泵类振动标准

泵类振动标准
泵类振动标准

泵类振动标准

泵类也是状态监测与故障诊断工作中接触较多的设备,我国国家标准GB-10889-1989“泵的振动测量与评价方法”等效采用ISO2373-1974来评定泵的振动烈度等级,见表19和表20。

表19 GB 10889-1989泵的分类

注:1.卧式泵的中心高规定为由泵的轴线到泵的底座上平面间的距离。

2.立式泵本来没有中心高,为了评价它的振动级别,取一个相当尺寸当做立式泵的中心高:即把立式泵的出口法兰密封面到泵轴线间的投影距离规定为它的相当中心高。

表20 GB 10889-1989泵的振动标准

600-1200r/min。标准规定将主要测点上在三种不同的流量工况下测得的振动速度有效值中的最大的一个定

为泵的振动烈度。

振动诊断标准

第十章参考标准 为了方便现场诊断查找使用,我们把收集到的各类有代表性的诊断标准,按照国际标准化组织、国际电工委员会、相关国家标准和诊断对象分类列出,同时把属于同类设备的有关标准排列在一起,它们在数值上可能有些差异,我们可以根据诊断对象的具体情况参照选用。在每个标准后面,以“注”的形式简要说明了该标准的主要特点、约束条件及应用范围。 第一节国际标准化组织(ISO)的相关标准文件 一、可予采用的国际标准 ISO 1925机械振动——平衡——名词术语 ISO 1940(全部)机械振动——刚性转子的平衡品质要求 ISO 2017-1机械振动与冲击——弹性安装系统——第一部分:主动与被动隔离的应用 ISO 2041振动与冲击——名词术语 ISO 2954旋转与往复机器的机械振动——对振动烈度测量仪的要求 ISO 5348 机械振动与冲击——加速度计的机械安装 ISO 7919(全部),非往复机械的振动——在转轴上的测量及评价准则 ISO 8528-9由往复式内内燃机驱动的交流发电机组——第九部分:机械振动的测量与评定 ISO 8569机械振动与冲击——振动与冲击对室内敏感设备影响的测量与评价 ISO 10816(全部),机械振动——在非旋转部件上测量和评价机器的机械振动 ISO 11342:1998,机械振动——挠性转子机械平衡的方法与准则 ISO 13372,机器的状态监测及诊断——名词术语 ISO 13373-1,机器的状态监测及诊断——振动状态监测与诊断——第一部分:总则 ISO 13379,机器的状态监测及诊断——数据解释及诊断技术的一般指南ISO 14694,工业风机——平衡品质与振动水平技术要求

超低频标准振动系统基础设计技术

2007第九届全国振动理论及应用学术会议论文集 2007.10.17~19 https://www.360docs.net/doc/9d1966764.html, 超低频标准振动系统基础设计技术 韩冬, 何闻 (浙江大学机械与能源工程学院,浙江 杭州 310027) 摘 要:针对超低频标准振动系统易受外界振动干扰的问题,研究了超低频标准振动台与激光测振仪的隔振基础设计技术。首先以振动台台面输出信噪比为出发点,确定了超低频标准振动台基础噪声的基本要求;然后采用有限元分析的数值方法,分别对振动台基础与激光测振仪基础作动力学分析,再对激光测振仪基础作静力学分析。结果表明,振动台基础底面应与地基刚性连接,而激光测振仪基础底面应与地基弹性连接;优化橡胶减震垫的布局可以提高激光测振仪隔震系统的稳定性。 关键词:超低频 标准振动系统 基础 有限元 Design of foundation for ultra-low-frequency standard vibration system HAN Dong, HE Wen (College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou 310027, China) Abstract:Considering the influence of external vibration on ultra-low frequency standard vibration system, the vibration insulating foundation for vibration tables and a laser vibrometer were studied. On the start point of signal-to-noise ratio, the basic requirements of background noise on the foundation was determined, then some dynamic analysis on the foundation of tables and a laser vibrometer, and static analysis on the foundation of the laser vibrometer were done with the finite element analysis method. Research results show that the bottom surface of the tables should be fixed with ground base, and the bottom surface of the foundation of the laser vibrometer should be elastically fixed with ground base. At last, the stability of the laser vibrometer system could be improved by optimizing the distribution of shocking rubber pad. Key words:Ultra-low frequency; standard vibration system; foundation; finite element analysis 引 言 目前对振动传感器进行标定主要有绝对法与相对法两种方法,而两种方法通常是在标准振动台上进行的[1]。随着科学技术的发展,尤其是地震科学技术的发展,传感器越来越要求能够测量超低频振动信号,比如英国Güralp公司生产的CMG-3T地震计、北京港震机电技术有限公司生产的BBVS-120甚宽频带地震计、东方振动与噪声研究所研制的INV9898压电加速度传感器,频率下限已达0.1Hz以下。超低频传感器对标准振动装置提出了要求,然而ISO的TC108委员会推荐的绝对法低频标准振动装置,低频校准频率为0.5Hz[2]。因此研究并开发超低频标准振动计量装置成为各国科技工作者努力的方向。 标准振动台工作于超低频段时,振动台台面输出的加速度非常小,容易受外界环境因素,比如拍岸浪、气旋风暴、地震波、车辆行人等的影响,使输出波形的失真度变大,信噪比和 作者简介:韩冬 (1982-),男,吉林人,硕士研究生,从事振动理论、测试方面的研究工作.E-mail: handongu@https://www.360docs.net/doc/9d1966764.html,通讯作者:何闻,教授.E-mail:hewens@https://www.360docs.net/doc/9d1966764.html,

设备振动标准

“刚性连接”中,相对的连接件之间不得有位移,在大多数的紧固中都是这样的连接。 “挠性连接”中,相对的连接件既有约束或传递动力的关系,又可以有一定程度的相对位移。 如常见的联轴器,刚性联轴器将两个部分用螺栓紧固,这样的安装要求同心度极高,稍有误差,机械就会震动,而且寿命不长。 挠性联轴器就有措施,在联轴器的两部分之间,使用滑块、弹性柱销、木销或万向节等,即传递了动力,也满足了设备的使用要求。 刚性联轴器不具有补偿被联两轴轴线相对偏移的能力,也不具有缓冲减震性能;但结构简单,价格便宜。只有在载荷平稳,转速稳定,能保证被联 两轴轴线相对偏移极小的情况下,才可选用刚性联轴器。属于刚性联轴器的 有套筒联轴器、夹壳联轴器和凸缘联轴器等。其它联轴器都是挠性联轴器了. 企业设备振动故障诊断 相对标准的建立及应用 陈兆虎李兰儒张红 摘要本文结合克拉玛依石化厂实际情况,从安全性、经济性出发,叙述建立适合现代企业设备管理维修的动设备振动故障诊断相对标准的方法,以及相对标准应用效果。 一、设备振动故障诊断标准 1.标准的类型及理论依据 标准有绝对标准和相对标准两大类型。绝对标准就是人们常说的国际标准。各种转动机械的振源主要来自结构设计,制造、安装质量,调试情况和环境本身。振动的存在必然不同程度引起设备自身及其附属管线的结构疲劳和损伤。美国齿轮制造协会(AGMA)提出在低频域(10Hz以下),以位移作为振动标准;中频域(10Hz~1kHz),以速度作为振动标准;而高频域(1kHz以上)则以加速度作为标准。 理论已经证明,振动部件的疲劳与振动速度成正比,振动所产生的能量与振动速度的平方成正比,能量传递的结果必然造成磨损或其它缺陷。因此,在振动判断标准中,无论从疲劳损伤还是磨损等缺陷来说,以振动速度标准最为适宜。 )标准mm/s 表1 电动机器振动(v rms

齿轮故障的振动诊断技术研究

齿轮故障的振动诊断技术研究 摘要:齿轮传动具有结构紧凑、效率高、寿命长、工作可靠和维修方便等特点,所以在运动和动力传递以及变更速度等各个方面得到了普遍应用。但是齿轮传动也有明显缺点,由于其特有的啮合传力方式造成两个突出的问题:一是振动、噪声较其它传动方式大;二是当其制造工艺、材质、热处理、装配等因素未达到理想状态时,常成为诱发机器故障的重要因素,且诊断较为复杂。齿轮的工作状态的好坏直接影响整个机械系统的工作,它们的故障往往是造成系统不能正常运转的常见原因之一,所以它们的制造质量、同坐平稳性和噪声是机器制造质量的重要标志。 关键词:诊断;振动;分析 齿轮在运行中若产生故障,温度、润滑油中磨损物的含量及形态、齿轮的振动及辐射的噪声、齿轮传动轴的扭转振动和扭矩、齿轮齿根应力分布等,都会从各自的角度反映出故障的信息,但是由于工业现场测试的条件及分析技术所限,有些征兆的提取与分析不易实现,有些征兆反应的状态情况不敏感。相对来讲,齿轮的振动与噪声(尤其是振动)是目前公认的最佳征兆提取量,它对运行状态的反应迅速、真实、全面,能很好地反映出绝大部分齿轮故障的性质范围,并有很多先进有效的分析方法可供选用,所以振动诊断在齿轮的故障中占有重要地位。 齿轮的振动诊断原理: 一.啮合齿轮副的振动分析: 1、振动响应的频率分量及幅值:在理想渐开线齿形及轮齿刚度无穷大的假设下,一对齿轮在啮合运动中是不会产生振动的。但由于制造、安装及轮齿刚度不可能无穷大等方面的问题,一定的条件下,在频率分量及幅值参数激励下的一对新齿轮在啮合运动中也可能产生不稳定的振动。 2、传动误差:由于传动误差.,齿轮径向会产生振动,转动方向也会产生振动,反映为齿轮忽快忽慢的转动。由于有些误差具有随机性,还有些误差不便于测量,故工程中常使用单面啮合检查仪,可检查与标准啮合齿轮的被测齿轮的转角误差量,用以反映齿轮的传动误差。 二.齿轮诊断的特征频率: 1、轴的转动频率及其谐频:正常齿轮传动中由于啮合刚度的周期性变化会引起参数振动,其振动频率与转速、齿数和重叠系数有关,由于齿形误差的随机激励,可能引起齿轮弹性系统的共振,当齿轮出现故障时,振动往往加剧,也会产生一些新的频率成分。由于齿轮—轴系统的不平衡引起离心惯性力,使齿轮—轴系统产生强迫振动,当转动频率接近齿—轴系统横向振动的固有频率时,将产生临界转速现象,转轴大幅度的变形,又会恶化齿轮的啮合关系,造成更大的振动。 2、啮合频率及其谐频:振动频率随转速变化而变化;振动展开为傅里叶级数后,一般存在啮合频率的谐频;当啮合频率或其高阶谐频接近或等于齿轮的某阶固有频率时,齿轮产生强烈振动;由于齿轮的固有频率一般较高,这种强烈振动振幅不大,但是常为强烈噪声。 齿轮的诊断方法有:功率谱分析法、边频带分析法、倒频谱分析法。 其中以功率分析法做简单介绍。功率谱分析可确定齿轮振动信号的频率构成和振动能量在各频率成分上的分布,是一种重要的频域分析方法。幅值谱也能进行类似的分析,但由于功率谱是幅值的平方关系,所以功率谱比幅值谱更能突出啮合频率及其谐波等线状谱成分而减少了随机振动信号引起的一些“毛刺”现象。

各泵类操作作业指导书通用版

管理制度编号:YTO-FS-PD752 各泵类操作作业指导书通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

各泵类操作作业指导书通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1.目的 规范各类水泵操作程序,确保生活、消防供水正常。 2.范围 适用于zz花园管理处。 3.方法和过程控制 3.1生活泵操作 3.1.1检查地下水池水位和生活泵控制屏电源。 3.1.2生活泵在日常情况下选择自动运行,把选择开关拔到"1#自动"或"2#自动"位置,这时,相应生活泵1#或2#自动运行。生活泵自动运行靠楼顶水箱水位高低来控制。每月生活泵1#、2#自动运行轮换一次。 3.1.3手动操作时,选择开关转换到"手动"位置,按"1#启动"按钮或"2#启动"按钮,相应1#或者2#生活泵工作。 3.1.4当楼顶水箱水位指示灯显示高水位时按"1#停止"或"2#停止"按钮,相应生活泵"1#"或"2#"停止工作。 3.2消防稳压泵操作

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择

汽轮机轴系振动故障研究汇总

汽轮机轴系振动故障研究 汽轮机轴系振动故障研究汽轮发电机组是电厂中的重要设备,而汽轮发电机组的振动严重威胁着汽轮发电机组的安全运行。机组运行中,轴系振动最常见的后果是导致机组无法升速到工作转速,个别情况下,轴系振动大会造成汽轮发电机组设备损害事故,如动静摩擦等引起大轴弯曲,支持轴承的乌金破碎或严重磨损,甚至转子断裂。例如2001年广东省就有3台大型机组发生高压转子永久弯曲事故。1988年,某电厂600MW引进机组发生高压缸叶片断裂重大事故,直接损失2400万元,此外近几年运行中叶片断裂事故也逐渐增多,如果不即时发现并确切诊断,则很可能造成大面积叶片断裂,而引发大轴弯曲或飞车事故,此类事故不胜枚举,不仅间接直接经济损失巨大,而且更严重的是影响机组的寿命,威胁生命安全。本人根据自己现场工作经验,列出常见的振动原因,及其如何在运行和检修中防范。 第一章机组振动故障诊断 第一节质量不平衡 转子质量不平衡是汽轮发电机组最常见的振动故障,它约占故障总数的80%。随着制造厂加工,装配精度以及电厂检修质量的提高,这类故障的发生率正在逐渐减少,过去国内大型汽轮机厂中只有个别厂家可以对大型汽轮机转子进行高速动平衡,现在几乎全部厂家都可以做。至于发电机转子的高速平衡,各电机厂早已能够进行。现场检修过程中的转子平衡方法也在不断改进。低速动平衡有些电厂已经抛弃了老式的动平衡机,取而代之是使用先进的移动式动平衡机。即便如此质量不平衡目前仍是现场振动的主要故障。 一.转子质量不平衡的一般特征 (1)量值上,工频振幅的绝对值通常在30um以上,相对于通频振幅的比例大于80% (2)工频振幅为主的状况应该是稳定的这包括 1) 各次启机 2) 升降速过程 3) 不同的工况,如负荷,真空,油温,氢压,励磁电流

振动测试系统

一、振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 二、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

故障诊断的参考标准

故障诊断的参考标准 为了获得最佳的诊断效果,在机械设备诊断的过程中应该建立设备的故障报警门限参考标准,现将国际上通用的标准列出如下: 1、ISO2372 机械振动强烈度的范围,它将振动速度有效值从0.11mm/s(人体刚有振动的感觉)到71mm/s 的范围内分为15个量级,相邻两个烈度量级的比约为1:1.58,即相差4dB。这是由于对于大多数机器的振动来说4dB之差意味着振动响应有了较大的变化。有了振动烈度量级的划分就可以用它表示机器的运行质量。为了便于实用,将机器运行质量分成四个等级:A级——机械设备正常运转时的振级,此时称机器的运行状态“良好”。 B级——已超过正常运转时的振级,但对机器的工作量尚无显著的影响,此种运行状态是“容许”的。 C级——机器的振动已经到了相当剧烈的强度,导致机器只能勉强维持工作,此时机器的运行状态称为“可容许”的。 D级——机器的振动能已达到使机器不能运转工作,此种机器的振级是不允许的。 显然,不同的机械设备由于工作要求、结构特点、动力特性、功率容量、尺寸大小以及安装条件等方面的区分,其对应于各等级运行状态的振动烈度范围必然是各不相同的。所以对各种机械设备是不能用同一标准来衡量的,但也不可能对每种机械设备专门制定一个标准。为了便于实用,ISO2372将常用的机械设备分为六大类,令每一类的机械设备用同一标准来衡量其运行质量。机械设备分类情况如下: 第一类:在其正常工作条件下与整机连接成整体的发动机和机器的零件(如15kw以下的发动机)。

第二类:设有专用基础的中等尺寸的机器(如15—75kw的发电机)及刚性固定在专用基础上的发动机和机器(300kw以下)。 第三类:安装在测振方向上相对较硬的、刚性的和重的基础上的具有旋转质量的大型原动机和其它大型机器。 第四类:安装在测振方向上相对较软的基础上具有旋转质量的大型原动机和其它大型机器(如透平发电机)。 第五类:安装在测振方向相对较硬的基础上具有不平衡损性力的往复式机器和机械驱动系统。 第六类:安装在测振方向相对较软的基础上具有不平衡惯性力的拄复式机器和机械驱动系统等。 通过大量的实验得到了前四类机械设备的运行质量与振动烈度量级的对应关系,如上表。 至于第五类、六类的机械设备,特别是往复式发动机由于结构不同,其振动特性变化很大,往往允许有较强烈的振动(如V rms=20-30mm/s)而不影响其运行质量。而安装在弹性基础上的机器受到隔振作用,由安装点传到周围物体的作用力是很小的,在这种情况下机器的振动将大于安装在刚体基础上的振动,加大转速的电机上测得的振速度有效值可达50mm/s或更大。在上述情况下用振动绝对量级来衡量机器的运行质量显然是不恰当的;就是对于第一致经四类机器,由于实际情况是千变万化的,表中所示的机器运行质量与振动 烈度的关系也只能作为参考。实践表明;比较可靠准确的办法是用振动烈度的相对变化来表示机器的运行质量。可以考虑以机器“良好”运行状态的量级为参考值,在此基础上若增大2.5倍(8dB),表明机器的运行状态已有重要变化,此时机器虽尚能进行工作,实际上已处于不正常状态;若从参考状态的基础上增大10倍(20dB),就说明该机器已需进行修理;再继续增大,机器就将处于不允许状态。上述振动烈度相对变化与机器运行质量间关系常用于以振动信号进行故障诊断时的判据。 2、ISO2373和DIN45665电动机振动标准 2 电动机状态分为三个等级:正常,良好,特佳。 3 本标准是指电动机在空转状态下的阈值。 4 诊断参数为速度有效值。 3、汽轮机及汽轮发电机组振动标准 水电部汽轮发电机组振动标准(轴承双振幅允许值)

振动检测与故障诊断技术

振动检测是状态检测的手段之一,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 1、机械振动检测技术 机械运动消耗的能量除了做有用功外,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,如果出现非正常的振动,说明机械发生故障。这些振动信号包含了机械内部运动部件各种变化信息。分辨正常振动和非正常振动,采集振动参数,运用信号处理技术,提取特征信息,判断机械运行的技术状态,这就是振动检测。 所以由此看来,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 2、振动监测参数与标准 振动测量的方位选择 a、测量位置(测点)。 测量的位置选择在振动的敏感点,传感器安装方便,对振动信号干扰小的位置,如轴承的附近部位。 b、测量方向。 由于不同的故障引起的振动方向不同,一般测量互相垂直的三个方向的振动,即轴向(A向)、径向(H 向、水平方向)和垂直方向(v向)。例如对中不良引起轴向振动;转子不平衡引起径向振动;机座松动引起垂直方向振动。高频或随机振动测量径向,而低频振动要测量三个方向。总之测量方向和数量应全面描述设备的振动状态。 测量参数的选择 测量振动可用位移、速度和加速度三个参数表述。这三个参量代表了不同类型振动的特点,对不同类型振动的敏感性也不同。 a、振动位移 选择使用在低频段的振动测量(<10HZ),振动位移传感器对低频段的振动灵敏。在低频段的振动,振动速度较小,可能振动位移很大,如果振动产生的应力超过材料的许用应力,就可能发生破坏性的故障。b、振动速度 选择使用在中频段的振动测量(10~1000hz)。在大多数情况下转动机械零件所承受的附加载荷是循环载荷,零件的主要失效形式是疲劳破坏,疲劳强度的寿命取决于受力变形和循环速度,既和振动位移与频率有关,振动速度又是这两个参数的函数,振动能量与振动速度的平方成正比。所以将振动速度作为衡量振动严重程度的主要指标。 c、振动加速度 选择使用在高频段的振动测量(>1000hz)。当振动频率大于1000hz时,动载荷表现为冲击载荷,冲击动能转化为应变能,使材料发生脆性破坏。多用于滚动轴承的检测。 以上三这三个参量可以互为辅助性的补充和参考。 振动判定标准 a、绝对判断标准。此类标准是对某机器长期使用、维修、测试的经验总结,由行业协会或国家制订图表形式的标准。使用时测出的振动值与相同部位的判断标准的数值相比较来做出判断。一般这类标准是针对某些类型重要回转机械而制订的。例如国际通用标准ISO02372和ISO3945。 b、相对判断标准。对于同一设备的同一部位定期进行检测,按时间先后作出比较,以初始的正常值为标准,以实测振动值超过正常值的多少来判断。

泵类振动标准

泵类振动标准 泵类也是状态监测与故障诊断工作中接触较多的设备,我国国家标准GB-10889-1989“泵的振动测量与评价方法”等效采用ISO2373-1974来评定泵的振动烈度等级,见表19和表20。 表19 GB 10889-1989泵的分类 注:1.卧式泵的中心高规定为由泵的轴线到泵的底座上平面间的距离。 2.立式泵本来没有中心高,为了评价它的振动级别,取一个相当尺寸当做立式泵的中心高:即把立式泵的出口法兰密封面到泵轴线间的投影距离规定为它的相当中心高。 表20 GB 10889-1989泵的振动标准 分类 中心高/mm ≤225 >225-550 >550 转速/(r/min ) 第一类 ≤180 ≤1000 - 第二类 >1800-4500 >1800-1800 >600-1500 第三类 >4500-12000 >1800-4500 >1500-3600 第四类 - >4500-12000 >3600-12000

该标准适用于除潜液泵、往复泵以外的各种形式的泵和泵用调速液力耦合器,转速范围为600-1200r/min。标准规定将主要测点上在三种不同的流量工况下测得的振动速度有效值中的最大的一个定为泵的振动烈度。 对石油化工用离心式压缩机及汽轮机,API617、API612标准规定,在制造厂进行机械运转试验时,转子振动位移的峰峰值不应超过A 值或μm 中的较小值,A=(12000/n)1/2,n为最大连续工作转速。对石化大机组,转子实际运行中振幅的许可值应该遵照制造商的规定。在无制造商规定时,也可以认为: 小于A值时为优良状态,A为(12000/n)1/2 或μm中的较小值; 大于A值、小于B值时为合格状态,B=~A,转速较低时取大值,转速高时取小值,B值可设为低报警值;

汽轮机典型振动故障研究

汽轮机典型振动故障研究 发表时间:2017-12-18T11:29:33.220Z 来源:《电力设备》2017年第24期作者:王海涛 [导读] 摘要:本文针对目前电厂汽轮机的几种典型振动故障进行了分析,说明了振动故障的成因、特点及解决方案,并进行了案例说明,可以为类似振动故障的解决提供参考。 (国家电投河南电力有限公司平顶山发电分公司生技部河南省平顶山市 467312) 摘要:本文针对目前电厂汽轮机的几种典型振动故障进行了分析,说明了振动故障的成因、特点及解决方案,并进行了案例说明,可以为类似振动故障的解决提供参考。 关键词:发电厂;汽轮机;典型振动故障;动不平衡 1.引言 汽轮机是热力系统中的关键设备,其主要故障往往通过振动的形式表现出来。利用振动信号进行机械系统的不解体故障诊断是一种实用且有效的方法与手段。 2.典型故障分析 2.1 转子质量不平衡故障 2.1.1故障说明 这种故障是发电机组中最常见的故障,占比高达80%左右。在工程实际中,由于多种原因,比如材料不均匀以及设计、制造与安装导致的偏差,使得转子的惯性主轴和旋转轴线存在一定的偏差,由此会产生一个离心力。当转速不变时,此离心力的大小将与转子的质量和偏心距的乘积成正比,称之为不平衡量,见公式1。主要分为由原始质量不平衡引起的转子质量不平衡与由转动部件的松动脱落引起的转子 质量不平衡。 2.1.2 主要特征 (1)转子质量不平衡故障的振动以工频为主,但是存在较小的高次谐波; (2)当转速一定时,振动的振幅与相位也是一定的; (3)当重复启动时,此振动现象能够重复出现; (4)此种振动随着机组负荷的变化不会出现明显改变; (5)转子质量不平衡故障时的轴心运动轨迹一般为椭圆形。 2.1.3 案例分析 某电厂对200MW机组进行大修后启动,当升到2600rpm时,#3轴承附近出现异常响动,后停机检查发现了平衡块脱落现象。经过测量发现,平衡块的脱落导致了轴振与瓦振的相位变化了约60°,轴振振幅增加了40μm,瓦振振幅增加了6μm。 2.2 转子热弯曲故障 2.2.1 故障说明 转子热弯曲主要是指当转子受热后出现的弯曲,它将导致转子的平衡状态发生改变,所以又可称之为热不平衡,一般汽轮机出现转子热弯曲的主要原因:包括转子的材料不均匀,内应力过大;转子存在径向方向的不对称温度差;转子长时间与温度较低物体接触;存在动静摩擦等。 2.2.2 主要特征 (1)转子热弯曲故障的振动为工频; (2)振幅变化比较连续,不会出现跳跃式的改变,但是其相位不稳定; (3)转子热弯曲引起的振动随转速的改变会出现明显变化; (4)转子热弯曲引起的振动随负荷的改变会出现明显变化; (5)在停机过程中,转子热弯曲引起的振动会明显高于启动过程中的振动。 2.2.3 解决措施 当出现转子热弯曲故障时,如果此时的振动没有超过规定限制,那么此时可以允许转子继续运行。当振动超过限值时,如果振动的增量相对不大并且较为稳定的话,可以对转子进行热平衡,目的是补偿一部分热弯曲产生的质量不平衡。 2.3 动静碰摩故障 2.3.1 故障分类 转子动静碰摩的主要分类见图1。引起动静碰摩的主要原因包括:基础出现不均匀下沉以及汽缸出现跑偏;蒸汽温度出现明显剧烈变化;汽缸的保温措施不当;排汽缸出现快速加热与冷却状况;汽封出现损坏;机组暖机不充分;机组出现剧烈晃动等。 2.3.2 解决措施 解决转子动静碰摩最有效的措施就是在保证安全的前提下进行一定程度的“磨合”。当在启动时,如果在临界转速以下发生碰摩,应该立即停机并进行盘车;如果发生在临界转速以上,那么应该在可控的某一转速下进行停留,磨合间隙,待振动正常后再继续升速。 当在带负荷阶段,只要振动能够保持在一定范围内,就可以严密观察,来允许转子自行磨合出一定间隙;而如果在此过程中,转子的振动不断增加,就需要降低负荷或者直接停机来保证机组安全。

真空泵安全操作规程

焦作山久管业有限责任公司 真空泵安全操作规程 SJ/QJ-GY013 编写: 审核: 批准: 版本号:第2版出版日期:2014年07月25日焦作山久管业有限责任公司发布

焦作山久管业有限责任公司 真空泵安全操作规程 SJ/QJ-GY013 一、开机前检查及注意事项 1、检查电源是否连接,确认连接无误后方可启动真空泵电动机。 2、断续起动1-2次,观察在运转中有无异常声响及特殊的震动,无问题方可连续运转。 3、泵进气口连续敞通大气运转,不得超过三分钟,防止喷油污染场地。 4、注意油面的位置,油量过多会引起启动困难、返油、喷油等不良现象,油过少则不能对排气阀起油封作用,有较大排气声而影响真空度,油量不足时应通过加油孔加油,以停泵时注油泵油标中心为宜。 5、不同种类和牌号的真空泵油不可混合使用。 6、打开进气管上的阀门,打开大小视具体情况而定。 7、停泵时应先关闭进气嘴上的阀门,再切断电源。 8、急停按钮为非正常停止,正常操作过程中请勿轻易按下。 9、真空泵一般在5—40℃的室温及不高于90%的相对湿度的环境内使用。 二、操作程序 1、将B型密封接头装在状态调节好的试样的两端,并于真空泵相连。 2、检查真空泵电源是否连接,确认试样与真空泵的有效可靠连接。 3、点动2次,观察在运转中有无异常声响及特殊的震动,无问题方可连续运转。 4、打开泵进气口,敞通大气运转三分钟。

5、观察油面的位置,油量过多会引起启动困难、返油、喷油等不良现象,油过少则不能对排气阀起油封作用,有较大排气声而影响真空度,油量不足时应通过加油孔加油,以停泵时注油泵油标中心为宜。 6、打开泵进气嘴上的阀门,对试样施加负压到。 7、每半小时观察一次真空表,并调节进气嘴阀门,保压规定时间。 8、当发现泄漏,立即停止真空泵,另取试样重新试验,当达到保持压力无泄漏(规定时间),停止真空泵。 8、记录试验的温度、试验负压值、试验的起止时间及试样状态,清理现场。 三、运行中的点巡检及要求 1、每30分钟对真空泵运行情况进行点巡检。 2、检查油位是否正常。 3、检查泵运转是否正常,有无特殊声响,电机是否超负荷运转; 4、检查泵温是否正常。 5、检查压力表是否正常。

基于振动信号的齿轮故障诊断方法研究

本科生毕业设计(论文)任务书 设计(论文)题目:基于振动信号的齿轮故障诊断方法研究 学院:信息科学与技术学院专业:通信工程班级:通信0801 学生:XXX 指导教师(含职称):XXX(副教授)专业负责人:XXX 1.设计(论文)的主要任务及目标 (1)查阅齿轮振动信号特征提取相关资料,写出文献综述,开题报告等。 (2)运用所掌握的振动信号提取方法,运用matlab仿真齿轮的原始故障信号。2.设计(论文)的基本要求和内容 (1)查阅资料,了解该领域的历史,现况,发展及问题,写出文献综述。 (2)掌握齿轮故障信号的小波分析,时频域分析,EMD分析,完成中期检查。 (3)运用matlab进行信号处理仿真,并写出毕业论文。 (4)在完成上述工作的基础上,准备毕业论文答辩。 摘要 随着科学技术的不断发展,机械设备向着高性能、高自动化、高效率和高可靠性的方向发展。齿轮箱因为具有传动比固定、传动转矩大、结构紧凑等优点,因此齿轮箱是用于改变转速和传递动力的最常用的传动部件,是机械设备的一个重要组成部分,也是最容易发生故障的一个部件。而在机械设备中,齿轮的使用频率很高,因此齿轮的故障诊断技术对机器的使用质量和使用寿命都起了非常重要的作用。本文从时域、频域,时频域和经验模式分解进行了齿轮故障诊断的方法研究。时域分析主要应用时域特征参数分析方法进行故障特征参数的提取,频域分析主要通过快速傅里叶变化,从频谱图上进行齿轮正常状态和故障状态振动信号的对比分析。时频域分析主要是通过一维三层离散小波变换,把原始信号细化为三层,每层又分为高频信号和低频信号。经验模式分解主要是在齿轮故障振动信号中的实际应用,对采集到齿轮四种状态下的振动信号通过EMD分解,提取了故障信号的特征信息,为识别故障类型提供了有效的分析手段。故障信息特征提取是齿轮故障诊断中最关键、最重要的问题之一,它直接关系到齿轮故障诊断的准确性和早期故障预报的可靠性。 关键词:齿轮;故障诊断;小波变换;经验模式分解

泵类安全操作规程标准范本

操作规程编号:LX-FS-A31118 泵类安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

精编范本,实用简洁操作规程编号:LX-FS-A31118 第2页/ 总2页 泵类安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、开车前,检查泵的润滑部位、机械状况和紧固件紧固状况,并确认泵转向,严禁电机反转,以防叶轮脱落。 2、带轴封水的泵运行前,应先打开轴封水。 3、泵运转时,严禁用手调整泵的传动部位。 4、软管泵的出口压力高,因此必须保持出口管线的畅通。抽出作业时,先开阀门再开泵,密切注意泵出口压力,以防超过设定值;每班要点检泵的液漏报警装置是否完好。 请在该处输入组织/单位名称 Please Enter The Name Of Organization / Organization Here

振动监测参数及标准(特选参考)

机械设备振动监测参数及标准 一、振动诊断标准的制定依据 1、振动诊断标准的参数类型 通常,我们用来描述振动的参数有三个:位移、速度、加速度。一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。 诊断参数在选择时主要应根据检测目的而选择。如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。 2、振动诊断标准的理论依据 各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。振动的存在必然引起结构损伤及材料疲劳。这种损伤多属于动力学的振动疲劳。它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。

美国的齿轮制造协会(AGMA )曾对滚动轴承提出了一条机械发生振动时的预防损伤曲线,如下图所示。 图中可见,在低频区(10Hz 以下),是以位移作为振动标准,中频(10~1000Hz )是以速度作为振动标准,而在高频区(1KHz 以上)则以加速度作为振动标准。 理论证明,振动部件的疲劳与振动速度成正比,而振动所产生的能量与振动的平方成正比。由于能量传递的结果造成了磨损好其他缺陷,因此,在振动诊断判定标准中,是以速度为准比较适宜。 而对于低频振动,,主要应考虑由于位移造成的破坏,其实质是疲劳强度的破坏,而非能量性的破坏。但对于1KHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振的影位移恒定 一定的速度 加速度恒 定

振动检测与故障诊断分析

概述 对旋转设备而言,绝大多数故障都 是与机械运动或振动相密切联系的,振 动检测具有直接、实时和故障类型覆盖 范围广的特点。因此,振动检测是针对 旋转设备的各种预测性维修技术中的核 心部分,其它预测性维修技术:如红外 热像、油液分析、电气诊断等则是振动 检测技术的有效补充。 相关仪器-----测振仪 VIB05 来自中国祺迈KMPDM的VIB05多功能振动检测仪是 基于微处理器最新设计的机器状态监测仪器,具备有振动 检测,轴承状态分析和红外线温度测量功能。其操作简单, 自动指示状态报警,非常适合现场设备运行和维护人员监 测设备状态,及时发现问题,保证设备正常可靠运行。 振动测量 VIB05可测量振动速度,加速度和位移值。当保持振 动速度读数时,仪器立即比较内置的ISO10816-3振动标准,自动指示机器报警状态。 轴承状态检测 VIB05可测量轴承状态BG值和BV值,它们分别代表高频振动的加速度和振动速度有效值。当保持轴承状态读数时,仪器按内置的经验法则自动指示轴承报警状态。 振动检测仪是测量物体振动量大小的仪器,在桥梁、建筑、地震等领域有广泛的 应用。振动检测仪还可以和加速度传感器组成振动测量系统对物体加速度、速度和位 移进行测量。

VIB07 来自中国祺迈KMPDM的VIB07多功能振动检测仪是基 于微处理器最新设计的机器状态监测仪器,具备有振动检测, 轴承状态分析和红外线温度测量功能。其操作简单,自动指 示状态报警,非常适合现场设备运行和维护人员监测设备状 态,及时发现问题,保证设备正常可靠运行。 主要特点 1、测振仪设计先进,具有功耗低、性能可靠、造型美 观、使用携带极为方便的特点。 2、按国标制造,测量值与国际振动烈度标准(ISO2372)比对可直接判断设备运行状态。 3、高可靠性的环形剪切加速度传感器,性能远远优于压缩式传感器。 4、具有高低频分档功能,在振动测量时,便于识别设备故障类型。 5、备有信号输入功能,配接温度传感器,即可测量温度。 6、备有信号输出功能,选配专用耳机,兼具设备听诊器功能;配接示波器、可用来监测、记录振动信息。 7、按振动传感器与主机的连接方式分为一体式和分体式供您选择。 8、适用于各类机械的振动、温度测量。 动平衡仪-----KMBalancer现场动平衡仪 现场动平衡分析仪KMBALancer是KMPDM 祺迈公司的产品。它嵌入式计算机技术和动平衡技 术,兼备现场振动数据测量、振动分析和单双面动 平衡等诸多功能,简捷易用。是工矿企业预知保养 维修,尤其是风机、电动机等设备制造厂和振动技 术服务机构最为理想之工具。它是美国尖端科技产 品。

相关文档
最新文档