像为数字图像。数字图像处理是指借用数字计算机处理数字图像,值得提及的是数字图像是由有限的元素组成的,每一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。像素是广泛用于表示数字图像元素的词汇。 视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。然而,人 类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。因此,数字图像处理涉及各种各样的应用领域。 图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有 一致的看法。有时用处理的输入和输出内容都是图像这一特点来界定图像处理的范围。我们认为这一定义仅是人为界定和限制。例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理。另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输入采取行动等。这一领域本身是人工智能的分支,其目的是模仿人类智能。人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢的多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。 从图像处理到计算机视觉这个连续的统一体内并没有明确的界线。然而,在这个连续的统一体中可 以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科。 低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。低级处理是以输入、输出都是图像为特点的处理。中级处理涉及分割(把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同目标的分类(识别)。中级图像处理是以输入为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的。最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等。 根据上述讨论,我们看到,图像处理和图像分析两个领域合乎逻辑的重叠区域是图像中特定区域或 物体的识别这一领域。这样,在研究中,我们界定数字图像处理包括输入和输出均是图像的处理,同时也包括从图像中提取特征及识别特定物体的处理。举一个简单的文本自动分析方面的例子来具体说明这一概念。在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本文界定的数字图像处理的范围内。理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题。

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

基于深度学习的目标检测研究进展

基于深度学习的目标检测研究进展 原创2016-05-30深度学习大讲堂深度学习大讲堂 开始本文内容之前,我们先来看一下上边左侧的这张图,从图中你看到了什么物体?他们在什么位置?这还不简单,图中有一个猫和一个人,具体的位置就是上图右侧图像两个边框(bounding-box)所在的位置。其实刚刚的这个过程就是目标检测,目标检测就是“给定一张图像或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别”。 目标检测对于人来说是再简单不过的任务,但是对于计算机来说,它看到的是一些值为0~255的数组,因而很难直接得到图像中有人或者猫这种高层语义概念,也不清楚目标出现在图像中哪个区域。图像中的目标可能出现在任何位置,目标的形态可能存在各种各样的变化,图像的背景千差万别……,这些因素导致目标检测并不是一个容易解决的任务。 得益于深度学习——主要是卷积神经网络(convolution neural network: CNN)和候选区域(region proposal)算法,从2014年开始,目标检测取得了巨大的突破。本文主要对基于深度学习的目标检测算法进行剖析和总结,文章分为四个部分:第一部分大体介绍下传统目标检测的流程,第二部分介绍以R-CNN为代表的结合region proposal和CNN分类的目标检测框架(R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN); 第三部分介绍以YOLO为代表的将目标检测转换为回归问题的目标检测框架(YOLO, SSD); 第四部分介绍一些可以提高目标检测性能的技巧和方法。 一. 传统目标检测方法

如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择 这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取 由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器 主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题:一个是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余;二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。 二. 基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真 目录 第1章绪论 1 1.1 序言 1 1.2 数字图像边缘检测算法的意义 1 第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 3 2.3 数字图像边缘检测关于边缘的定义 4 2.4 基于一阶微分的边缘检测算子 4 2.5 基于二阶微分的边缘检测算子 7 第3章编程和调试 10 3.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结 13 第5章图像边缘检测应用领域 13 附录参考文献 15

第1章绪论 §1.1 序言 理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。图像边缘是分析理解图像的基础,它是图像中最基本的特征。在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。 图像边缘主要划分为阶跃状和屋脊状两种类型。阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。 Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。另外其相对简单的算法使得整个过程可以在较短的时间实现。实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。 §1.2 数字图像边缘检测算法的意义 数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。边缘中包含图像物体有价值的边界信息,这些信息可以用于图像理解和分析,并且通过边缘检测可以极降低后续图像分析和处理的数据量。图像理解和分析的第一步往往就是边缘检测,目前它已成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。 图像的边缘检测技术是数字图像处理技术的基础研究容,是物体识别的重要基础。边缘特征广泛应用于图像分割、运动检测与跟踪、工业检测、目标识别、双目立体视觉等领域。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适

目标检测综述

一、传统目标检测方法 如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题: 一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余; 二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。 二、基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region

proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。 1. R-CNN (CVPR2014, TPAMI2015) (Region-based Convolution Networks for Accurate Object d etection and Segmentation)

VC图像边缘检测算法研究报告与比较

目录

基于VC的图像边缘检测算法的研究与比较 摘要 图像的边缘是图像最基本的特征,它是灰度不连续的结果。图像分析和理解的第一步是边缘检测,因此边缘检测在图像处理中有着重要的作用。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。 本文介绍了三种经典的图像边缘检测算子,并且运用强大的VC软件通过一个图像边缘检测的例子比较了它们的检测效果,分析了它们各自的特点,对学习边缘检测和具体工程应用具有很好的参考价值。 关键词: 图像处理,边缘检测, 算子,比较研究,VC

Comparison AndAnalysis ForImageEdgeDetection Algorithms Based On VC Abstract Edge is the most basic feature of the image, it is the result of discontinuous gray. The first step in image analysis and understanding is edge detection, so edge detection plays an important role in image processing.Image edge detection significantly reduces the amount of data and removes irrelevant information,retains the important structural properties of images. This article describes three types of classical edge detection operators, and the use the powerful software called VC to do the edge detection through a comparison of examples of the effect of their detection, analysis the characteristics,this is good reference value for their learning edge detection and application of specific projects. Key Words:Image processing ,Edge detection ,Operator ,Comparative Study ,VC

相关文档
最新文档