射频集总参数滤波器的仿真要点

射频集总参数滤波器的仿真要点
射频集总参数滤波器的仿真要点

实验3 集总参数滤波器的仿真

实验目的:

掌握利用ADS仿真滤波器电路的方法,理解有关电路与设计原理。

实验原理:

滤波器是一个二端口网络,在设计射频系统时通常会加入滤波器,滤波器可以非常精确地实现预定的频率特性。滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种基本类型。

滤波器常用插入损耗作为考察滤波器的指标,插入损耗可以选特定的函数,随所需的响应而定,常用的有通带内最平坦、通带内有等幅波纹起伏、通带和阻带内都有等幅波纹起伏和通带内有线性相位等响应,对应上述响应的滤波器称为巴特沃兹滤波器、切比雪夫滤波器、椭圆函数滤波器和线性相位滤波器等。

归一化低通滤波器是设计滤波器的基础,低通、高通、带通、带阻滤波器以及分布参数元器件滤波器,可以根据归一化低通滤波器变换而来。图3.1是归一化低通滤波器的两种基本结构。

低通滤波器由N个元器件构成,各元器件的取值依滤波器响应的不同而不同。实际滤波器N的取值不会太大,通常取N=1至N=10,N值越大,阻带内衰减随着频率增大的越快。设计低通滤波器时,对阻带内的衰减有数值上的要求,由此可以计算出N值。

图3.1 归一化低通滤波器的基本结构

通过阻抗变换和频率变换两个过程可以由归一化低通滤波器得到实际的滤波器。

实验内容:

1.设计如下指标的集总参数低通滤波器:

通带频率范围为0~0.1GHz。

滤波器响应为切比雪夫Chebyshev。

通带内波纹为0.5dB。

在0.2GHz时衰减大于40dB。

特性阻抗选为50Ω。

实验步骤:

1.创建项目

下面将创建一个集总参数滤波器项目,本章所有的设计都将保存在这个项目之中。创建项目的步骤如下。

(1)启动ADS软件,弹出主视窗。

(2)选择主视窗中【File】菜单→【New Project】,弹出【New Project】对话框,在【New Project】

对话框中,输入项目名称和这个项目默认的长度单位,这里项目名称定为LC_Filter,默认的长度单位选为millimeter。

(3)【New Project】对话框如图10.10所示,单击【New Project】对话框中的【OK】按钮,完成创建项目,同时一个未命名的原理图(untitled1)自动打开。2.创建原理图

创建原理图的方法很多,这里在前面自动打开的原理图上将原理图命名,完成原理图的创建工作。创建原理图的步骤如下。

(1)在未命名的原理图untitled1上,选择菜单【File】→【Save Design】,弹出【Save Design As】对话框。

(2)在【Save Design As】对话框中,输入文件名"Filter_Lowpass1",然后单击"保存",将原理图命名为Filter_Lowpass1。

3.利用设计向导生成集总参数低通滤波器原理图

(1)在原理图Filter_Lowpass1中,选择【Design Guide】菜单→【Filter】,弹出【Filter】对话框,在对话框中选择【Filter Control Window】项。【Filter】对话框如图10.11所示。

图10.10 创建集总参数滤波器项目

图10.11 Filter设计向导对话框

(2)单击【Filter】对话框中的【OK】按钮,关闭【Filter】对话框,同时将弹出滤波器设计向导初始窗口【Filter Design Guide】,如图10.12所示。

图10.12 滤波器设计向导初始窗口

(3)在图10.12所示的【Filter Design Guide】窗口中,单击工具栏中的按钮【Component Palette-All】,在Filter_Lowpass1原理图中出现【Filter DG-All】列表下的元器件面板,如图10.13所示,【Filter DG-All】元器件面板上列出了各种类型滤波器的设计向导,包括集总元器件低通、高通、带通和带阻滤波器设计向导。

(4)在【Filter DG-All】元器件面板上,选择双端口低通滤波器,插入到原理图的画图区,然后单击按钮,结束当前命令。原理图中的双端口低通滤波器如

图10.14所示。

图10.13 滤波器设计向导元器件面板

图10.14 双端口低通滤波器原理图

(5)重新回到【Filter Design Guide】窗口,单击窗口中的【Filter Assistant】

按钮,在【Filter Design Guide】窗口中出现滤波器设计向导,如图10.15所

示,图10.15中【Smart Component】项为DA_LCLowpassDT1,说明Filter_Lowpass1

原理图中现在出现了快捷元器件DA_LCLowpass DT1,设计向导就是用来设计原

理图中的快捷元器件DA_LCLowpassDT1。

图10.15 滤波器设计向导中的设计选项

下面对图10.15中【Filter DesignGuide】窗口的参量介绍如下。

Source Impedances为源阻抗,源阻抗的默认状态为50Ω。

Load Impedances为负载阻抗,负载阻抗的默认状态为50Ω。

First Element为滤波器第一个元器件的串并联方式,Parallel为并联方式,Series为串联方式,软件的默认状态为Parallel并联方式。

Order(N)为滤波器的阶数,滤波器的阶数与滤波器的元器件数相同

Response Type为滤波器响应的方式,滤波器响应的方式有最大平滑Maximally Flat(也称为巴特沃斯)、切比雪夫Chebyshev、椭圆Elliptic和高斯Gaussian 等,软件默认的滤波器响应方式为最大平滑Maximally Flat。

Ap(dB)为滤波器通带的衰减。

As(dB)为滤波器阻带的衰减。

Fp为滤波器通带的频率。

Fs为滤波器阻带的频率。

(6)图10.15是初始状态,下面设置图10.15中快捷元器件DA_LCLowpassDT1的参数。

Response Type选为切比雪夫Chebyshev。

Ap(dB)选为0.5。

As(dB)选为40。

Fp选为0.1GHz。

Fs选为0.2GHz。

其余选项保持默认状态。

单击【Filter DesignGuide】窗口中的【Design】按钮,软件中的设计向导完成设计。

(7)现在观察【Filter DesignGuide】窗口,可以看到现在窗口中的曲线已经改变为图10.16。

图10.16 滤波器设计向导中符合指标的响应

由图10.16可以看出,在通带内滤波器的响应是等幅值的波纹,在阻带内滤波器的衰减随着频率的升高单调上升,这是切比雪夫低通滤波器。

(8)现在原理图中的DA_LCLowpassDT1元器件已经有了子电路,下面观察子电路,观察子电路的步骤如下。

在原理图中选中DA_LCLowpassDT1元器件。

然后单击原理图工具栏中的按钮,进入DA_LCLowpassDT1元器件子电路,DA_LCLowpassDT1元器件子电路如图10.17所示。

由图10.17可以看出,满足技术指标的滤波器阶数为5,也就是滤波器有5个元器件。

(9)在原理图的工具栏中,单击按钮,由DA_LCLowpassDT1元器件子电路退出,回到图10.14所示的原理图中。

4.观察原理图的仿真结果

下面在原理图Filter_Lowpass1中设置仿真控件,来观察DA_LCLowpassDT1元器件的S参数,DA_LCLowpassDT1元器件的子电路为集总参数低通滤波器。

(1)打开Filter_Lowpass1原理图。

(2)在原理图Filter_Lowpass1上选择S参数仿真元器件面板,在元器件面板上选择负载终端Term,将负载终端Term两次插入到原理图中,定义负载终端Term1为输入端口,负载终端Term2为输出端口。

图10.17 滤波器子电路

(3)在原理图工具栏中单击按钮,将地线(GROUND)两次插入原理图,让两个负载终端Term接地。

(4)单击工具栏中的按钮,将原理图中的负载终端Term和低通滤波器连接起来,连接方式如图10.18所示。

(5)在S参数仿真元器件面板上,选择S参数仿真控件SP插入到原理图的画图区,对S参数仿真控件设置如下。

频率扫描类型选为线性Linear。

频率扫描的起始值设为0MHz。

频率扫描的终止值设为300MHz。

频率扫描的步长设为10MHz。

其余的参数保持默认状态。

单击S参数仿真控件设置窗口中的【OK】按钮,完成对S参数仿真控件的设置,现在用于仿真的集总参数低通滤波器原理图如图10.19所示。

图10.18 带有负载终端的低通滤波器原理图

图10.19 用于仿真的集总参数低通滤波器原理图

(6)现在可以对图10.19所示的原理图仿真了。在原理图工具栏中单击按钮,运行仿真,仿真结束后,数据显示视窗自动弹出。

(7)数据显示视窗的初始状态没有任何数据显示,用户自己选择需要显示的数据和数据显示的方式,这里选择的步骤如下。

在数据显示视窗中,单击数据显示方式面板中的矩形图标,插入到数据显示区。选择矩形图的横轴为频率,纵轴为用分贝(dB)表示的S21。

在S21曲线上插入三个Marker,S21曲线如图10.20所示,S21表示信号由端口1到端口2的正向传输系数。

图10.20 低通滤波器数据显示

单击工具栏中的按钮,保存数据。

(8)由图10.20可以看出,S21曲线在30MHz、100MHz和200MHz处的值如下。在30MHz处,S21的值为?0.499dB。

在100MHz处,S21的值为?0.500dB。

在200MHz处,S21的值为?42.039dB。

图中的参数满足指标要求。

由上节ADS的设计向导,我们得到了集总参数低通滤波器原理图的基本结构,本节学习如何实现集总参数低通滤波器的原理图。实际的集总参数低通滤波器,集总参数元器件之间需要有传输线连接,由于分布参数的影响,传输线会对滤波器的技术指标有影响,因此需要考虑加入传输线后滤波器的设计情况。

集总参数低通滤波器的设计指标如下。

设计集总参数低通滤波器。

通带频率范围为0.1GHz内。

通带内衰减小于0.6dB。

在0.2GHz 时衰减大于40dB。

特性阻抗为50Ω。

微带线基板的厚度为1mm,基板的相对介电常数为4.2。

连接集总参数元器件的微带线,长选为2.5mm,宽选为1.5mm。

1.创建新设计

创建一个新设计Filter_Lowpass2,这个设计依旧保存在LC_Filter项目之中。创建新设计的步骤如下。

(1)选择主视窗中【View】菜单→【Startup Directory】,然后在主视窗中的文件浏览区选择LC_Filter_prj,双击进入LC_Filter项目。

(2)在主视窗中选择【File】菜单→【New Design】,弹出【New Design】对话框,在【New Design】对话框中,输入新建的设计名称Filter_Lowpass2,并选择对话框中【Create New Design in】项中的New Schematic Window(新建原理图视窗),以及选择【Schematic Design Templates】(原理图设计模板)项中的none,然后单击【OK】按钮,新建的原理图Filter_Lowpass2自动打开。2.设计原理图

在Filter_Lowpass2原理图上,根据图10.17搭建低通滤波器原理图电路。由于低通滤波器在微带线上搭建,电感和电容元器件之间需要有一定的间距,因此电感和电容之间需要由微带线连接。

(1)设置微带线参数

在原理图的元器件面板列表上,选择微带线【TLines-Microstrip】,元器件面板上出现与微带线对应的元器件图标,如图10.21所示。

在图10.21所示的微带线元器件面板上,选择MSUB插入到原理图的画图区。在画图区中,双击MSub,弹出【Microstrip Substrate】设置对话框,在【Microstrip Substrate】设置对话框中,对微带线参数设置如下。

H=1mm,表示微带线基板的厚度为1mm。

Er=4.2,表示微带线基板的相对介电常数为4.2。

Mur=1,表示微带线的相对磁导率为1。

Cond=4.1E+7,表示微带线导体的电导率为4.1E+7。

Hu=1.0e+033mm,表示微带线的封装高度为1.0e+033mm。

T=0.05mm,表示微带线的导体层厚度为0.05mm。

TanD=0.000 3,表示微带线的损耗角正切为0.000 3。

Rough=0mm,表示微带线表面粗糙度为0 mm。

完成设置的微带线MSUB控件如图10.22所示。

图10.21 微带线元器件面板

图10.22 微带线参数设置

(2)在图10.21所示的微带线元器件面板上,选择MTEE插入到原理图的画图区,MTEE是微带线的T形结,可以将电路由一路分为两路,T形结的宽度分别用W1、W2和W3表示。双击画图区的MTEE,在弹出的设置窗口中设置W1=1.5mm、W2=1.5mm 和W3=1.5mm。

(3)在微带线元器件面板上选择MLIN,3次插入到原理图的画图区,MLIN 是一段长度的微带线,可以设置这段微带线的宽度W和长度L。分别双击画图区的3个MLIN,将它们的数值都设置为W=1.5mm和L=2.5mm。

(4)单击工具栏中的按钮,将前面的1个MTEE和3个MLIN连接起来,连接方式如图10.23所示。

(5)在原理图的元器件面板列表上,选择集总参数元器件【Lumped-Components】,元器件面板上出现与集总参数元器件对应的元器件图标,如图10.24所示。

图10.23 1个MTEE和3个MLIN连接

图10.24 集总参数元器件面板

(6)在图10.24所示的集总参数元器件面板上,分别选择电感L和电容C插入到原理图的画图区。分别双击画图区的电感L和电容C,打开电感L和电容C的设置对话框,将电感L和电容C的数值分别设置为L=97.849nH和C=54.298pF。(7)在微带线元器件面板上选择MLIN,插入到原理图的画图区,将它的数值设置为W=1.5mm和L=2.5mm。单击工具栏中的按钮,将该MLIN接地。

(8)将电感和电容与微带线连接起来,连接方式如图10.25所示。低通滤波器由5个元器件构成,图10.25为5元器件滤波器中的2元器件连接图。

图10.25 5元器件滤波器中的2元器件连接图

(9)用与上面相同的方法,将低通滤波器的其余3个元器件插入到画图区,并同样采用微带线的T形结和微带线MLIN连接电感和电容,5个元器件的低通滤波器如图10.26所示。

图10.26 5元器件低通滤波器

在图10.26中,所有电感和电容的取值如下。

C1=54.298pF

L1=97.849nH

C2=80.879pF

L2=97.849nH

C3=54.298pF

在图10.26中,所有T形结MTEE的设置如下。

W1=1.5mm

W2=1.5mm

W3=1.5mm

在图10.26中,所有微带线MLIN的设置如下。

W=1.5mm

L=2.5mm

(10)选择S参数仿真元器件面板,在元器件面板上选择负载终端Term,两次插入到原理图中,定义负载终端Term1为输入端口,负载终端Term2为输出端口。在原理图工具栏中单击按钮,将地线(GROUND)两次插入原理图,让负载终端Term接地。

(11)单击工具栏中的按钮,将原理图中的负载终端Term和低通滤波器连接起来,连接方式如图10.27所示。

3.原理图仿真与调谐

在仿真之前,首先设置S参数仿真控件SP,SP对原理图中的仿真参量给出取值范围,当S参数仿真控件SP确定后,就可以仿真了。

图10.27 带有终端负载的低通滤波器原理图

(1)在S参数仿真元器件面板上,选择S参数仿真控件SP,插入到原理图的画图区,对S参数仿真控件SP设置如下。

频率扫描类型选为线性Linear。

频率扫描的起始值设为0MHz。

频率扫描的终止值设为300MHz。

频率扫描的步长设为10MHz。

其余的参数保持默认状态。

单击S参数仿真控件设置窗口中的【OK】按钮,完成对S参数仿真控件的设置,S参数仿真控件SP如图10.28所示。

图10.28 S参数仿真控件

(2)现在可以对原理图仿真了。在原理图工具栏中单击按钮,运行仿真,仿真结束后,数据显示视窗自动弹出。

(3)数据显示视窗的初始状态没有任何数据显示,用户自己选择需要显示的数据和数据显示的方式,这里选择的步骤如下。

在数据显示视窗中,单击数据显示方式面板中的矩形图标,插入到数据显示区。选择矩形图的横轴为频率,纵轴为用分贝(dB)表示的S21。

在S21曲线上插入三个Marker,S21曲线如图10.29所示。

在30MHz处,S21的值为?0.492dB。

在100MHz处,S21的值为?1.876dB。

在200MHz处,S21的值为?47.524dB。

比较图10.29与图10.20可以看出,在原理图中添加微带线后,S21曲线发生变化,这是由于微带线产生了相移和衰减,但由于低通滤波器的通带频率较低,S21曲线变化不大。单击工具栏中的按钮,保存数据。

(4)图10.29与图10.20的曲线有差异,图10.20的曲线在100MHz时不满足技术指标,需要调整原理图。下面采用调谐来改变电感和电容的取值,以期达到合格的曲线。按下键盘中的Shift键,同时用鼠标分别选中原理图中的电感L1、电容C2和电感L2,然后释放shift键,这时原理图中的电感L1、电容C2和电感L2颜色发生改变,如图10.30所示。

图10.29 低通滤波器数据显示

图10.30 在原理图中选中电感L1、电容C2和电感L2

(5)单击工具栏中的按钮,对电路调谐进行设置并调谐。单击按钮后,同时弹出三个窗口,这三个窗口分别是参数调谐窗口【Tune Parameters】、仿真状态窗口和数据显示窗口,其中数据显示窗口与图10.29完全一样,这是因为原理图中的两个电感和一个电容还都是初始值,没有被调谐。参数调谐窗口如图10.31

所示。

(6)在图10.31所示的参数调谐窗口,保持默认设置状态,然后单击原理图中的电感L1,弹出【Instance Tune Parameters】窗口,在该窗口中选中L,如图10.32所示。

(7)单击【Instance Tune Parameters】窗口中的【OK】按钮,关闭该窗口,同时调谐窗口Tune Parameters中出现电感L1的调谐范围,调谐的各参数含义如下。

Value值。该值开始时是原理图中电感的初始值,当调谐开始后,为电感调谐后的值。

Max值。该值是电感调谐的最大值。

Min值。该值是电感调谐的最小值。

图10.31 调谐窗口的初始状态

图10.32 调谐元器件选择窗口

Step值。该值是电感调谐的间隔。

上述参数中,Max、Min和Step值可以更改范围。

(8)用同样的方法,让电感L2和电容C2的调谐范围也出现在调谐窗口【Tune Parameters】中,也就是说电感L1、电容C2和电感L2三个元器件都将调谐,调谐窗口如图10.33所示。

图10.33 带有三个元器件调谐范围的调谐窗口

(9)在调谐窗口【Tune Parameters】中,保持Max、Min和Step数值的默认状态,然后手动调节电感L1、电容C2和电感L2的数值滚动条,更改它们的数值,可以看到调谐窗口【Tune Parameters】中的Value值在不断变化,同时数据显示视窗中的S21图形也在不断变化。

(10)通过调谐电感L1、电容C2和电感L2的值,使S21的曲线达到满意结果后,单击调谐窗口中的【Update Schematic】按钮,然后单击【Close】,关闭调谐窗口。

(11)单击数据显示视窗中的按钮,保存调谐后的曲线,这时数据显示视窗中的曲线如图10.34所示,在三个Marker处,S21的值如下。

在30MHz处,S21的值为?0.569dB。

在100MHz处,S21的值为?0.175dB。

在200MHz处,S21的值为?45.472dB。

由图10.34可以看出,曲线满足技术指标。

图10.34 调谐后的曲线

(12)这时原理图中的电感L1、电容C2和电感L2已经更新为调谐后的值,电感L1、电容C2和电感L2值如下。

L1=89.051 1nH。

C2=78.357 2pF。

L2=91.453 8nH。

实验结果仿真图:

图(1)原理图

图(2)

图(3)

图(4)

图(5)

图(6)

图(7)

实验心得:

通过本次实验,我掌握了利用ADS仿真滤波器电路的方法,同时,我还理解了有关电路与设计原理。

滤波器主要参数

滤波器的主要参数(Definitions): 中心频率(CenterFrequency): 滤波器通带的频率f0,一般取f0=(f1+f2)/2,f 1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency): 指低通滤波器的通带右边频点及高通滤波器的通带左边频点。 通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为: 低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB): 指需要通过的频谱宽度,BWxdB=(f2-f1)。f 1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X= 3、1、 0.5即BW3d B、BW1d B、BW 0.5dB表征滤波器通带带宽参数。分数带宽(fractionalbandwidth) =BW3dB/f0×100[%],也常用来表征滤波器通带带宽。 插入损耗(InsertionLoss):

由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 纹波(Ripple): 指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(PassbandRiplpe): 通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内xx(VSWR): 衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR<1。对于一个实际的滤波器而言,满足VSWR<1 BWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin 之比。 回波损耗(Return Loss): 端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 回波损耗,又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。 从数学角度看,回波损耗为-10 lg [(反射功率)/(入射功率)]。 回波损耗愈大愈好,以减少反射光对光源和系统的影响。 阻带抑制度: 衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:

用微波仿真软件设计一个集总(或分布)参数 滤波器

绪论 微波(Microwave)是电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短(即频率最高)的波段,其频率范围从300MHz(波长1m)至3000GHz(波长0.1mm)。通常又将微波段划分为分米波、厘米波、毫米波和亚毫米波四个分波阶段,在通信和雷达工程上还使用拉丁字母来表示微波更细的分波段。表1给出了常用微波分波段的划分。 表1 常用微波分波段的划分 波段符号频率/GHz 波段符号频率/GHz UHF 0.3--1.12 Ka 26.5--40.0 L 1.12--1.7 Q 33.0--50.0 LS 1.7--2.6 U 40.0--60.0 S 2.6--3.95 M 50.0--75.0 C 3.95--5.85 E 60.0--90.0 XC 5.85--8.2 F 90.0--140.0 X 8.2--12.4 G 140.0--220.0 Ku 12.4--18.0 R 220.0--325.0 K 18.0--26.5 对于低于微波频率的无线电波,其波长远大于电系统的实际尺寸,可用集总参数电路的理论进行分析,即为电路分析法;频率高于微波波段的光波、X射线、γ射线等,其波长远小于电系统的实际尺寸,甚至与分子、原子的尺寸相比拟,因此可用光学理论进行分析,即为光学分析法;而微波则由于其波长与电系统的实际尺寸相当,不能用普通电子学中电路的方法研究或用光学的方法直接去研究,而必须用场的观点去研究,即由麦克斯韦尔方程组出发,结合边界条件来研究系统内部的结构,这就是场分析法。 正因为微波波长的特殊性,所以它具有以下特点。 (1)似光性 微波具有类似光一样的特性,主要表现在反射性、直接传播性及集束性等几方面,即:由于微波的波长与地球上的一般物体(如飞机、轮船、汽车等)的尺寸相比要小得多,或在同一量级,因此当微波照射到这些物体上时会产生强烈的反射,基于此特性人们发明了雷达系统;微波如同光一样在空间直线传播,如同光可聚焦成光束一样,微波也可通过天线装置形成定向辐射,从而可以定向传输或接收由空间传来的微弱信号以实现微波通信或探测。 (2)穿透性 微波照射到介质时具有穿透性,主要表现在云、雾、雪等对微波传播的影响较小,这为全天候微波通信和遥感打下了基础,同时微波能穿透生物体的特点也为微波生物医学打下了基础;另一方面,微波具有穿越电离层的透射性,实验证明:微波波段的几个分波段,如1--10GHz、20--30GHz及91GHz附近受电离层的影响较小,可以较为容易的由地面向外层空间传播,从而成为人类探索外层空间的“无线电窗口”,它为空间通信、卫星通信、卫星遥感和射电天文学的研究提供了难得的无线电通道。 (3)宽频带特性 我们知道,任何通信系统为了传递一定的信息必须占有一定的频带,为传输某信息所需的频

阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度 选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。 例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

各种滤波器

设计一个九级集总参数低通滤波器,电路结构如图所示,要求截止频率为450MHz,通带内增益大于-1dB,阻带内650M以上增益小于-50dB。通带内反射系数要求小于-15dB。要求优化参数Cost<0.5(最佳为 5(波长线长为相对值)。计算线长Z为2.5和3.5两处的输入阻抗、反射系数。并画出Z为2.5时的阻抗与导纳圆图。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-300MHz 增益参数S21:通带内0MHz-300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-300MHz S11<-10dB ; 2、为了节省成本,计划将该滤波器设计为7级结构。你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-350MHz 增益参数S21:通带内 S21>-1dB 阻带内550MHZ以上 S21<-45dB 反射系数S11:通带内 S11<-15dB 2、简述功分器的基本技术要求及其主要特性参数。

通带频率范围:0MHz-400MHz 增益参数S21:通带内0MHz-400MHz S21>-0.2dB 阻带内600MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-400MHz S11<-10dB 要求优化参数 2、简述HFSS的特点及其主要应用的范围。 IVCURVEI来测量非线性器件——三极管GBJT3的特性曲线并加入调谐,分析其变化。 高通滤波器===== 设计具体要求 ====== 通带频率范围:550MHz以上 增益参数S21:通带内S21>-2dB ;阻带内0-400MHz,S21<-50dB 反射系数S11:通带内S11<-20dB; 2、你会添加Marker吗?试在S21曲线上,添加一横坐标为600MHz的Marker。添加后需请老师签字。 3、使用TXLine工具计算微带线εr=12.9,t/h=0.1,分别计算W/h=2.5,3.0以及3.5时的特性阻高通滤波器 ===== 设计具体要求 ====== 设计一个九级集总参数高通滤波器,电路结构如图所示,要求截止频率为550MHz,通带内增益大于-1dB,阻带内0-350MHz增益小于-45dB。通带内反射系数要求小于-15dB。 2、如果要设计低通滤波器,与前面相比,有哪些步骤需要变化?并画出结构简图。 MicrowaveOffice的Optimize功能选择框中的优化算法,并画出优化算法框图。

滤波器的主要特性指标

电子知识 1、特征频率: ①通带截频fp=wp/(2p)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频fr=wr/(2p)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 2、增益与衰耗 滤波器在通带内的增益并非常数。 ①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益。 ②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 ③通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB为单位,则指增益dB值的变化量。 3、阻尼系数与品质因数 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标。 阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等。 4、灵敏度 滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。滤波器某一性能指标y对某一元件参数x变

化的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x)。 该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。 5、群时延函数 当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:图1中的旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 本样本中的各种射频滤波器都是基于穿心电容制造的,并且安装方式都是馈通形式的(输入与输出被金属板隔离)。 虽然本样本中的射频滤波器品种很多,但是每一种型号在设计时都考虑了具体使用场合的要求,使设计师能够在性能、体积、成本等方面获得满意的结果。选择射频滤波器需要考虑的因素有:

截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定

二阶有源滤波器参数计算

二阶有源滤波器设计 一.滤波器类型 按照在附近的频率特性,可将滤波器分为以下三种: 1.巴特沃兹响应 优点:巴特沃兹滤波器提供了最大的通带幅度响应平坦度,具有良好的综合性能,其脉冲响应优于切比雪夫,衰减速度优于贝塞尔。 缺点:阶跃响应存在一定的过冲和振荡。 2.切比雪夫响应 优点:与巴特沃兹相比,切比雪夫滤波器具有更良好的通带外衰减。 缺点:通带内纹波令人不满,阶跃响应的振铃较严重。 3.贝塞尔响应 优点:贝塞尔滤波器具有最优的阶跃响应——非常小的过冲及振铃。 缺点:与巴特沃兹相比,贝塞尔滤波器的通带外衰减较为缓慢。 (注意: 巴特沃兹及贝塞尔响应的3dB衰减位于截止频率处。 而切比雪夫响应的截止频率定义为响应下降至低于纹波带的频点频率。 对于偶数阶滤波器而言,所有纹波均高于0dB的直流响应,因此截止频点位于0dB衰减处;而对于奇数阶滤波器而言,所有纹波均低于 0dB的直流响应,因此截止频点定义为低于纹波带最大衰减点。)

二.最常用的有源极点对电路拓扑 1.MFB拓扑 也称为无限增益拓扑或Rauch拓扑; 适用于高Q值高增益电路; 其对元件值的改变敏感度较低。 2.Sallen-Key拓扑 下列情况时,使用效果更佳: 对增益精度要求较高; 采用了单位增益滤波器; 极点对Q值较低(如:Q<3); (特例:某些高Q值高频率滤波器若采用MFB拓扑,则C1值须很小以得到合适的电阻值。而由于寄生电容干扰使得低容值将导致极大干 扰)。 (注意: MFB拓扑不能用于电流反馈型运放,而S-K拓扑电压、电流反馈型运放均可; 差分放大器只能采用MFB拓扑; S-K拓扑的运放输出阻抗随频率增加而增加,故通带外衰减能力受限,而MFB拓扑则无此问题。)

微波射频滤波器归类

摘要:按微波滤波器的传输线的种类进行了分类,并按照这种分类方法对各种微波滤波器的性能指标、设计方法进行了详细的介绍。 关键词:微波滤波器;性能指标;设计方法 前言:随着现代微波通信,尤其是卫星通信和移动通信的发展,系统对通道的选择性越来越高,这对微波滤波器的设计提出了更高的要求,而微波滤波器作为通信系统中的重要部分,其性能的优劣往往决定了整个通信系统的质量。因此研究微波滤波器的性能指标和设计方法具有重要意义。 微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。本文是按照传输线的分类来对各种微波滤波器的主要特性进行详尽的分析。 一、微带滤波器 主要性能指标: 频率范围:500MHz~6GHz 带宽:10%~30% 插入损耗:5dB(随带宽不同而不同) 输入输出形式:SMA、N、L16等 输入输出驻波:1.8:1 微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。 半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大,同时,谐振器在一个方向依次摆开,

射频分布参数滤波器的仿真

实验4 分布参数滤波器的仿真 实验目的: 通过仿真理解和掌握微带滤波器的实现方法。 实验原理: 1.理查德(Richards)变换 通过理查德(Richards)变换,可以将集总元器件的电感和电容用一段终端短路或终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元器件到分布参数元器件的变换。2.科洛达(Kuroda)规则 科洛达(Kuroda)规则是利用附加的传输线段,得到在实际上更容易实现的滤波器。例如,利用科洛达规则即可以将串联短截线变换为并联短截线,又可以将短截线在物理上分开。在科洛达规则中附加的传输线段称为单位元器件,单位 。 元器件是一段传输线,当f = f0时这段传输线长为8 3.设计步骤: 1.根据设计要求选择归一化滤波器参数 2.用λ/8传输线替换电感和电容 3.根据Kuroda规则将串联短线变换为并联短线 4.反归一化并选择等效微带线 实验内容: 1.设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。 实验步骤: 微带短截线低通滤波器设计举例 下面设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。设计微带短截线低通滤波器的步骤如下。 (1)滤波器为3阶、带内波纹为3dB的切比雪夫低通滤波器原型的元器件值为 集总参数低通原型电路如图11.29所示。 (2)利用理查德变换,将集总元器件变换成短截线,如图11.30(a)所示,图中短截线的特性阻抗为归一化值。 (3)增添单位元器件,然后利用科洛达规则将串联短截线变换为并联短截线,如图11.30(b)所示,图中短截线的特性阻抗为归一化值。

滤波器的主要参数

滤波器的主要参数 滤波器的主要参数(Definitions) 中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+ f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100%,也常用来表征滤波器通带带宽。 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 I=10lgPin/Pl

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR <1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB>1),KxdB=BWxdB/BW3dB,(X可

集总参数带通滤波器

课程设计Ⅳ报告 题目集总参数带通滤波器的设计 所在院(系) 学生姓名学号 指导教师 完成地点 年月日

基于ADS的集总参数带通滤波器的设计 摘要:滤波器在通信系统中应用较为广泛,利用滤波器的选频作用,可以滤除通信中的干扰噪声或测试中进行频谱分析。本文利用ADS软件设计一款带通滤波器,并对其进行优化和瞬态仿真分析。经过分析得出,在满足其他各项设计指标要求的前提下,优化后的滤波器选频特性得到明显提高。 关键词:带通滤波器;ADS;优化仿真;瞬时仿真

利用ADS软件设计一个集总参数带通滤波器,集总参数带通滤波器设计指标如下。 带通滤波器的中心频率为150MHz。 通带频率范围为140MHz到160MHz。 通带内最大衰减为3dB。 在100MHz和200MHz时衰减大于30dB。 特性阻抗选为50Ω。

引言.............................................................................................................................. - 1 - 一.创建原理图......................................................................................................... - 2 - 二.利用设计向导生成集总参数带通滤波器原理图........................................... - 2 - 三.观察原理图的仿真结果 .................................................................................... - 4 - 四.实现集总参数带通滤波器的原理图 ............................................................... - 7 - 1.创建新设计.................................................................................................... - 7 - 2.设计原理图.................................................................................................... - 7 - 3.原理图仿真与优化..................................................................................... - 11 - 参考文献.................................................................................................................... - 17 -

非常好的滤波器基础知识

非常好的滤波器基础知识 滤波器是射频系统中必不可少的关键部件之一,主要是用来作频率选择----让需要的频率信号通过而反射不需要的干扰频率信号。经典的滤波器应用实例是接收机或发射机前端,如图1、图2所示: 从图1中可以看到,滤波器广泛应用在接收机中的射频、中频以及基带部分。虽然对这数字技术的发展,采用数字滤波器有取代基带部分甚至中频部分的模拟滤波器,但射频部分的滤波器任然不可替代。因此,滤波器是射频系统中必不可少的关键性部件之一。滤波器的分类有很多种方法。例如:按频率选择的特性可以分为:低通、高通、带通、带阻滤波器等; 按实现方式可以分为:LC滤波器、声表面波/体声波滤波器、螺旋滤波器、介质滤波器、腔体滤波器、高温超导滤波器、平面结构滤波器。 按不同的频率响应函数可以分为:切比雪夫、广义切比雪夫、巴特沃斯、高斯、贝塞尔函数、椭圆函数等。 对于不同的滤波器分类,主要是从不同的滤波器特性需求来描述滤波器的不同特征。 滤波器的这种众多分类方法所描述的滤波器不同的众多特征,集中体现出了实际工程应用中对滤波器的需求是需要综

合考量的,也就是说对于用户需求来做设计时,需要综合考虑用户需求。 滤波器选择时,首先需要确定的就是应该使用低通、高通、带通还是带阻的滤波器。 下面首先介绍一下按频率选择的特性分类的高通、低通、带通以及带阻的频率响应特性及其作用。 巴特沃斯切比雪夫带通滤波器 巴特沃斯切比雪夫高通滤波器 最常用的滤波器是低通跟带通。低通在混频器部分的镜像抑制、频率源部分的谐波抑制等有广泛应用。带通在接收机前端信号选择、发射机功放后杂散抑制、频率源杂散抑制等方面广泛使用。滤波器在微波射频系统中广泛应用,作为一功能性部件,必然有其对应的电性能指标用于描述系统对该部件的性能需求。对应不同的应用场合,对滤波器某些电器性能特性有不同的要求。描述滤波器电性能技术指标有: 阶数(级数) 绝对带宽/相对带宽 截止频率 驻波 带外抑制 纹波 损耗

滤波器参数选择

1 单谐波滤波器参数选择方法 单谐波滤波器基本参数为U CN 、Q CN 、基波容抗X C1.它们之间满足关系式: CN CN C Q U X 2 1 3= (1-1) 其中,Q CN 为三相值,电容为三角形接法。 选择参数时考虑的基本原则:①过电压要求(1.1U N );②过电流要求(1.3I N );③容量平衡。 图1-1 单谐波滤波器电路 (1)按过电压要求考虑Q CN : CN Ch C U U U 1.11≤+ ∑ (1-2) 设母线实际运行电压上限为U 1M ,则有M L C C C U X X X U 11 11 1-= (1-3) 谐振时有211 h X X C L =,代入(1-3)有:M C U h h U 12211 -= (1-4) 假设谐波电流不放大且全部通过滤波器,滤波器处于全谐振状态,即fh fh R Z =,电容器中仅通过基波电流和h 次谐波电流,有: 1 1U R I U U HRU fh h h h = = (1-5) 因为hQ X R C fh 1 = ,其中Q 为品质因数。代入(1-5)有: Q U U hQ X U I HRU ch C h h 111= = (1-6) 因此有: Q U HRU U h ch 1= (1-7) 将(1-7)和(1-3)代入(1-2)有:

?? ????+-=Q U HRU U h h U h M CN 1122 11.11 (1-8) 因此有: 2 21233QhU HRU I U X U Q h h CN C CN CN = = (1-9) (2)按容量平衡选Q CN : ∑+ =h C CN Q Q Q 1 (1-10) 假设滤波器只有基波电流和h 次谐波电流流过,则: C U Q CN CN 123ω= C U Q C C 12113ω= C h I C h U Q h ch ch 12 1233ωω= = 将上面三式代入(1-10)有: 2 1222 2 13??? ? ??--= M CN CN h CN U h h U h U I Q (1-11) (3)按过电流选择Q CN : 其校验公式为:CN ch C I I I 3.122 1≤+ ∑ (1-12) 假设电容器只流过基次、h 次谐波电流 C U I c c 111ω= C h U I ch ch 1ω= 则有:()2 2 213.1CN ch c I I I =+ 因此有21 2 2 212169.1c CN ch c c x U I x U =+ 又因为CN CN c Q U x 2 13=,M c U h h U 12 2 11-= 故有: () () 222222 22 2 122 369.131CN CN CN ch CN CN M U Q U I U Q U h h =+???? ? ?-,则有: 2 12222169.13??? ? ??--= M CN ch CN CN U h h U I U Q (1-13) 最后由(1-9)、 (1-11)、(1-13)求的Q CN ,取其中较大的作为h 次单调谐滤波器电容器安装容量的下限。再由(1-1)确定电容值: 2 13CN CN U Q C ω= (1-14)

f.i.r.滤波器设计报告

一、设计指标: ● 设计一个16阶低通线性相位FIR 滤波器; ● 要求采样频率Fs 为80KHz ; ● 截止频率Fc 为10KHz ; ● 采用函数窗法设计,且窗口类型为Kaiser ,Beta 为0.5; ● 输入序列位宽为10位的有符号数(最高位为符号位); ● 输出序列位宽为10位的有符号数(最高位为符号位)。 二、线性相位fir 滤波器理论: 有限长脉冲响应(FIR )滤波器的系统函数只有零点,除原点外,没有极点,因而FIR 滤波器总是稳定的。如果他的单位脉冲响应是非因果的,总能够方便的通过适当的移位得到因果的单位脉冲响应,所以FIR 滤波器不存在稳定性和是否可实现的问题。它的另一个突出的优点是在满足一定的对称条件时,可以实现严格的线性相位。由于线性相位滤波器不会改变输入信号的形状,而只是在时域上使信号延时,因此线性相位特性在工程实际中具有非常重要的意义,如在数据通信、图像处理等应用领域,往往要求信号在传输和处理过程中不能有明显的相位失真,因而线性相位FIR 滤波器得到了广泛的应用。 长度为M 的因果有限冲激响应滤波器由传输函数H (z )描述: 1 0()()M k k H z h k z --==∑ (1) 它是次数为M-1的z -1的一个多项式。在时域中,上述有限冲激响应滤波器的输入输出关系为: 1 0()()()M k y n h k x n k -==-∑ (2) 其中y (n )和x (n )分别是输出和输入序列。 有限冲激响应滤波器的一种直接型实现,可由式(2)生成,M=5的情况如图2-1(a )所示。其转置,如图2-1(b )所示,是第二个直接型结构。通常一个长度为M 的有限冲激响应滤波器由M 个系数描述,并且需要M 个乘法器和(M-1)个双输入加法器来实现。

滤波器的定义、参数以及测试方法

认证部物料培训 滤波器 主讲人:邹一鸣

一、滤波器的定义 滤波器是一种对信号有处理作用的器件或电路。 主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。 滤波器,顾名思义,是对波进行过滤的器件。“波”是一个非常广泛的物理概念,在电子技术领域,“波”被狭义地局限于特指描述各种物理量的取值随时间起伏变化的过程。该过程通过各类传感器的作用,被转换为电压或电流的时间函数,称之为各种物理量的时间波形,或者称之为信号。因为自变量时间‘是连续取值的,所以称之为连续时间信号,又习惯地称之为模拟信号(Analog Signal)。随着数字式电子计算机(一般简称计算机)技术的产生和飞速发展,为了便于计算机对信号进行处理,产生了在抽样定理指导下将连续时间信号变换成离散时间信号的完整的理论和方法。也就是说,可以只用原模拟信号在一系列离散时间坐标点上的样本值表达原始信号而不丢失任何信息,波、波形、信号这些概念既然表达的是客观世界中各种物理量的变化,自然就是现代社会赖以生存的各种信息的载体。信息需要传播,靠的就是波形信号的传递。信号在它的产生、转换、传输的每一个环节都可能由于环境和干扰的存在而畸变,有时,甚至是在相当多的情况下,这种畸变还很严重,以致于信号及其所携带的信息被深深地埋在噪声当中了。 滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程。 二、滤波器的分类 滤波器按所处理的信号分为模拟滤波器和数字滤波器 模拟滤波器可以分为声表滤波器和介质滤波器 三、声表滤波器的原理及特点 声表面波滤波器是利用石英、铌酸锂、钛酸钡晶体具有压电效应做成的。所谓压电效应,即是当晶体受到机械作用时,将产生与压力成正比的电场的现象。具有压电效应的晶体,在受到电信号的作用时,也会产生弹性形变而发出机械波(声波),即可把电信号转为声信号。由于这种声波只在晶体表面传播,故称为声表面波。声表面波滤波器的英文缩写为SAWF,声表面波滤波器具有体积小,重量轻、性能可靠、不需要复杂调整。在有线电视系统中实现邻频传输的关键器件。

滤波器设计流程

滤波器设计流程(TUMIC) 实验要求: 用 =9.6,h=0.5mm的基板设计一个微带耦合线型的带通滤 r 波器,指示如下:中心频率 f=5.5GHz; 实验步骤: 1.计算阶次: 按照教材P109的计算步骤,仍然选用0.1db波纹的切比雪夫低通原型。根据中心频率、相对带宽和要求的阻带衰减条件,我们可得出最后n=4。 2.用TUMIC画出拓扑图: 因为TUMIC里没有对称耦合微带线,所以我们采用不对称耦合微带线 将两个宽度设为相同,即实现对称耦合微带线的作用。如图所示:

在每个耦合微带线的2、4两个端口,我们端接微带开路分支,将微带部分的长度设置为很小,而宽度设置为与端接的耦合微带线相同即可,即此部分微带基本不产生作用。如图: 因为n=4,我们采用5个对称耦合微带线。可知它们是中心对称的,即1和5,2和4为相同的参数。在每两段耦合微带线连接处,因为它们的宽度都不相同,所以我们需要采用一个微带跳线来连接,如图:

注意:有小蓝点的一端为1端口,另一端为2端口。 参数设置如下图: 条件中,要我们设计两端均为50欧姆的微带线。我们用此软件本身带有的公式计算出它的设计值即可。不过要注意一点,我们需在设置好基片参数(见后面)的情况下再进行计算。如图:

最后在两端加上端口,并标注1,2端口。如图: 3.参数设置: ⑴基片设置:即按设计要求里的 和h进行设置。如图: r

⑵变量设置: 上面讲到我们实际上是使用三组耦合微带线,即有三组参数。考虑每个对称耦合微带线都有w(宽度),s(间距),l(长度)三个参数。我们进行设计的目的就是通过计算机优化得到我们需要的这些参数的值,所以在这里,我们要将这些参数设置为变量。如图:

滤波器的主要参数概念介绍

滤波器的主要参数概念介绍 滤波器的主要参数(DefiniTIons) 1. 中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 2. 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC 处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 3. 通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fracTIonal bandwidth)=BW3dB/f0100%,也常用来表征滤波器通带带宽。 4. 插入损耗(InserTIon Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 5. 纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰- 峰值。 6. 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 7. 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR<1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。 8. 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10|,为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 9. 阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法 随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 选择射频滤波器需要考虑的因素有: 截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定电流由滤波器的引线直径决定,线径越大,额定电流越大。对于滤波器组件,额定电流还与电感线圈的饱和特性有关,当电流超过额定电流时,滤波器的性能会下降。 工作温度范围:滤波器件能保证预定性能和正常工作时所处的环境温度,本样本中的滤波器件除了特别标出的以外,工作温度范围为有-55 - +125 C。 滤波器的体积:滤波器的体积与滤波器的额定工作电压、工作电流、截止频率、插入损耗以及制造工艺有关。电气性能基本相同的滤波器,由于不同的制造工艺而导致不同的体积,电气性能接近时,体积较大的滤波器价格较低(适合安装空间较大的场合)。 射频滤波器的安装方式对滤波器的性能有很大影响。首先射频干扰滤波器必须以金属板为隔离板,将滤波器的输入和输出隔离开。其次,滤波器要与金属板之间保持低阻抗的接触,以保证滤波电容的旁路效果。最好将滤波器安装在镀锡或锌的铝板或钢板上。为了保证可靠的连接,一般要在滤波器的安装法兰与隔离板之间安装内齿垫片,而不能使用导电胶之类的物质来达到可靠连接的目的。需要注意的问题是,不同金属的接触面之间会发生电化学腐蚀,

相关文档
最新文档