集合的并交运算(C语言)

集合的并交运算(C语言)
集合的并交运算(C语言)

题目一:集合的并、交运算

首先,建立两个带头结点的有序单链表表示集合A和B。须注意的是:利用尾插入法建立有序单链表,输入数值是升序排列。

其次,根据集合的运算规则,利用单链表的有序性,设计交、并和差运算。根据集合的运算规则,集合AAB中包含所有既属于集合A又属于集合B的元素。因此,须查找单链表A和B中的相同兀素并建立一个链表存于此链表中。

根据集合的运算规则,集合AUB中包含所有或属于集合A或属于集合B 的元素。因此,中,

遍历两链表的同时若元素相同时只将集合A中的元素存于链表

若集合A中的下

一个元素小于B中的元素就将A中的元素存于新建的链表中。反之将B中的兀素存于链表中。

2所用数据结构

线性结构利用链式存储结构实现集合的基本运算。

3源代码分析

#i ncludevstdio.h>

#in clude

#defi ne ERROR 0

#defi ne OK 1

typ edef int Status;

typ edef char Elemt ype;

typ edef struct LNode{ 线性表的链式存储结构

Elemt ype data;

struct LNode *n ext;

}Lno de,*Li nklist;

#i nclude"text.h"

LNode* Greatlist(i nt *N,i nt n) 〃建立一个带有头结点的单链表

{

Lin klist p,q,L;

L=p=(LNode *)malloc(sizeof(LNode));

L-> next=NULL;

if(n !=0)

{

for(i nt i=0;i vn ;i++)

{

q=(LNode *)malloc(sizeof(LNode));

//尾部插入结点建立带有头结点单链表

q->data=N[i]; p->next=q; p=q;

}

} p->next=NULL; // 对于非空表,最后结点的指针域放空指针 return L;

}

LNode* jiaoji(Linklist la,Linklist lb) //求两集合的交集

{

Linklist pa,pb,pc,Lc;

pa=la->next;

pb=lb->next;

Lc=(Linklist)malloc(sizeof(LNode));

Lc->next=NULL;

pc=Lc; while(pa&&pb)

{

if(pa->data==pb->data)

{

pc->next=(Linklist)malloc(sizeof(LNode));// 若相等就申请存储空间链

到 Lc 上

pc=pc->next; pc->data=pa->data;

pa=pa->next; //la ,lb 的指针后移

pb=pb->next;

}

else if(pa->data>pb->data)//若pa 所指的元素大于 pb 所指的元素 pb 指针 后移

{ pb=pb->next;

} else

{ pa=pa->next;

} }

pc->next=NULL;// 最后给 pc 的 next 赋 NULL return Lc;

}

LNode* bingji(Linklist la,Linklist lb) // 求两集合的并集

{

Linklist pa,pb,pc,lc;

pa=la->next;

pb=lb->next;

lc=(Linklist)malloc(sizeof(LNode)); lc->next=NULL;

pc=lc;

//指针后移

//申请存储空间

while(pa&&pb)

{

if(pa->data==pb->data)

{

pc->next=(Linklist)malloc(sizeof(LNode));//

若所指的元素申请空间将值存入链表lc,pa,pb 指针后移

pc=pc->next;

pc->data=pa->data;

pa=pa->next;

pb=pb->next;

}

else if(pa->data>pb->data)

{

pc->next=(Linklist)malloc(sizeof(LNode));// 若所指的元素申请空间将值存入链表lc,pb 指针后移

pc=pc->next;

pc->data=pb->data;

pb=pb->next;

}

else

{

pc->next=(Linklist)malloc(sizeof(LNode));//

所指的元素申请空间将值存入链表Ic, pa指针后移

pc=pc->next;

pc->data=pa->data; pa=pa->next;

}

}

pc->next=pa?pa:pb;

return Ic;

}

void Print_LinkList(LinkIist L) //输出元素

{

LinkIist p=L->next;

while( P)//链表不为空时输出链表中的值

{

printf(" %3c" ,p->data);

p=p->next;

}

printf(" \n" ); pa

pa

pa

所指的元素等于

所指的元素大于

所指的元素小于

pb

pb

pb

}

void main() {

Linklist L1,L2,La,Lb;

int A[4]={'a','b','c','f'};

int B[4]={'c','d','e','f'};

printf("1)含多个结点的顺序表[‘ a' , ' b'和'cc', ' '''n' e' , ' f'] printf("建立链表L1为\n");

L1=Greatlist(A,4);

Print_LinkList(L1);

printf("建立链表L2为\n");

L2=Greatlist(B,4);

Print_LinkList(L2);

printf(" 两链表的交集为:\n");

La=jiaoji(L1,L2);

Print_LinkList(La);

printf(" 两链表的并集为:\n");

Lb=bingji(L1,L2);

Print_LinkList(Lb);

printf("2)含一个结点的顺序表[‘ a和空表[]\n");

int A1[1]={'a'};

int B1[1]={'0'};

printf("建立链表L1为\n");

L1=Greatlist(A1,1);

Print_LinkList(L1);

printf("建立链表L2为\n");

L2=Greatlist(B1,0);

Print_LinkList(L2);

printf(" 两链表的交集为:\n");

La=jiaoji(L1,L2);

Print_LinkList(La);

printf("两链表的并集为:\n");

Lb=bingji(L1,L2);

Print_LinkList(Lb);

printf("3)2 个空表\n");

int A2[1]={'0'};

int B2[1]={'0'};

printf("建立链表L1为\n");

L1=Greatlist(A2,0);

Print_LinkList(L1);

printf("建立链表L2为\n");

L2=Greatlist(B2,0);

Print_LinkList(L2);

printf("两链表的交集为:\n");

La=jiaoji(L1,L2);

Print_LinkList(La);

printf(" 两链表的并集为:\n");

Lb=bingji(L1,L2);

3)

Print_LinkList(Lb);

free(L1);

free(L2);

free(La);

free(Lb);

}

4 测试数据及运行结果

(1) 含多个结点的顺序表[‘a ' , ' b '和t Cc ', : 'd ' , ' e ' , ' f ']

(2) 含一个结点的顺序表[‘ a 和空表[](3)2个空表

5 算法分析

LNode* Greatlist()// 尾插法建立链表 算法的时间复杂度为0 (n ), n 为输入元素个数。

LNode* jiaoji(Linklist la,Linklist lb) 算法时间复杂度为0 (m+n ), m 为集合A 元素个数,n 为集合B 元素个数。 LNode* bingji(Linklist la,Linklist lb)

算法时间复杂度为0 (m+n ), m 为集合A 元素个数,n 为集合B 元素个数。 4) void Print_LinkList(Linklist L)

算法时间复杂度为0 (n ) n 为集合元素个数。

1)

2)

C语言中的运算符总结解读

C语言中的运算符总结 C语言中的操作符:算术操作符、移位操作符、位操作符、赋值操作符、单目操作符、关系操作符、逻辑操作符、条件操作符、逗号表达式、下标引用、函数调用和结构成员。 1.算术操作符:+ - * / % 1除了% 操作符之外,其他的几个操作符均可以作用于整数和浮点数。 2对于/ 操作符,如果两个操作数都为整数,执行整数除法;而只要有浮点数执行的就是浮点数除法。 3% 操作符的两个操作数必须为整数,返回的是整除之后的余数。 2.移位操作符: << 左移操作符和 >> 右移操作符(针对二进制位、是对整数的操作 1左移操作符移位规则:左边丢弃、右边补0。 2右移操作符移位规则:(1算术移位:左边补符号位,右边丢弃。 (2逻辑移位:左边补0,右边丢弃。 注:对于移位运算符,不能移动负数位,这个是标准未定义的。 3.位操作符:& 按位与 | 按位或 ^ 按位异或(操作数都必须是整数,是针对二进制数的操作 4.赋值操作符:= 可以重新为变量赋值(赋值操作符是可以连续使用的,从右向左执行,不建议使用。 5.复合赋值符:+= = *= /= %= >>= <<= &= |= ^= 6.单目操作符:! 逻辑反操作(真---假

- 负值+ 正值 & 取地址从内存中取地址,不能从寄存器register 中取址。 sizeof 操作数的类型长度(以字节为单位 ~ 一个数的二进制按位取反 -- 前置、后置-- ++ 前置、后置++ (1前置++和--:先自增后使用,表达式的值是自增之后的值。 先自减后使用,表达式的值是自减之后的值。 (2后置++和--:先使用再自加。 先使用再自减。 * 间接访问操作符(解引用操作符 (类型强制类型转换 7.关系操作符:> >= < <= != 不相等 == 相等 注:== 相等 = 赋值,二者易混淆,需注意。 8.逻辑操作符:&& 逻辑与|| 逻辑或 注:逻辑与、逻辑或是判断真假的,按位与、按位或是对二进制数进行操作的。 对逻辑与操作,只要有一个为假,便不必再进行后边的计算;对逻辑或操作,只要有一个为真,便不必再进行后边的操作。 9.条件操作符(三目操作符:exp1 ? exp2 : exp3 先计算表达式1 的值,如果表达式1 为真,整个表达式的值就是表达式 2 的值,如果为假,整个表达式的值就是表达式 3 的值。

C语言实现集合的交,并,差

C语言实现集合的交,并, 差 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

【问题描述】 编制一个能演示执行集合的并、交和差运算的程序【基本要求】 (1)集合的元素限定为小写字母字符[ 'a'......'z' ] (2 )演示程序以用户和计算机对话的方式执行 【测试数据】 【实现提示】 以有序链表表示集合 【代码过程】 1。先定义集合的数据类型 .{ ElemType data; LNode *next; }*Link, *Position; typedef struct...{ Link head,tail; int len; }LinkSet; .{ .{ .{

if(h1->data < (link->data) && h2->data > (link->data) ) .{ .{ .{ .{ pre = h; h=h->next; j++; } if(j==0) return NULL; return pre; } Status PrintSets(LinkSet &ls)...{ .{ printf("%c ",h->data); h = h->next; } printf(" ] "); return OK; } Position GetHead(LinkSet &ls)...{ .{ .{ .{

.{ .{ .{.{ .{ int result = Compare(pa,pb); .{ DelFirst(lsa,node);Append(lsc,node); pa = NextPos(ha); .{ .{ DelFirst(lsb,node); pb = NextPos(hb);.{ DelFirst(lsa,node);Append(lsc,node); } while(!Empty(lsb))...{ DelFirst(lsb,node);Append(lsc,node); } return OK; } Status IntersectionSets(LinkSet &lsa,LinkSet &lsb, LinkSet &lsc)...{ .{ int result = Compare(pa,pb); if( result<0) ...{ DelFirst(lsa,node);pa = NextPos(ha);

C语言运算符大全 (2)

C语言运算符大全C语言的内部运算符很丰富,运算符是告诉编译程序执行特定算术或逻辑操作的符号。C语言有三大运算符:算术、关系与逻辑、位操作。另外,C还有一些特殊的运算符,用于完成一些特殊的任务。 表2-5列出了C语言中允许的算术运算符。在C语言中,运算符“+”、“-”、“*”和“/”的用法与大多数计算机语言的相同,几乎可用于所有C语言内定义的数据类型。当“/”被用于整数或字符时,结果取整。例如,在整数除法中,10/3=3。 一元减法的实际效果等于用-1乘单个操作数,即任何数值前放置减号将改变其符号。模运算符“%”在C 语言中也同它在其它语言中的用法相同。切记,模运算取整数除法的余数,所以“%”不能用于float和double类型。 最后一行打印一个0和一个1,因为1/2整除时为0,余数为1,故1%2取余数1。 C语言中有两个很有用的运算符,通常在其它计算机语言中是找不到它们的—自增和自减运算符,++和--。运算符“++”是操作数加1,而“--”是操作数减1,换句话说:x=x+1;同++x;x=x-1;同--x; 自增和自减运算符可用在操作数之前,也可放在其后,例如:x=x+1;可写成++x;或x++;但在表达式中这两种用法是有区别的。自增或自减运算符在操作数之前,C语言在引用操作数之前就先执行加1或减1 操作;运算符在操作数之后,C语言就先引用操作数的值,而后再进行加1或减1操作。请看下例: x=10; ;y=++x;

此时,y=11。如果程序改为: x=10;y=x++; 则y=10。在这两种情况下,x都被置为11,但区别在于设置的时刻,这种对自增和自减发生时刻的控制是非常有用的。在大多数C编译程序中,为自增和自减操作生成的程序代码比等价的赋值语句生成的代码 要快得多,所以尽可能采用加1或减1运算符是一种好的选择。 。下面是算术运算符的优先级: :最高++、- -- -(一元减) *、/、%最低+、-编译程序对同级运算符按从左到右的顺序进行计算。当然,括号可改变计算顺序。C语言 处理括号的方法与几乎所有的计算机语言相同:强迫某个运算或某组运算的优先级升高。 关系运算符中的“关系”二字指的是一个值与另一个值之间的关系,逻辑运算符中的“逻辑”二字指的是连接关系的方式。因为关系和逻辑运算符常在一起使用,所以将它们放在一起讨论。关系和逻辑运算符概念中的关键是True(真)和Flase(假)。C语言中,非0为True,0为Flase。使用关系或逻辑运算符的表达式对Flase和Ture分别返回值0或1(见表2-6)。 表2-6给出于关系和逻辑运算符,下面用1和0给出逻辑真值表。关系和逻辑运算符的优先级比算术运算符低,即像表达式10>1+12的计算可以假定是对表达式10>(1+12)的计算,当然,该表达式的结果为Flase。在一个表达式中允许运算的组合。例如: 10>5&&!(10<9)||3<=4 这一表达式的结果为True。

集合的并、交运算C语言

题目一:集合的并、交运算 1设计思想 首先,建立两个带头结点的有序单链表表示集合A和B。须注意的是:利用尾插入法建立有序单链表,输入数值是升序排列。 其次,根据集合的运算规则,利用单链表的有序性,设计交、并和差运算。根据集合的运算规则,集合A∩B中包含所有既属于集合A又属于集合B的元素。因此,须查找单链表A和B中的相同元素并建立一个链表存于此链表中。 根据集合的运算规则,集合A∪B中包含所有或属于集合A或属于集合B的元素。因此,遍历两链表的同时若元素相同时只将集合A中的元素存于链表中,若集合A中的下一个元素小于B中的元素就将A中的元素存于新建的链表中。反之将B中的元素存于链表中。 2所用数据结构 线性结构利用链式存储结构实现集合的基本运算。 3源代码分析 #include #include #define ERROR 0 #define OK 1

typedef int Status; typedef char Elemtype; typedef struct LNode{ 线性表的链式存储结构 Elemtype data; struct LNode *next; }Lnode,*Linklist; #include"text.h" LNode* Greatlist(int *N,int n) //建立一个带有头结点的单链表 { Linklist p,q,L; L=p=(LNode *)malloc(sizeof(LNode)); L->next=NULL; if(n!=0) { for(int i=0;idata=N[i]; p->next=q; //指针后移 p=q; }

c语言34种运算符

C语言运算符 算术运算符 TAG:运算符,数据类型 TEXT:算术运算符对数值进行算术运算,其中:加、减、乘、除、求余运算是双目运算。其结果可以是整数、单精度实数和双精度实数。自增、自减运算是单目运算,其操作对象只能使整型变量,不能是常量或表达式等其他形式。 REF:.TXT,+运算符.txt,-运算符.txt,*运算符.txt,/运算 符.txt,%运算符,++运算符,--运算符 加+ TAG:算术运算符,运算符,数据类型 TEXT:双目运算符,算数加法。单目运算符,表示正数。REF:.TXT,算数运算符.txt 减- TAG:算术运算符,运算符,数据类型 TEXT:双目运算符,算数减法。单目运算符,表示负数。REF:.TXT,算数运算符.txt 乘* TAG:算术运算符,运算符,数据类型 TEXT:*,双目运算符,算数乘法。 REF:.TXT,算数运算符.txt

除/ TAG:算术运算符,运算符,数据类型 TEXT:/,双目运算符,算数除法;如果两个参与运算的数是整数,表示整除,舍去小数部分。 如5.0/2等于2.5,而5/2等于2。 REF:.TXT,算数运算符.txt 取余% TAG:算术运算符,运算符,数据类型 TEXT:/,双目运算符,算数除法;如果两个参与运算的数是整数,表示整除,舍去小数部分。 如5.0/2等于2.5,而5/2等于2。 REF:.TXT,算数运算符.txt 自加++ TAG:算术运算符,运算符,数据类型 TEXT:单目运算符,针对整数运算,可以放在运算数的两侧,表示运算数增1。 REF:.TXT,算数运算符.txt 自减-- TAG:算术运算符,运算符,数据类型 TEXT:单目运算符,针对整数运算,可以放在运算数的两侧,表示运算数减1。

c语言位运算符简介举例

c语言位运算符 C语言既具有高级语言的特点,又具有低级语言的功能。 所谓位运算是指进行二进制位的运算。 C语言提供的位运算: 运算符含义 & 按位与 | 按位或 ∧按位异或 ∽取反 << 左移 >> 右移 说明: 1。位运算符中除∽以外,均为二目(元)运算符,即要求两侧各有一个运算了量。 2、运算量只能是整形或字符型的数据,不能为实型数据。 “按位与”运算符(&) 规定如下: 0&0=0 0&1=0 1&0=0 1&1=1 例:3&5=? 先把3和5以补码表示,再进行按位与运算。 3的补码:00000011 5的补码:00000101 -------------------------------------------------------------------------------- &: 00000001 3&5=1 “按位或”运算符(|)

规定如下: 0|0=0 0|1=1 1|0=1 1|1=1 例:060|017=? 将八进制数60与八进制数17进行按位或运算。 060 00110000 017 00001111 -------------------------------------------------------------------------------- |: 00111111 060|017=077 “异或”运算符(∧),也称XOR运算符 规定如下: 0∧0=0 0∧1=1 1∧0=1 1∧1=0 例:57∧42=? 将十进制数57与十进制数42进行按位异或运算。 57 00111001 42 00101010 -------------------------------------------------------------------------------- ∧: 00010011 57∧42=19 “取反”运算符(∽) 规定如下: ∽0=1 ∽1=0 例:∽025=? 对八进制数25(即二进制0000000000010101)按位求反。

集合的并交运算C语言

集合的并交运算C语言集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

题目一:集合的并、交运算 1设计思想 首先,建立两个带头结点的有序单链表表示集合A和B。须注意的是:利用尾插入法建立有序单链表,输入数值是升序排列。 其次,根据集合的运算规则,利用单链表的有序性,设计交、并和差运算。 根据集合的运算规则,集合A∩B中包含所有既属于集合A又属于集合B的元素。因此,须查找单链表A和B中的相同元素并建立一个链表存于此链表中。 根据集合的运算规则,集合A∪B中包含所有或属于集合A或属于集合B的元素。因此,遍历两链表的同时若元素相同时只将集合A中的元素存于链表中,若集合A中的下一个元素小于B中的元素就将A中的元素存于新建的链表中。反之将B中的元素存于链表中。 2所用数据结构 线性结构利用链式存储结构实现集合的基本运算。 3源代码分析 #include #include #define ERROR 0 #define OK 1

typedef int Status; typedef char Elemtype; typedef struct LNode{ 线性表的链式存储结构 Elemtype data; struct LNode *next; }Lnode,*Linklist; #include"text.h" LNode* Greatlist(int *N,int n) //建立一个带有头结点的单链表{ Linklist p,q,L; L=p=(LNode *)malloc(sizeof(LNode)); L->next=NULL; if(n!=0) { for(int i=0;idata=N[i]; p->next=q; //指针后移 p=q; }

C语言运算符大全

C语言运算符大全 C语言的内部运算符很丰富,运算符是告诉编译程序执行特定算术或逻辑操作的符号。C语言有三大运算符:算术、关系与逻辑、位操作。另外,C还有一些特殊的运算符,用于完成一些特殊的任务。 2.6.1算术运算符 表2-5列出了C语言中允许的算术运算符。在C语言中,运算符“+”、“-”、“*”和“/”的用法与大多数计算机语言的相同,几乎可用于所有C语言内定义的数据类型。当“/”被用于整数或字符时,结果取整。例如,在整数除法中,10/3=3。 一元减法的实际效果等于用-1乘单个操作数,即任何数值前放置减号将改变其符号。模运算符“%”在C语言中也同它在其它语言中的用法相同。切记,模运算取整数除法的余数,所以“%”不能用于float和double类型。 最后一行打印一个0和一个1,因为1/2整除时为0,余数为1,故1%2取余数1。 2.6.2自增和自减 C语言中有两个很有用的运算符,通常在其它计算机语言中是找不到它们的—自增和自减运算符,++和--。运算符“++”是操作数加1,而“--”是操作数减1,换句话说:x=x+1;同++x;x=x-1;同--x; 自增和自减运算符可用在操作数之前,也可放在其后,例如:x=x+1;可写成++x;或x++;但在表达式中这两种用法是有区别的。自增或自减运算符在操作数之前,C语言在引用操作数之前就先执行加1或减1操作;运算符在操作数之后,C语言就先引用操作数的值,而后再进行加1或减1操作。请看下例: x=10; ;y=++x; 此时,y=11。如果程序改为: x=10;y=x++; 则y=10。在这两种情况下,x都被置为11,但区别在于设置的时刻,这种对自增和自减发生时刻的控制是非常有用的。在大多数C编译程序中,为自增和自减操作生成的程序代码比等价的赋值语句生成的代码 要快得多,所以尽可能采用加1或减1运算符是一种好的选择。 。下面是算术运算符的优先级: :最高++、- -- -(一元减) *、/、%最低+、-编译程序对同级运算符按从左到右的顺序进行计算。当然,括号可改变计算顺序。C语言 处理括号的方法与几乎所有的计算机语言相同:强迫某个运算或某组运算的优先级升高。 2.6.3关系和逻辑运算符 关系运算符中的“关系”二字指的是一个值与另一个值之间的关系,逻辑运算符中的“逻辑”二字指的是连接关系的方式。因为关系和逻辑运算符常在一起使用,所以将它们放在一起讨论。关系和逻辑运算符概念中的关键是True(真)和Flase(假)。C语言中,非0为True,0为Flase。使用关系或逻辑运算符的表达式对Flase和Ture分别返回值0或1(见表2-6)。

集合的特征函数交并补运算c语言

用集合的特征函数实现集合间的运算 一、实现功能:利用集合的特征函数实现集合间的运算。 二、实验说明:本程序用C语言编写,具体实现了集合的交并补运算。 三、程序思路(流程图表示): Main()函数 输入全集U元素个 数和各元素 输入全集A元素个数和 各元素 输入全集B元素个数和 各元素 获得A和B的特征函数 值 调用子函数进行交并补 运算 结束 四、子函数功能 Equal()判断集合A和集合B是否相等

Intersect()求集合A和集合B的交集Union()求集合A和集合B的并集Complement()求集合A或集合B的补集五、测试举例

六、程序源码 /*------------------------------------------- -----作者:随心无羁---------------------------- -----编译环境:VC6.0------------------------- -----时间:2013.12.3------------------------*/ #include #include int Equal(int m[100],int n[100],int num){//子函数:判断集合A和集合B是否相等 int i,flag = 1; for(i=0;i

集合的并、交、补集测试题(含答案)

集合的并、交、补集 一、单选题(共12道,每道8分) 1.设集合,,则=( ) A.{0} B.{0,2} C.{-2,0} D.{-2,0,2} 答案:D 解题思路: 试题难度:三颗星知识点:并集及其运算 2.若集合,,则=( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:交集及其运算 3.已知集合,,若={2,5},则a+b的值为( ) A.10 B.9 C.7 D.4 答案:C 解题思路: 试题难度:三颗星知识点:交集及其运算 4.设集合,,若,则a的值为( ) A.0 B.1 C.-1 D.±1 答案:C 解题思路: 试题难度:三颗星知识点:交集及其运算 5.已知全集,集合,则( )

A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:补集及其运算 6.若集合,集合,则( ) A.) B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:补集及其运算 7.设集合,,则满足的集合有( ) A.1个 B.2个 C.3个 D.4个

答案:B 解题思路: 试题难度:三颗星知识点:交集及其运算 8.满足,且的集合M有( ) A.1个 B.2个 C.3个 D.4个 答案:B 解题思路: 试题难度:三颗星知识点:子集与真子集 9.若,则满足条件的集合共有( )个. A.1 B.2 C.3 D.4 答案:D 解题思路:

试题难度:三颗星知识点:并集及其运算 10.如图,U是全集,A,B,C是U的3个子集,则阴影部分所表示的集合是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:Venn图表达集合的关系及运算 11.已知全集,,那么下列结论中不成立的是( ) A. B. C. D. 答案:D 解题思路:

C语言程序设计 位运算

一、选择题 1、读程序片段: int x=20; printf(“%d\n”, ~x); 上面程序片段的输出结果是( ). A)02 B)–20 C)-21 D)-11 2、表达式~0x13的值是( ). A)0xFFEC B)0xFF71 C)0xFF68 D)0xFF17 3、在位运算中,操作数每右移一位,其结果相当于( ). A)操作数乘以2 B)操作数除以2 C)操作数除以4 D)操作数乘以4 4、在位运算中,操作数每左移一位,其结果相当于( ). A)操作数乘以2 B)操作数除以2 C)操作数除以4 D)操作数乘以4 5、设有以下语句: char x=3,y=6,z; z=x^y<<2; 则z的二进制值是( ). A)00010100 B)00011011 C)00011100 D)00011000 6、请读程序: struct bit {unsigned a_bit:2; unsigned b_bit:2; unsigned c_bit:1; unsigned d_bit:1; unsigned e_bit:2; unsigned word:8; }; main() {struct bit *p; unsigned int modeword; printf(“Enter the mode word (HEX):”); scanf(“%x”,&modeword); p=(struct bit *)&modeword; printf(“\n”); printf(“a_bit: %d\n”,p ->a_bit); printf(“b_bit: %d\n”,p ->b_bit); printf(“c_bit: %d\n”,p ->c_bit); printf(“d_bit: %d\n”,p ->d_bit); printf(“e_bit: %d\n”,p ->e_bit);} 若运行时从键盘输入: 96<回车> 则以上程序的运行结果是( ). A)a_bit: 1 B) a_bit: 2 C)a_bit: 2 D) a_bit: 1

关于集合的交并补运算

关于集合的交并补运算 我们来看这样一个例题. 【例】已知集合U ={x ∈R |1<x ≤7},A ={x ∈R |2≤x <5},B ={x ∈R |3≤x <7}.求: (1)(U C A )∩(U C B ); (2)U C (A ∩B ); (3)(U C A )∪(乙B ); (4)U C (A ∪B ).. 利用数形结合的思想,将满足条件的集合在数轴上一一表示出来,从而求集合的交集、并集、补集,既简单又直观,这是最基本最常见的方法.本例题可先在数轴上画出集合U 、A 、B ,然后求出A ∩B ,A ∪B ,U C A ,U C B ,就能逐一写出各小题的结果,有条件的还可以设计多媒体教学课件,展现这一全过程. 解:利用数轴工具。画出集合U 、A 、B 的示意图,如下图. 可以得到,A ∩B ={x ∈R |3≤x <5}, A ∪ B ={x ∈R |2≤x <7}, U C A ={x ∈R |1<x <2}∪{x |5≤x ≤7}, U C B ={x ∈R |<x <3}∪{7}. 从而可求得 (1)(U C A )∩(U C B );{x ∈R |1<x <2}∪{7}. (2)U C (A ∪B )={x ∈R |1<x <2}∪{7}. (3)(U C A )∪(U C B )={x ∈R |1<x <3}∪{x ∈R |5≤x ≤7}. (4)U C (A ∩B )={x ∈R |1<x <3}∪{x ∈R |5≤x ≤7}. 认真观察不难发现: U C (A ∪B )=(U C A )∩(U C B );

U C (A ∩B )=(U C A )∪(U C B ). 这个发现是偶然的呢?还是具有普遍的意义呢? 为了提高学生分析问题和解决问题的能力,培养他们探索研究的思维品质和创新意识,同时也让学生体验数形结合思想方法解题的要领和重要性,我们可以做两方面的工作: (1)让学生自己编拟一道集合运算的例题,并验证上述等式是否成立; (2)设计一套韦恩图来验证上述等式(有条件的可设计一多媒体课件来展示并验证). 第(1)方面的工作让学生自己尝试,我们来做第(2)方面的工作. 我们来看四个图: (1) (2) (3) (4) 细心观察、领会,我们能够看出: 图(1)的阴影部分是A ∩B ; 图(2)的阴影部分是B ∩(U C A ); 图(3)的阴影部分是A ∩(U C B ); 图(4)的阴影部分是U C (A ∪B ),或者是(U C A )∩(U C B ). 从图(4)我们已经得到U C (A ∪B )=(U C A )∩(U C B ); 从图(1)我们也可得到U C (A ∩B )=(U C A )∪(U C B ). 一般地,对于任意集合A 、B ,下列等式成立. (1)U C (A ∩B )=(U C A )∪(U C B ); (2)U C (A ∩B )=(U C A )∩(U C B ). 这就是著名的德·摩根定律,它可以叙述为:A 、B 交集的补集等于A 、B 的补集的并集;A 、B 并集的补集等于A 、B 的补集的交集.

C语言位运算符:与、或、异或、取反

C语言位运算符:与、或、异或、取反、左移和右移语言位运算符:与、或、异或、取反、左移和右移 位运算是指按二进制进行的运算。在系统软件中,常常需要处理二进制位的问题。 C语言提供了6个位操作运算符。这些运算符只能用于整型操作数,即只能用于带符号或无符号的char,short,int与long类型。 C语言提供的位运算符列表: 运算符含义描述 &按位与如果两个相应的二进制位都为1,则该位的结果值为1,否则为0|按位或两个相应的二进制位中只要有一个为1,该位的结果值为1 ^按位异或若参加运算的两个二进制位值相同则为0,否则为1 ~取反~是一元运算符,用来对一个二进制数按位取反,即将0变1,将1变0<<左移用来将一个数的各二进制位全部左移N位,右补0 >>右移将一个数的各二进制位右移N位,移到右端的低位被舍弃,对于无符号数,高位补0 1、“按位与”运算符(&) 按位与是指:参加运算的两个数据,按二进制位进行“与”运算。如果两个相应的二进制位都为1,则该位的结果值为1;否则为0。这里的1可以理解为逻辑中的true,0可以理解为逻辑中的false。按位与其实与逻辑上“与”的运算规则一致。 逻辑上的“与”,要求运算数全真,结果才为真。若,A=true,B=true,则 A∩B=true例如:3&5 3的二进制编码是11(2)。(为了区分十进制和其他进制,本文规定,凡是非十进制的数据均在数据后面加上括号,括号中注明其进制,二进制则标记为2)内存储存数据的基本单位是字节(Byte),一个字节由8个位(bit)所组成。位是用以描述电脑数据量的最小单位。二进制系统中,每个0

或1就是一个位。将11(2)补足成一个字节,则是00000011(2)。5的二进制编码是101(2),将其补足成一个字节,则是00000101(2) 按位与运算: 00000011(2) &00000101(2) 00000001(2) 由此可知3&5=1 c语言代码: #include main() { int a=3; int b = 5; printf("%d",a&b); } 按位与的用途: (1)清零 若想对一个存储单元清零,即使其全部二进制位为0,只要找一个二进制数,其中各个位符合一下条件: 原来的数中为1的位,新数中相应位为0。然后使二者进行&运算,即可达到清零目的。

逻辑运算符和表达式(c语言)

南京高等职业技术学校 课堂教学设计 授课时间:2014年11月6日第11周星期四教学目标教学准备 授课教师课时课程通过本节课的学习,学生能够: 1.清晰地说出各种逻辑运算符; 2.正确运算出逻辑表达式的值,并 通过程序验证结果; 重点教案□√ 马丽娟 1 C语言多媒体课件□√班级授课地点课题教学讲义□ 512212 机房4.2逻辑运算符与逻辑表达 式 1.逻辑表达式的求值运算; 2.逻辑表达式的求值优化。 学生工作页□ 课堂特殊要求(指教师、学生的课前准备活动等) 教师:安装Win-TC程序难点 教具□√ 逻辑表达式的求值优化授课形式 理论讲授课 教学环节时间分配教师活动学生活动教学方法媒体手段导入新课 5 提出问题,并举例说明听讲、思考、回答讲授法PPT 新课讲授20 讲授、分析听讲、讨论并记录讲授法PPT 巩固练习15 布置任务、巡视、答疑思考、编程并回答问题练习法Win-TC 课堂小结 3 归纳、总结听讲、回答问题讲授法PPT 布置作业 2 布置作业记录讲授法PPT 板书设计 §4.2 逻辑运算符与逻辑表达式 ?逻辑运算符:&&、||、! ?逻辑表达式的值:非0即1 ?逻辑运算的求值优化工作任务/教学情境设置 无课后作业 书面作业:P52 随堂练习 课后反思

教案纸 教学内容 4.2 逻辑运算符与逻辑表达式 一、复习导入(5min) 1. 复习:请学生说出关系运算符有哪些? 请学生回答关系运算表达式的值? 教师进行补充。 2.导入新课: 1、学生参加技能大赛培训的条件? ?扎实的专业知识与较高的实践能力 教师强调与的关系 2、参加技能大赛集训而停课的条件? ?移动互联或智能家居 教师强调或的关系 3、学生回答引入禁烟区的条件? ?没有吸烟非 教师强调非的关系 二、新课讲授(20min) 逻辑运算符 1.教师根据逻辑关系给出三种逻辑运算符的表示形式: &&、||、! 2.教师利用具体的表达式关系分析各种逻辑运算符的作用: 逻辑与相当于英语中的and; 逻辑或相当于英语中的or; 逻辑非相当于英语中的no; 3.教师根据具体的逻辑关系引出逻辑表达式的概念及表示形式: 表达式1&&表达式2 a&&b 表达式1||表达式2 a || b !表达式!a

c语言的集合的交并补

通过键盘,分别输入两个数据元素类型为正整数的集合A和B,以负数输入为结束条件,输出两个集合的交、并、差。从程序完善性上考虑,集合元素输入时,要有检查元素重复的功能。集合可以用数组也可以用链表存储。 输入: A={1,2,3,4,5} B={3,4,5,6,7} 输出 A交B={3, 4, 5} A并B={1,2,3,4,5,6,7} A-B={1, 2} 作者lyc #include #include//包含memcyp() #define N 20//数组长度 //遍历数组函数 void bianli(int a[2*N],int num){ for(int i=0;i

scanf("%d",&c); if(c<0) break; a[i]=c; count1=i; } printf("请输入第二个集合:\n"); for(int i=0;i

c语言中的关系运算符和逻辑运算符

1.逻辑运算符 逻辑运算符是指用形式逻辑原则来建立数值间关系的符号。 Turbo C的逻辑运算符如下: ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 操作符作用 ───────────────────────────── && 逻辑与 || 逻辑或 ! 逻辑非 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.关系运算符 关系运算符是比较两个操作数大小的符号。 Turbo C的关系运算符如下: ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 操作符作用 ───────────────────────────── > 大于 >= 大于等于 < 小于 <= 小于等于 == 等于 != 不等于 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━关系运算符和逻辑运算符的关键是真(true)和假(false)的概念。Turbo C中 true可以是不为0的任何值, 而false则为0。使用关系运算符和逻辑运算符表达式时, 若表达式为真(即true)则返回1, 否则, 表达式为假(即false), 则返回0。 例如: 100>99 返回1 10>(2+10) 返回0 !1&&0 返加0 对上例中表达式!1&&0, 先求!1和先求1&&0将会等于出不同的结果, 那么何 者优先呢? 这在Turbo C中是有规定的。有关运算符的优先级本节后面将会讲到。 3.按位运算符

Turbo C和其它高级语言不同的是它完全支持按位运算符。这与汇编语言的位操作有些相似。 Turbo C中按位运算符有: ━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 操作符作用 ──────────────────────────── & 位逻辑与 | 位逻辑或 ^ 位逻辑异或 - 位逻辑反 >> 右移 << 左移 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━按位运算是对字节或字中的实际位进行检测、设置或移位, 它只适用于字符 型和整数型变量以及它们的变体, 对其它数据类型不适用。 关系运算和逻辑运算表达式的结果只能是1或0。而按位运算的结果可以取0 或1以外的值。 要注意区别按位运算符和逻辑运算符的不同, 例如, 若x=7, 则x&&8 的值为真(两个非零值相与仍为非零), 而x&8的值为0。 移位运算符">>"和"<<"是指将变量中的每一位向右或向左移动, 其通常形式为: 右移: 变量名>>移位的位数 左移: 变量名<<移位的位数 经过移位后, 一端的位被"挤掉", 而另一端空出的位以0 填补, 所以, Turbo C中的移位不是循环移动的。 4.Turbo C的特殊运算符 一)"?"运算符 "?"运算符是一个三目运算符, 其一般形式是: <表达式1>?<表达式2>:<表达式3>; "?"运算符的含义是: 先求表达式1的值, 如果为真, 则求表达式2 的值并把它作为整个表达式的值; 如果表达式1 的值为假, 则求表达式3 的值并把它作为整个表达式的值。 例如: main()

集合的交并补运算

、集合的交、并、补运算

————————————————————————————————作者:————————————————————————————————日期:

集合的交、并、补运算练习题 1、设(1,3]A =-,[2,4)B =,则A B =I . 2、已知全集{}5,4,3,2,1,0=U ,集合2 {|320}A x x x =-+=,{|2}B x x a a A ==∈,, 则集合)(B A C u ?= 3、设全集{}22,3,23U a a =+-,{}21,2A a = -,{}5U C A =,则a 的值为 。 4、设集合(){},|6A x y x y =+=,集合(){},|4B x y x y =-=,则A B I = . 5、已知全集U 为实数集R, }51{≤≤=x x A ,}30{><=x x x B 或, 求:B A ?, )(B C A U ?,)()(B C A C U U ?. 6、设全集{}71≤<=x x S 、{}52<≤=x x A ,{} 73<≤=x x B , 求①A B I ②B A Y ③S C A 7、设集合A =????? x ∈R |? ?? ?????? ?x +1≥0,x -3≤0,B ={x ∈Z |x -2>0},则A ∩B =________. 8、如图所示的韦恩图中,,A B 是非空集合,定义集合#A B 为阴影部分表示的集合,即#A B =},|{B A x B x A x x ??∈∈,且或.若 }5,4,3,2,1{=A ,}7,6,5,4{=B ,则#A B = . 变式 :若}3|{x x y x A -+== ,[)2,B =+∞,则#A B = . 9、设全集{|17Z}{2,3}{1,6}U U U x x x A B A B =≤≤∈==I I ,,,痧, {4}U A B =I e,则集合B = . 10、设{} 22,1,1A a a =--+,{},7,1B b a =+ ,A B =I {}1,7M =-. (1)设全集U A =,求M C U ; (2)求a 和b 的值. 11、已知函数()4f x x =-的定义域为A ,{}|231B x x =+≥. ⑴求A B I ; ⑵设全集U R =,求()U C A B I ; ⑶若{}|211Q x m x m =-+≤≤,,P A B Q P =?I ,求实数m 的取值范围.

C语言位运算符(附例题讲解)

C语言提供了六种位运算符: & 按位与 | 按位或 ^ 按位异或 ~ 取反 << 左移 >> 右移 12.1.1按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1,否则为0。参与运算的数以补码方式出现。 例如:9&5可写算式如下: 00001001 (9的二进制补码) &00000101 (5的二进制补码) 00000001 (1的二进制补码) 可见9&5=1。 按位与运算通常用来对某些位清0或保留某些位。例如把a 的高八位清0 ,保留低八位,可作a&255运算( 255 的二进制数为0000000011111111)。 【例12.1】 main(){ int a=9,b=5,c; c=a&b; printf("a=%d\nb=%d\nc=%d\n",a,b,c); } 12.1.2按位或运算 按位或运算符“|”是双目运算符。其功能是参与运算的两数各对应的二进位相或。只要对应的二个二进位有一个为1时,结果位就为1。参与运算的两个数均以补码出现。 例如:9|5可写算式如下: 00001001 |00000101 00001101 (十进制为13)可见9|5=13 【例12.2】 main(){ int a=9,b=5,c; c=a|b; printf("a=%d\nb=%d\nc=%d\n",a,b,c); } 12.1.3按位异或运算

按位异或运算符“^”是双目运算符。其功能是参与运算的两数各对应的二进位相异或,当两对应的二进位相异时,结果为1。参与运算数仍以补码出现,例如9^5可写成算式如下:00001001 ^00000101 00001100 (十进制为12) 【例12.3】 main(){ int a=9; a=a^5; printf("a=%d\n",a); } 12.1.4求反运算 求反运算符~为单目运算符,具有右结合性。其功能是对参与运算的数的各二进位按位求反。例如~9的运算为: ~(0000000000001001)结果为:1111111111110110 12.1.5左移运算 左移运算符“<<”是双目运算符。其功能把“<< ”左边的运算数的各二进位全部左移若干位,由“<<”右边的数指定移动的位数,高位丢弃,低位补0。 例如: a<<4 指把a的各二进位向左移动4位。如a=00000011(十进制3),左移4位后为00110000(十进制48)。 12.1.6右移运算 右移运算符“>>”是双目运算符。其功能是把“>> ”左边的运算数的各二进位全部右移若干位,“>>”右边的数指定移动的位数。例如: 设a=15, a>>2 表示把000001111右移为00000011(十进制3)。 应该说明的是,对于有符号数,在右移时,符号位将随同移动。当为正数时,最高位补0,而为负数时,符号位为1,最高位是补0或是补1 取决于编译系统的规定。Turbo C和很多系统规定为补1。 【例12.4】 main(){ unsigned a,b; printf("input a number: "); scanf("%d",&a); b=a>>5;

相关文档
最新文档