循环水浓缩倍数的计算

循环水浓缩倍数的计算
循环水浓缩倍数的计算

创作编号:

GB8878185555334563BT9125XW

创作者:凤呜大王*

1 冷却水温度对冷水机组制冷量的影响

我们都知遭 :从运行费来讲,在蒸发温度和压缩机转数一定的情况下,冷凝温度越低,制冷系数越大,耗电量就越小。据测算,冷凝温度每增加1℃,单位制冷量的耗功率约增加3%-4%.所以,从这一角度来讲,保持冷凝温度稳定对提高冷水机组的制冷量是有益的。但为达到此目的,需采取以下措施:增加冷凝器的换热面积和冷却水的水量;或提高冷凝器的传热系数,但是,对于一个空调冷却系统来说,增加冷凝器的面积几乎是不可能的。增

加冷却水的水量势必增加水在冷凝器内的流速,这将影响制冷机的寿命,

同时还增加了冷却水泵的耗电和管材浪费等一系列问题,而且效果也不尽

理想。增大冷却塔的型号,考虑一定量的富余系数尚可,但如果盲目加大

冷却塔的型号,以追求降低冷却水温也是得不偿失的,而且,冷却水温度

还受当地气象参数的限制。提高冷凝器冷却水侧的放热系数,是实际和有

效的,而提高放热系的有效途径是减小水侧的污垢热阻,对冷却水补水进

行有效的处理.

2 冷却水的补水问题

冷却塔水量损失,包括三部分 :蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb

式中 :Qm为冷却塔水量损失;Qe为燕发水量损失;Qw为风吹量损失;Qb

为排污水量损失。

(1) 蒸发损失

Qe= (0.001+0.00002θ) Δt Q (1)

式中 :Qe为蒸发损失量;Δt为冷却塔进出水温度差;Q为循环水量;θ

为空气的干球温度。

(2) 风吹损失水量

对于有除水器的机械通风冷却塔,风吹损失量为

Qw=(0.2%~0.3%)Q (2)

(3) 排污和渗漏损失

该损失是比较机动的一项,它与循环冷却水质要求、处理方法、补充水的水质及循环水的浓缩倍数有关 .浓缩倍数的计算公式:

N =Cr/Cm

式中 :N为浓缩倍数;Cr为循环冷却水的含盐量;Cm为补充水的含盐量. 根据循环冷却水系统的含盐量平衡,补充水带进系统的含盐最应等于排污,风吹和渗偏水中所带走的含盐量 .

QmCm= (Qw+Qb)Cr

N =Cr/Cm=Qm/(Qw+Qb)=( Qe+ Qw+Qb)/( Qw+Qb) =Qm/Qb(Q

w

可忽略)((3) Qm= QeN/(N 一1)

N=1+Q

e /Q

w

+Q

b

(Q

w

可忽略)=1+(Q

e

/Q

b

)(4)

注:N

计算值>N

实测值

从(4)式可分析浓缩倍数的变化情况:(考虑蒸发量一定)1当排污量增加,补充水会增加,浓缩倍数下降;2、排污量减少,补充水量会减小,浓缩倍数增加;3、如排污量不变,补水量增加或不变,浓缩倍数上升;4、排水增加,浓缩倍数呈下降趋势,排水量不变或降低,浓缩倍数呈上升趋势;5;要保持浓缩倍数,补水量≥排污量+蒸发量。

浓缩倍数为经浓缩后冷却水中的含盐量与补充水含盐量之比,《建筑给水排水设计手册》推荐 N值,一般情况下最高不超过5~6。由(4)式可知:N值过大,排污和渗漏损失减小,节约用水,N值过小,排污量大,补水量大,必然造成水浪费。

由式(1)可以计算出蒸发水量,再由(2)风吹损失水量,最后由式(3)计算出排污和渗漏损失水量。

3 冷却水的水质

目前,由于空调冷却系统大多数为敞开式循环系统,它效果好,造价低,在工程中得到广泛应用,但是经蒸发冷却后浓缩,水中的 C,Mg,Cl,Si 等离子,溶解固体,悬浮物相应增加,由于空气中和水福化接触,溶氧量增加,CO大量散失,游离的CO含量降低,碳酸钙浓度降低,制冷1_t大幅度下降.如不加强管理,空气中污染物如灰尘、杂物进人系统,会繁殖徽生物绿澡及粘泥,此时污垢和粘泥可引起垢下腐蚀,而腐蚀产品又形成污垢,最后造成设备及管道演蚀穿孔而被停机,冷却水的水指标。目前尚无确切的资料和标准,空调冷却水对水质的要求幅度较宽,主要应从冷却水对设备腐蚀,积垢堵塞及设备清洗难易等情况考虑,其参考指标见下表针对以上分析,冷却水在冷却塔内蒸发散热的过程中水质不断发生变化,引起积垢、腐蚀和堵塞,目前,空调冷却补水多采用自来水,对于大型的空调冷却水系统,仅靠补充少量优质自来水是不起作用的,冷却水必须进行处理。

创作编号:

GB8878185555334563BT9125XW

创作者:凤呜大王*

循环水指标名词解释

循环水指标名词解释 浓缩倍数 浓缩倍数(cyclw of concentratin)循环冷却水中,由于蒸发而浓缩的物质含量与补充水中同一物质含量的比值,或指补充水量与排污水量的比值。 什么是浓缩倍数 在循环冷却水中,由于蒸发而浓缩的溶解固体与补充水中溶解固体的比值,或指补充水流量对排污水流量的比值。在实际测量中,通常为循环冷却水的电导率值与补充水的电导率之比。 提高冷却水的浓缩倍数的好处: ?提高冷却水的浓缩倍数,可以降低补充水的用量,节约水资源; ?提高冷却水的浓缩倍数,可以降低排污水量,从而减少对环境的污染和废水的处理量; ?提高冷却水的浓缩倍数,可以节约水处理剂的消耗量,从而降低冷却水处理的成本; 过多地提高冷却水的浓缩倍数的坏处: ?过多地提高冷却水的浓缩倍数,会使冷却水中的硬度、碱度太高,水的结垢倾向增大; ?过多地提高冷却水的浓缩倍数,会使冷却水中的腐蚀性离子的含量增加,水的腐蚀性增强,从而使腐蚀控制的难度增大; 因此,我们要保证冷却水的处理效果,必须控制好冷却水的浓缩倍数,通常,对于中央空调冷却水的浓缩倍数一般控制在4~5 为佳。 循环冷却水浓缩倍数关键是看水质是否结垢型 2006-10-14 08:16 循环冷却水浓缩倍数关键是看水质是否结垢型 作者:杜林琳; 摘要:针对循环水浓缩倍数低于集团公司指标的情况,进行了相关影响因素分析,依此提出了减少系统保有水量、增加热负荷、改造旁虑池、优化工艺管理及操作等改进措施,并对浓缩倍数提高后系统运行可能存在的问题及注意事项进行了讨论。 循环水浓缩倍数是反映和控制循环水系统运行的一个重要综合性指

标。提高循环水浓缩倍数不仅可以降低补充水量、节约水资源;降低排污水量、减少对环境的污染和废水处理量;还可以减少水处理剂及杀生剂的消耗量、降低水处理成本。 循环冷却水系统作为石油化工行业的一个总要组成部分,近几年来随着管理制度的不断完善;生产工艺技术的不断进步;水处理剂的不断改进、开发,集团公司对循环水质管理的要求也越来越高,特别是浓缩倍数N控制指标逐年提高。如下图示: 1 现状分析 我厂现共有五座循环水场,由于系统设计、处理能力、覆盖的生产装置、管理水平各异,因而各水场的水质差异较大。具体反映在浓缩倍数上详见表1。 表1 循环水场浓缩倍数统计表(2003年) 一循环水场 二循环水场 三循环水场 焦化水场 烷基化水场 浓缩倍数 (平均值) 2.88 3.35 2.63 3.24 2.16 浓缩倍数 合格率(%) 40.0 70.3 20.5 62.5 14.0 注:表中合格率统计均是以N≥3.00为计算依据

空调循环水加药装置特点及加药量计算

精心整理空调循环水加药装置特点、加药量计算 潍坊山水环保机械制造有限公司 空调循环水存在的问题及特点: 空调循环水一般分为三类:自来水、软化水和去离子水。最常用的为自来水。 存在的问题: 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 4 SO 等离子,溶解性固体,悬浮物相应增加,空气中污染物如尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥, 运营成本 杀菌

2、腐蚀指标 设备原材料、设备设计、制造、包装、运输等过程中执行以下标准: GB7190.2-1997 《大型玻璃纤维增强塑料冷却塔》 GB191-90 《包装储运图标记》 GB3538-83 《运输包装件各部件的标识方法》 GB6388-86 《运输包装收发货标志》 GB12348-90 《工业企业厂界噪声标准》 Q/LB08-95 《钢筋混凝土结构冷却塔安装》 药剂选用原则 循环水系统处理分成二大部分,第一部分:补充水处理,第二部分:循环水处理。循环水处理可以概括为去除悬浮物、控制泥垢及结垢、控制腐蚀及微生物杀菌等四个系统。泥垢及结垢、控制腐蚀及微生物等一般采用加药控制。 向循环水中投加阻垢、分散剂的方法来防止盐类垢。 加药剂为聚磷酸盐(三聚磷酸钠) 敞开式循环冷却水的加氯量处理宜采用定期投加,每天投加1~3次,余氯量控制在0.5~1.0mg/l之内。每

次加氯时间采用3~4h。加氯量按下式计算: G t =Q·g t /1000=4000立方米每小时*3mg/l=1.2Kg/h 式中G t——加氯量(Kg/h) Q——循环冷却水量(m3/h) g t——单位循环冷却水的加氯量,采用2~4mg/l 药剂的选用及投加量 缓蚀阻垢剂的复合配方为:铬酸盐+聚磷酸盐 投加量:投加量须根据循环水水质情况而确定,一般其投加量为40~60mg/l。 A、 G= 注: 2~5mg/l (1) (2) 1 次。每小 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:66/H 2、杀菌剂加药装置 根据前面计算可知,本系统杀菌剂加药量为192kg/天,(100%纯度按每天溶药一次,药剂配制浓芳按20%设计,则每天的溶药量为192÷0.2=960kg/d,每次的溶药量为960kg/次。每小时投加量为960÷24=4L/h。 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:40L/H

循环水浓缩倍数的计算

1 冷却水温度对冷水机组制冷量的影响 我们都知遭 :从运行费来讲,在蒸发温度和压缩机转数一定的情况下,冷凝温度越低,制冷系数越大,耗电量就越小。据测算,冷凝温度每增加1℃,单位制冷量的耗功率约增加3%-4%.所以,从这一角度来讲,保持冷凝温度稳定对提高冷水机组的制冷量是有益的。但为达到此目的,需采取以下措施:增加冷凝器的换热面积和冷却水的水量;或提高冷凝器的传热系数,但是,对于一个空调冷却系统来说,增加冷凝器的面积几乎是不可能的。增加冷却水的水量势必增加水在冷凝器内的流速,这将影响制冷机的寿命,同时还增加了冷却水泵的耗电和管材浪费等一系列问题,而且效果也不尽理想。增大冷却塔的型号,考虑一定量的富余系数尚可,但如果盲目加大冷却塔的型号,以追求降低冷却水温也是得不偿失的,而且,冷却水温度还受当地气象参数的限制。提高冷凝器冷却水侧的放热系数,是实际和有效的,而提高放热系的有效途径是减小水侧的污垢热阻,对冷却水补水进行有效的处理. 2 冷却水的补水问题 冷却塔水量损失,包括三部分 :蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb 式中 :Qm为冷却塔水量损失;Qe为燕发水量损失;Qw为风吹量损失;Qb为排污水量损失。 (1) 蒸发损失 Qe= (0.001+0.00002θ) Δt Q (1) 式中 :Qe为蒸发损失量;Δt为冷却塔进出水温度差;Q为循环水量;θ为空气的干球温度。 (2) 风吹损失水量 对于有除水器的机械通风冷却塔,风吹损失量为 Qw=(0.2%~0.3%)Q (2) (3) 排污和渗漏损失 该损失是比较机动的一项,它与循环冷却水质要求、处理方法、补充水的水质及循环水的浓缩倍数有关 .浓缩倍数的计算公式: N =Cr/Cm

空调循环水加药装置特点及加药量计算

空调循环水加药装置特点、加药量计算 潍坊山水环保机械制造有限公司 空调循环水存在的问题及特点: 空调循环水一般分为三类:自来水、软化水和去离子水。最常用的为自来水。 存在的问题: 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、 CL-、 2 4 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物如尘土、杂物、可溶性 气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 去除的物质: 去除悬浮物、控制泥垢、控制腐蚀及微生物等四个方面。 循环水系统设计参数 循环水水量为4000m3/h,总水量500m3 ,补充水量200m3/h 工艺流程简介 设备清洗(根据设备管路结垢、腐蚀等情况选择物理或化学法)-预膜处理(溶液浓度,和处理时间的确定由经验确定)-药剂的选用及投加量-对设备进行选型-供货清单-设备投资概算-运营成本估算 1)、经过冷却塔的循环水,经过蒸发、风飘损失等,循环水量越来越少,水中的含盐量逐渐升高。向循环水中补充一定量的水量。根据贵方要求,贵方循环水为淮河水。 2)、循环水池为敝开式,有大量的泥沙及大量的飘浮物进入水池。为保持循环水质的清洁,对其循环水进行处理。按照循环水设计规范,浓缩倍数按4进行设计。 3)、由于蒸发、风吹损失等因素,经过一定时间的运行,循环的水质逐渐恶化。同时由于循环水的温度较高,比较适应于菌类的繁殖。因此在整个循环系统中,向循环水中投加水质稳定剂、杀菌剂及阻垢剂。以利于循环水系统的正常运行。 1、冷却水系统水质控制指标(国标)

循环水浓缩倍数的检测方法及控制指标(一)

循环水浓缩倍数的检测方法及控制指标(一) 摘要:为了充分发挥水处理药剂的效能,提高水质管理水平,增加经济效益,对本厂循环冷却水系统的浓缩倍数数据进行了现场调查,分析了不同浓缩倍数检测方法的可行性、实用性,并对浓缩倍数的控制指标提出了合理的范围。 关键词:循环冷却水浓缩倍数检测方法控制指标 循环水浓缩倍数是指循环冷却水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩的倍率(以补充水作基准进行比较),它是衡量水质控制好坏的一个重要综合指标。浓缩倍数低,耗水量、排污量均大且水处理药剂的效能得不到充分发挥;浓缩倍数高可以减少水量,节约水处理费用;可是浓缩倍数过高,水的结垢倾向会增大,结垢控制及腐蚀控制的难度会增加,水处理药剂会失效,不利于微生物的控制,故循环水的浓缩倍数要有一个合理的控制指标。 浓缩倍数的检测方法有很多,由于各厂补充水水质及循环水运行情况的差异,不同方法测出的结果都不同,所以对不同循环水浓缩倍数的检测方法进行比较是很有必要的。 1循环水浓缩倍数的检测方法 循环水系统日常运行时,浓缩倍数的检测一般是根据循环水中某一种组分的浓度或某一性质与补充水中某一组分的浓度或某一性质之比来计算的。即: K=C循/C补(1)

式中C循--循环水中某一组分的浓度 C补--补充水中某一组分的浓度 但对于用来检测浓缩倍数的某一组分,要求不受运行中其他条件如加热、投加水处理剂、沉积、结垢等情况的干扰。因此,一般选用的组分有Cl-、Ca2+、SiO2、K+和电导率等。 1.1Cl-、Ca2+法 虽然Cl-的测定比较简单,在循环水运行过程中既不挥发也不沉淀,但我厂因常用Cl2或NaClO、洁尔灭等药剂来控制水中的微生物及粘泥,这样会引入额外的Cl-,用该法测得的浓缩倍数会偏高;同时循环水系统在运行过程中或多或少地会结垢,尤其在高浓缩倍数时更为明显,故用Ca2+法测得的浓缩倍数会偏低。 1.2电导率法 电导率的测定比较简单、快速、准确。从理论上来说,在循环水系统中常需要加入水处理剂和通入Cl2,这会使水的电导率增加,另外当系统设备有泄漏时也会使电导率明显增高,故用该法测出的电导率也会产生很大的误差。事实上,我厂于1996年3-7月用电导率法进行了测试,结果表明:用作基准的补充水--长江水的电导率是波动不稳的,其波动范围为154~291μS/cm;循环水的电导率也是波动不稳的,一循、三循波动范围分别为330~613μS/cm、308~618μS/cm。因此,当循环水的电导率较高、补充水的电导率也较高时,得出的K值还是不高;当循环水电导率不高而补充水电导率较低时,K值也会高。

循环水系统加药系统方案要点

2000m3/h,2×1500m3/h 循环水系统投药系统 设 计 方 案 苏州得润水处理设备有限公司 2010年10月

目录 一、概述 (2) 二、循环冷却水处理设计的原则和要求 (2) 三、工艺流程的确定 (3) 四、循环水系统设计参数 (4) 五、设计规范标准 (6) 六、药剂选用原则 (7) 七、补充水及旁滤处理 (7) 八、循环水处理 (7) 九、清洗与预膜处理 (10) 十、药剂的选用及投药量 (13) 十一、投药设备的选型 (14) 十二、供货清单 (16) 十三、设备的投资概算 (16)

一、概述 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物如 4 尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。 循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 二、循环冷却水处理设计的原则和要求 1、安全生产、保护环境、节约能源、节约用水是在工业循环冷却水处理设计中需要贯彻的国家技术方针政策的几个重要方面。在符合安全生产要求方面:循环冷却水处理不当,首先会使用权冷却设备产生不同程度的结垢和腐蚀,导致能耗增加,严重时不仅会损坏设备,而且会引起工厂停车、停产和减产的生产事故,造成极大的经济损失。因此,安全生产首先应保证循环冷却水处理设施连续、稳定地运行并能达到预期的处理要求。其次,在循环冷却水处理的各个环节如循环水处理、旁流水处理、补充水处理及辅助生产设施如仓库、加药间等,设计中都应考虑生产上安全操作的要求。特别是使用的各种药剂如酸、碱、阻垢剂、杀菌灭藻剂等,常常是有腐蚀性、有素,对人体有害的。因此,对各种药剂的贮存、运输、配制和使用,设计上都必须有保证工作人员卫生、安全的设施。并按使用药剂的特性,具体考虑其防火、防腐、防素、防尘等安全生产要求。 2、循环冷却水处理,可以概括为去除悬浮物、控制泥垢、控制腐蚀及微生物等四个方面。 3、敞开式循环冷却水系统中冷却水吸收热量后,以冷却塔与大气直接接触,二氧化碳逸散,溶解氧和浊度增加,水中溶解盐类浓度增加以及工艺介质泄漏等,使循环水水质恶化,给系统带来结垢、腐蚀、污泥和菌藻问题。

循环冷却水系统浓缩倍数的管理

循环冷却水系统浓缩倍数的管理 刘伟 (新区供排水) 摘要:主要介绍石油一厂新区循环水场浓缩倍数管理中存在的问题,通过对存在问题的分析,找出解决问题的办法。同时对提高循环水浓缩倍数所带来的经济效益进行了分析。提出了确保循环水系统浓缩倍数稳定运行的措施。 关键词:循环水浓缩倍数经济效益稳定运行 1 前言 随着世界人口的迅猛增长和工业的高速发展,全球面临严重的水危机。我国是个贫水的国家,全国每年缺水总量达12×109m3,而工业用水占城市供水量的的80%左右,循环冷却水又占工业用水的70~80%以上。提高循环水的浓缩倍数可以降低补充水量,节约水资源,降低排污量,减少对环境的污染,节约水处理药剂的消耗量,降低冷却水处理成本。因此,随着水资源的日趋紧缺,新鲜水费和排污费的明显上升,提高循环水的浓缩倍数,是节水、降低运行成本,提高经济效益的有效措施。 2 循环水场概况 石油一厂新区循环水场,设计处理量为1800 m3/h,系统容量为2000 m3,选用8.4×8.4 m2单列布置双面进风逆流式机力通风凉水塔4间。配置LF47型通风机。供给酮苯脱蜡脱油、石蜡加氢、糠醛白土精制等生产装置及相应辅助系统的冷却用水。装置排出的热水,以两种形式回循环水场,以压力流回循环水场的热水,靠余压直接上凉水塔进行冷却;以自流回循环水场的热水,经隔油池处理后,由热水泵送上凉水塔进行冷却。97年5月新区循环水场投产,尚有1/3闲置土地为将来进一步发展做准备,因此,公用工程予留量较大,实际运行循环水量仅为500~700 m3/h,这给循环水浓缩倍数的提高增加了一定的难度。从开工后至2001年,循环水系统的浓缩倍数忽高忽低,一直无法稳定运行。通过采取措施,2002年浓缩倍数稳定在2.5以上,实现了达标。 3理论上影响浓缩倍数的因素 循环冷却水系统在运行过程中,由于水份蒸发使系统中的水份愈来愈少,而水中各种矿物质和离子含量就会愈来愈浓,为了使循环水中含盐量维持在一定的浓度,必须补入新鲜水,排出浓缩水。水在浓缩过程中,主要有蒸发损失、风吹损失、泄露损失和排污损失影响浓缩倍数。循环水系统水量平衡可见图1。

循环水药剂添加方案

冷却水处理药剂填加方案 一、性能与用途 循环水缓蚀阻垢剂AVISTA由有机膦酸、聚羧酸、含磺酸盐共聚物、唑类等组成,对水中的碳酸钙、磷酸钙等均有很好的螯合分散作用,并且对碳钢、铜具有良好的缓蚀效果,循环水阻垢剂AVISTA主要用于循环冷却水系统阻垢缓蚀,如电厂、化工厂、印染厂、中央空调等循环冷却水系统,其阻垢力强、缓蚀效果好,可实现高浓缩倍率下运行。 二、技术指标 三、使用方法 将每天所需的循环水缓蚀阻垢剂AVISTA加入塑料加药桶(或箱)内,为方便使用可加水稀释后用计量泵或通过调节阀门将药剂在循环泵入口处(即集水池出口处)连续加入。循环水缓蚀阻垢剂AVISTA加药浓度一般为5-20mg/L(以补充水量计)。 四、包装与贮存 循环水缓蚀阻垢剂AVISTA用塑料桶包装,25kg/桶或根据用户需要确定;贮存于阴凉干燥处,贮存期十二个月。 五、安全与防护 缓蚀阻垢剂AVISTA为弱酸性,操作时注意劳动保护,应避免与皮肤、眼睛等接触,接触

后用大量清水冲洗。 说明:实际加药量应依据现场运行情况及水质情况进行调整。在大量排污和补水后,应适当增加投药量以维持循环水中药剂的有效含量。 A)阻垢缓蚀剂A VISTA 的日常投加方案 加药方式:采用冲击式加入,春夏季每月2-3次;冬季每月1-2次,每次加药量60-100mg/L。 具体加药周期及加药量也可视循环水结垢情况而定,每次补水投加量100mg/L。 加药量:1) AVISTA 加药量(次/kg)=总储水量m3×要求剂量(mg/L)/1000 加药地点:吸水池内(远离排污口)C)控制指标超标处理方法当循环水各项指标超出规定时,应及时采取相应措施;首先应采取加大排污量,同时补充等量一次水的方式解决;或者补入适量的脱盐水。大量排补水后,应补入相应剂量的阻垢缓蚀剂。

循环水浓缩倍数的涵义及控制方法

第31卷第28期循环水浓缩倍数的涵义及控制方法探讨 李晋萍 (宁夏工商职业技术学院,宁夏银川750021) 收稿日期:2012-08-22作者简介:李晋萍(1978—),女,陕西乾县人,在读硕士研究生,讲师, 研究方向:煤化工。 摘 要:文章介绍了甲醇厂循环水系统的具体情况,探讨了浓缩倍数的涵义,并详细分析了浓缩倍数控制范围及影响因 素、 具体浓缩倍数的计算和控制方法。关键词:浓缩倍数;电导率;腐蚀;结垢中图分类号:V448.15+1 文献标识码:A 文章编号:1006-8937(2012)28-0061-02 Discussion on circulating water enrichment diploid meaning and control method LI Jin-ping (Ningxia Vocational Technical College of Industry and Commerce ,Yinchuan ,Ningxia 750021,China ) Abstract:The article introduces the methanol plant circulating water system specific situation ,discussion on the meaning of concentration ,and detailed analysis of the concentration multiple control range and influence factors ,specific concentration multiple computing and control methods.Keywords :concentration ratio ;electric conductivity ;corrosion ;scale formation 1 循环水浓缩倍数的涵义 1.1 循环水浓缩倍数的基本概念 《工业循环冷却水处理设计》规范GB50050—95对循环水浓缩倍数有明确的定义,即循环冷却水的含盐浓度 与补充水的含盐浓度之比值。 甲醇厂循环冷却水系统采用的是目前应用最广泛也是水质处理技术相对较复杂的敞开式循环冷却水系统。敞开式循环冷却水系统的特点之一就是它的浓缩作用。 循环冷却水在循环过程中会产生4种水量损失,即蒸发损失、风吹损失、渗漏损失和排污损失。初期进入系统的盐量大于从系统排出的盐量。随着系统的运行,循环水中盐量逐渐提高,产生浓缩作用。由于蒸发损失的存在,浓缩倍数永远大于1,即循环冷却水中含盐量总是大于补充新鲜水的含盐量。 1.2控制循环水浓缩倍数的意义 由于循环水的蒸发浓缩,水中含盐浓度增加,要使循环冷却水系统长期、高效、经济的运行,操作管理是关键因素。有时即使筛选了合理的水质稳定加药配方,也确定了较好的工艺参数,但由于运行管理不善,则往往达不到预期的管理效果。科学、准确地控制好循环水系统的浓缩倍数是运行管理好系统的关键因素之一。将循环水浓缩倍数根据系统的实际情况控制在一个科学合理的范围之内,使系统的腐蚀、结垢倾向处于一个动态平衡的状态,对生产装置的稳定运行有着重要意义。此外,在浓缩倍数控制范围内,尽量提高循环水系统的浓缩倍数,可以减少排污水量,节约水资源。同时,排污水量的减少,也节约了药剂消耗量。 综上所述,控制浓缩倍数对于循环水系统的稳定运 行和循环水系统节能降耗,以及提高循环水重复利用率有着非常重要的意义。 2确定系统浓缩倍数的控制范围 《工业循环冷却水处理设计》规范GB50050—95中3.1.9条规定:循环水系统的浓缩倍数不宜小于3.0。从生产实际来看,浓缩倍数愈高,越会增加循环水的腐蚀、结垢倾向。这样不仅会给水质稳定处理带来极大的麻烦,还会增加控制和处理这种腐蚀、结垢倾向所使用的缓蚀阻垢剂等药剂的消耗量。因此,浓缩倍数不是越高越好, 而是有一个科学合理的上限值。 如果从节约药剂观点出发,要使排污水量降到合理的程度,浓缩倍数控制在5左右较合适,故浓缩倍数控制在3~5是经济合理的。然而在实际运行中,要把浓缩倍数控制在这个范围内是不容易的,因为有很多因素影响了浓缩倍数的提高。3浓缩倍数难以控制和提高的因素 在正常运行时,可以用强制排污来管理和控制浓缩倍数在目标范围。然而在生产实际中,浓缩倍数是很难控制的,主要包括以下几个方面: ①强制排污以外的非正常排水;②非正常的向循环水系统补水; ③定期工作中投加黏泥剥离剂过后,浊度大幅升高,而这时的浓缩倍数快速降低,药剂消耗大幅增加,需要对系统浓缩倍数进行重新调整; ④当系统换热设备中的热介质泄露或系统转动设备漏油而进入系统,或由于外界温度、系统工况调整不当,导致系统微生物大量繁殖,黏泥大量产生而超标必须大量排污时,因为破坏了系统原来的动态平衡,浓缩倍数下降,需要重新提高浓缩倍数; ⑤工艺介质泄露进循环水或外界补水水质发生变 企业技术开发 TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE 第31卷第28期Vol.31No.28 2012年10月Oct.2012

循环水加药方案注意事项

循环水加药方案注意事项 一、循环水药剂的作用: CLP-401C阻垢缓蚀剂的作用 可以阻止水垢的形成、沉积或增加碳酸钙的溶解度,同时可以抑制或降低金属和合金腐蚀速率,改变金属相合金腐蚀电极过程。为复合磷酸盐物质。 2)投加操作方法 ①将桶装CLP -401C缓蚀剂按照规定数量倒入加药桶内,用循环冷却水稀释至加药桶满。 ②调节加药装置计量泵流量至35%-40%左右。 ③启动加药泵,打开冷水泵入口管道上加药阀;观察药液注入情况是否正常。 ④每小时巡检一次加药装置运行情况。 ⑤流量调节以加药泵连续运行24小时一桶为宜,但不得抽空。桶底液位不应低于10cm,如果液位过低,可补充一定量循环冷却水维持至下一次加药时间。 ⑥每日定时加药,加药量可根据化验室对总磷(以PO43-计)分析结果4-6mg/l,在规定数量的基础上略有增减,以保证指标在范围之内。 ⑵CLP-401A缓蚀剂加药操作 1)CLP-401A缓蚀剂的作用 可以抑制或降低金属和合金腐蚀速率,改变金属相合金腐蚀电极过程。 2)投加操作方法 ①将桶装CLP -401A缓蚀剂按照规定数量不用稀释装入瓶子内,以水滴的形式滴入循环水池内,但要保证最长时间要在24小时以内。可以缩短时间但不可以直接全部加入。 ②每天投加一次,加药量可根据化验室对总锌(以Zn2+计)分析结果1.5-2.5mg/l,在规定数量的基础上略有增减,以保证指标在范围之内。 ⑵CLB-501氧化性杀菌剂加药操作 1)CLB-501氧化性杀菌剂的作用 固体活性溴是一种氧化性杀菌剂,具有较强的氧化性,能够使微生物体内一些和新陈代谢密切相关的酶发生氧化而杀灭微生物及藻类物质。 2)投加操作 ①将杀菌剂按照规定数量放入专用塑料框内。 ②调整专用塑料框的水平高度,确保杀菌剂被冷水池冷水液位浸没溶解,但框堰不应低于水位。 ③30-45分钟后测定余溴(氯),在0.3~0.8mg/l,每隔一小时测定一次,并连续测定3小时,记录所测定结果。若测定余溴(氯)不足时应进行补加,如果余溴(氯)结果稳定则视加药正常。 ④正常运行时,夏季每周投加2次,时间定为每周一、周五。其它季节每周投加1次,

循环水浓缩倍数的检测方法及控制指标

循环水浓缩倍数是指循环冷却水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩的倍率(以补充水作基准进行比较),它是衡量水质控制好坏的一个重要综合指标。浓缩倍数低,耗水量、排污量均大且水处理药剂的效能得不到充分发挥;浓缩倍数高可以减少水量,节约水处理费用;可是浓缩倍数过高,水的结垢倾向会增大,结垢控制及腐蚀控制的难度会增加,水处理药剂会失效,不利于微生物的控制,故循环水的浓缩倍数要有一个合理的控制指标。 浓缩倍数的检测方法有很多,由于各厂补充水水质及循环水运行情况的差异,不同方法测出的结果都不同,所以对不同循环水浓缩倍数的检测方法进行比较是很有必要的。 1 循环水浓缩倍数的检测方法 循环水系统日常运行时,浓缩倍数的检测一般是根据循环水中某一种组分的浓度或某一性质与补充水中某一组分的浓度或某一性质之比来计算的。即: K=C 循/C 补 (1) 式中C 循 --循环水中某一组分的浓度 C 补 --补充水中某一组分的浓度 但对于用来检测浓缩倍数的某一组分,要求不受运行中其他条件如加热、投加水处理剂、沉积、结垢等情况的干扰。因此,一般选用的组分有Cl-、Ca2+、SiO2、K+和电导率等。 1.1 Cl-、Ca2+法 虽然Cl-的测定比较简单,在循环水运行过程中既不挥发也不沉淀,但我厂因常用Cl2 或NaClO、洁尔灭等药剂来控制水中的微生物及粘泥,这样会引入额外的Cl-,用该法测得的浓缩倍数会偏高;同时循环水系统在运行过程中或多或少地会结垢,尤其在高浓缩倍数时更为明显,故用Ca2+法测得的浓缩倍数会偏低。 1.2 电导率法 电导率的测定比较简单、快速、准确。从理论上来说,在循环水系统中常需要加入水处理剂和通入Cl2,这会使水的电导率增加,另外当系统设备有泄漏时也会使电导率明显增高,故用该法测出的电导率也会产生很大的误差。事实上,我厂于1996年3-7月用电导率法进行了测试,结果表明:用作基准的补充水--长江水的电导率是波动不稳的,其波动范围为154~291 μS/cm;循环水的电导率也是波动不稳的,一循、三循波动范围分别为330~613 μS/cm、308~618 μS/cm。因此,当循环水的电导率较高、补充水的电导率也较高时,得出的K值还是不高;当循环水电导率不高而补充水电导率较低时,K值也会高。 1.3 SiO2法 由于我厂循环水系统未投用硅酸盐系列水处理剂,因此原来一直沿用该法。用该法检测时,循环水浓缩倍数数据出现了异常波动且严重失真的现象:用以前沿用的室内新鲜水作基准进行比较时,浓缩倍数普遍偏高,一循曾高达8.5;后改用装置补充水作基准进行比较时,浓缩倍数又普遍偏低,有时甚至出现<1的情况。 1.4 K+法 从理论上来说,循环水系统中K+来源较少,一般在某个阶段内K+是相对稳定的,但在

循环冷却水操作规程

循环冷却水操作规程 1。 前言 造气循环冷却水长期以来受到循环水品质得影响,循环水腐蚀、结垢情况较为严重。为解决循环水得腐蚀结垢问题,经过实验室配方筛选试验工作确认通过化学水处理得方法就是可以解决上述技术问题。根据配方操作要求,提供本操作规程仅供造气分厂造气循环水装置从事水处理工作与管理人员进行操作管理使用。 本操作规程中所记载得内容乃就是一些基本得东西,当设备得运行条件变动时水处理得方法也要作些相应得变更、因此,双方有必要加强经常性得技术上得联系,定期交换技术情报、?2.?系统概况?2。1 补充水质状况,补充水为自备水厂,水质见表一。 表一补充水质

2.2 运行条件:循环水系统运行条件见表二。 表二循环水系统得运行条件 2、3 循环水运行水质:循环水运行水质控制标准见表三

表三循环水冷却水质监控制指标 2、4 系统材质:碳钢、不锈钢 3.1补充水(M) 2。5?地沟流量:400m3/h(絮凝沉降)?3。?术语解释?因蒸发、排污、风吹飞溅而从系统中损失得水量,需要进行补充得水、 3.2蒸发损失(E)?在敞开式循环冷却水系统中,循环冷却水在冷却塔中蒸发而损失得水量。 3.3飞溅与风吹损失(W) 被通风时得气流从系统中带入大气得水量。

3。4排污损失(B排)?为维持系统中一定得浓缩倍数而排出系统得水量、 3。5冷却范围(或温度降)(ΔT)?冷却塔入口与塔底冷水池之间得水温差。 3。6循环量(R):系统中循环得冷却水量。 3。7浓缩倍数(N)?循环水中某种离子(Cl-或K+)得浓度与补充水中对应得某离子(Cl-或K+)得浓度之比;或循环水中电导率与补充水中电导率之比。 3.8系统容积(V)?包括冷却塔、水池、换热器、管道及辅助设备在内得整个系统得容水量。 3。9停留时间(T)?循环水在系统中停留得时间。 4。 配方得现场运行与管理 4、1管理得目得?“三分配方,七分管理”就是长期从事水处理工作得专业工作者从工作中总结出得一条很重要得经验。为了防止冷却水得腐蚀、结垢、粘泥(菌藻)等三种危害造成系统得不必要得损害,必须加强对循环水系统进行正确有序得管理与操作。 4.2一次回水水池(地沟)高浊水处理: 造气循环水经过生产装置后,有80%得水回到一次水池,每小时流量为400m3/h,该回水浊度较高。由于一次回水池沉降速度较慢,有一部分悬浮物来不及沉降就带到二次回水池中,二次回水池得水在打到凉水塔上,大量得悬浮物沉积在凉水塔得填料中,严重影响循环水得冷

循环冷却水浓缩倍数的检测及控制

次,操作不当停车2次,计划停车1次。装置在运行中,因轴位移表失灵达到跳车值 联锁停车1次,轴位移表修复后,空压机运转正常。空压机电机故障停车的原因是电机的电刷已磨平,使电刷与滑环接触时引起电火花。将空压机卸负荷,变电所强行断电停车更换电刷后,空压机电机运转正常。 切换阀因仪表风压力不够导致停车的问题通过管线改造,自身互补得到了解决。因仪表故障停车的问题通过更换切换阀密封胶垫得到了解决。膨胀机故障停车2次,1次是因电机轴承缺油,膨胀机超速跳车,电机线圈烧坏,更换电机后膨胀机恢复正常运转;另1次是膨胀机启动过程中,当油压>400kPa ,手动停止辅助油泵运转时,油压突然下降,辅助油泵却没有联锁启动,导致膨胀机烧瓦,将膨胀机更换轴瓦并修复联锁信号后,膨胀机运转正常。为避免操作不当 引起停车,公司加强了交接的管理工作,严格了操作规程,杜绝此类事故的再次发生。3 存在的问题 (1)液氧泵泄漏需更换密封圈,但这种密封 圈国内现已无厂家生产。液氧泵不备用,如果液氧泵不运转,主冷中总碳、乙炔超标,存在爆炸危险。 (2)板式换热器无阻力表指示,这样判断板式换热器工作是否正常就很不准确。 (3)液空吸附器和液氧吸附器的出、入阀站因填料泄漏,造成泄漏液空及液氧,从而导致跑冷严重。 (4)夏季时,循环水冷水温度达30℃以上(循环水的生产能力不够),造成进板式换热器的空气温度高达40℃以上,致使主冷液面下降,必须用氧车充液方能满足生产。 第4期2006年7月中 氮 肥 M 2Sized Nitrogenous Fertilizer Progress No 14Jul 12006 循环冷却水浓缩倍数的检测及控制 孙启坡,赵连友,任绍波 (黑龙江黑化集团有限公司,黑龙江齐齐哈尔 161041) [中图分类号]T Q 085+4 [文献标识码]B [文章编号]100429932(2006)0420024202 [收稿日期]2005212220 [作者简介]孙启坡(1973-),男,黑龙江齐齐哈尔人,工程师。 敞开式循环冷却水系统在运行过程中由于水分蒸发,水中盐离子含量越来越高,为了维持 水中含盐量在一定浓度必须补充新鲜水加以稀释,并排出浓缩水。操作中通常通过控制浓缩倍数来控制水中盐的浓度。循环冷却水的浓缩倍数越高,某些盐离子含量就越高(如Cl -),对设备的危害就越大;相反,浓缩倍数太低就要增加补水量,又很不经济。可见,合理地确定循环冷却水的浓缩倍数是非常重要的。1 浓缩倍数的检测方法 浓缩倍数是用循环冷却水中某种离子的浓度 与补充水中该离子的浓度的比值来表示。在测定浓缩倍数时除了要求选用的离子浓度随着浓缩倍数的增长而增长外,还要求其浓度不受运行中其 他条件(如加热、投加水处理剂、沉积、结垢等情况)的干扰。通常在不投加含氯化物药剂的循环水中以Cl -作为计算浓缩倍数的依据。一般采用的检测方法有电导率法、Cl -法、Ca 2+法、SiO 2法、K +法等。111 电导率法 电导率的测定比较简单、快速、准确。在循环冷却水系统中常需要加入水处理剂,这会使水的电导率增加。另外,当系统设备有泄漏时也会使电导率明显增高。故用该法测得的浓缩倍数会产生很大的误差。112 Cl -法

(完整版)循环水pH调节和加酸量问题

关于循环水pH调节和加酸量问题 加酸调pH是帮助循环水有效阻垢的辅助措施,当补充水为高硬、高碱水系(如北方地下水)和要求浓缩倍数高的循环水系统、药剂阻垢难以达到理想的效果时,目前普遍采用此处理方法,以保证水质的稳定。美国Nalco,Betz等世界知名水处理公司,过去和现在为中石化、化工部大化肥等厂提供的配方仍以加酸处理配方为主、其处理效果为各厂所认同。 贵厂加酸量可根据循环水每天碱度(CaCO3)测定值计算投加,方法有二,可任选其一。 循环冷却水调pH时加酸量的计算 循环冷却水用硫酸调pH时,其硫酸加入量有两种计算方法,可以选任一种方法计算投加。 (1)根据分析室测定循环水酚酞碱度时,盐酸标准溶液的耗量计算为系统硫酸投加量: 硫酸(98%)投加量=(V1C/2×100)×1000×98×(V/1000)×(100/98)=( V1CV/2) (kg)(6-2-1) 式中:V1—测定酚酞碱度时,盐酸标准溶液消耗的体积,ml; C—盐酸标准溶液的浓度,mol/L; V—冷却水系统容积,m3; 100—测定酚酞时取样体积,mL; 100/98—由100%换算为98%硫酸的系数;98-硫酸摩尔质量,g。 贵厂用30%盐酸时,则将公式 盐酸(30%)投加量

=(V1C/×100)×1000×36.5×(V/1000)×(100/30) =(1.22 V1CV)(kg) 贵厂保有水量按400 m3计,则加首次30%盐酸量为488V1C(kg) 例:系统容积V=8000 m3,测定酚酞碱度盐酸耗量V1=1.3 mL,盐酸标准溶液浓度C=0.05 mol/L,求硫酸(98%)加入量。 解:硫酸(98%)加入量(kg)=( V1CV/2)=1.3×0.05×8000/2=260 答:根据该系统酚酞碱度测定值,其硫酸(98%)加入量为260 kg。 说明: ⑴以酚酞碱度测定值作为加酸量的依据是较合理的。因此时酚酞由红色变无色,水的pH大约为8.3。当pH值﹤8.3时,水中只有HCO3-碱度存在,碳酸盐(如CaCO3)成垢趋势极微。 ⑵根据上述计算,现场实际加硫酸(98%)250 kg,pH值由8.65降至8.4,碱度由325 mg/L降至285 mg/L,硫酸实际加入量与计算量基本相符。但此硫酸加入量仅为系统首次加入量,未考虑飞溅、排污等损失的硫酸量。所以上述加酸量实际偏低,而排污等损失的酸量计算见本节第二例。 (2)循环冷却水系统的加酸量 循环冷却水加酸调pH值,是为提高浓缩倍数及阻垢的需要。根据酸碱中和原理,理论上加酸量等于碱度降低量。如果循环水加酸前后的碱度差△M,则: △M=M 前-M 后 M前为循环水调pH值前的碱度,M后为调pH值后的碱度,M前、M后可由现场实测或由“自然pH值与碱度计算”相关公式计算求得。如用98%硫酸调pH值,循环水单位用量为: A=49△M/(50×0.98×1000)=△M/1000 (6-2-2)

浓缩倍数的定义

浓缩倍数的定义 一个开放循环冷却水系统中,主要是靠水分蒸发,向大气传递、散发热量达到降低冷却水温的目的的。这部分蒸发掉的水从理论上是纯净的水,是不含各种杂质和离子的。系统的循环水蒸发一部分之后,系统中的保有水量就会越来越少,这时候就需要补充水量。我们大部分用自来水作为补充水,而自来水是含有大量杂质和各种离子的,随着系统一方面不断蒸发不含杂质的纯净水,另一方面不断补充含有杂质的自来水。所以系统里面的循环水各种离子含量会越来越浓。对此,我们引进了一个概念即浓缩倍数来表达这个系统水浓缩的程度。 浓缩倍数(COC)=系统内水质的某一指标/补充水质的同一指标在这个公式里面的某一指标,选定的离子平时受外来影响要小,通常可以选择总硬度、电导率、氯离子或者钾离子等。浓缩倍数的高低主要看循环水系统是否泄漏和药剂选用是否合适,不能盲目提高浓缩倍数。举个例子: 现在系统水的总硬度为1000ppm,而补充水的总硬度为100ppm,那么倍。 我们可以这么理解,如果系统的浓缩倍数是1的话,就相当于你系统里面的水质和补充的水质是一样的,也就意味着你补充进来的水几乎都排掉了。如果浓缩倍数是2的话,就相当于排放的水相当于补充水的;如果浓缩倍数是5的话,就相当于排放的水相当于补充水的;如果浓缩倍数是8的话,就相当于排放的水相当于补充水的。简单的说,浓缩倍数越高,水资源的利用率也就越高。但这不是说浓缩倍数越高越好,因为浓缩倍数大于5则节水效果不明显,而且对水处理带来很大的难度并且在经济上也需要更多的花费,根据目前工厂运行的情况浓缩倍数多在5左右,中石油、中石化的规定基本也是这个水平。目前,在采用自来水作为补充水的项目的设计上浓缩倍数多采用5这一指标。但北方自来水水质由于硬度较高,浓缩倍数选择4倍较为合适,再高浓缩倍数要综合考虑药剂成本和节水成本。 再生水作为补充水时,循环冷却水的浓缩倍数应根据再生水水质、循环冷却水水质控制指标、药剂处理配方和换热设备材质等因素,通过试验或参考类似工程的运行经验确定,为有效控制有机物所产生的危害,其浓缩倍数宜控制在2.5-3.0,如有机物和氨氮含量不高,可采用较高的浓缩倍数。

循环水的浓缩倍数与节水

循环水的浓缩倍数与节水 安庆分公司化肥部唐广奎 内容提要:循环水的浓缩倍数越高,所需的补充水量就越少,因而节水率就越高。然而,浓缩倍数与节约水量之间并非是线性关系。提高循环水浓缩倍数是一个系统工程,它既是技术水平又是管理水平的集中体现。循环水的浓缩倍数也并非是越高越好,要在节约用水、处理效果和处理成本之间寻找最佳结合点。 关键词:循环水浓缩倍数节水 在石油化工生产中工业用水量很大,其中70%以上的水是用于冷却各类工艺介质。冷却水系统既是石油化工装置不可缺少的组成部分,又是节约用水的关键部位。 冷却水循环使用,日常只需补充因蒸发、排污及漏失的水量就能够维持正常运行。因此,采用循环冷却水系统可以大大地减少水资源的消耗。另一方面,循环水系统还便于进行水质控制和处理,从而能够延长换热设备的使用周期,使装置更加安全稳定、经济合理地运行。 然而,冷却水的循环使用也带来了许多复杂的技术和管理问题,浓缩倍数的控制就是其主要内容之一。循环水的浓缩倍数是关系到节约用水和处理效果的核心指标,它与水处理技术的发展水平、系统状态和现场管理等因素密切相关。循环水的节水问题根本上就是浓缩倍数的管理问题。 一.循环冷却水的水质 敞开式循环冷却水主要是靠蒸发来散热的,也就是利用系统中一部分水的汽化潜热来使系统水体温度降低。循环水在

运行过程中,一边在换热器内升温,一边又在冷却塔内降温;一部分水被蒸发掉,又有一部分水补充进来;大量的空气与水在冷却塔内充分接触,发生脱气、曝气、洗涤等多重作用;工艺物料的泄漏造成水质污染。这样的工艺过程必然引起水质的巨大变化。循环冷却水水质的变化及其产生的危害情况如表一所示。

循环水加药规程

循环水加药规程 一:循环水运行要维持稳定的补、排水量,按水质标准控制投加药剂的品种和数量,控制好排污量,补充水量。排污要从集水井底阀排出,除特殊情况,严禁大补大排。水质稳定剂(杀菌灭藻剥离剂除外)必须连续稳定滴加人吸水池或集水池。 二:缓蚀阻垢剂DC-S216E的添加。 由于本地循环冷却水系统的水质含ca+,mg+的浓度偏高,循环水经系统换热后升温易发生结垢现象,严重影响换热效果,为了防止循环水的结垢和腐蚀,需向循环冷却水系统加入一种缓蚀阻垢剂DC-S216E。(循环冷却水浓缩倍数按2.5倍计算)首次添加量应按系统总容水量投加DC-S216E缓蚀阻垢剂30mg/L化验系统内总磷含量为1.3-2.3ppm转入正常运行。正常运行后按补水量投加药剂,(不补水不加药)投加剂量按30mg/L来执行。及实际投加量(kg)=补水流量(m3/h)×补水时间×(30mg/L)÷1000 (注:循环水系统缓蚀阻垢剂DC-S216E和杀菌灭藻剂不能同时投加,应间隔6-8小时。) 三:杀菌灭藻及生物粘泥剥离 循环冷却水系统中具有微生物生存和繁殖的良好条件,微生物分泌产生的粘液与水中各种悬浮物杂质粘合在一起形成 的粘泥是冷却水化学处理中的危害之一,会影响水冷设备传热效果并引起局部的腐蚀。为此应定期进行杀菌灭藻及生物粘泥剥离,因此对杀菌、灭藻及生物粘泥剥离投加杀菌剂作如下规定 1:循环水系统采用DC-S004型氧化性杀菌灭藻剂(与活化剂S004B配比使用,配比值:1桶DC-S004/1瓶活化剂S004B)与DC-S002型非氧化性杀菌灭藻剂(均不含泡沫)交替使用,两者不能同时投加。

2投加杀菌灭藻剂1,2,3,4,11,12月按每月(15日)定期加药一次,5,10月按每二十天定期加药一次,6,7,8,9月菌藻繁殖旺盛期可采取十五天加药一次,加药量按照规定用量结合实际情况的方式确定。投加量为150克/吨水,每次添加量kg=容水量(M3)×150(克/M3)÷1000 3 考虑到有关换热器问题,通过测定循环水生物粘泥量及异养菌,硫酸盐还原菌,铁细菌,COD 的含量来判别投加生物粘泥剥离剂进行粘泥剥离,粘泥剥离浓度为100 一20Om /L 。 4在使用含氯的氧化性杀菌剂进行灭藻处理时,药剂投加量根据游离性余氯量控制(22mg/L )。 5在进行大剂量投放杀菌剂剥离时,药剂一次性投人集水池后,24 小时后视浊度高低而排污。 6 辅助投加非氧化性杀菌灭藻剂,投加量约150克/吨水,。 四:运行管理 1 . 应严格执行规定的循环水正常加药量,超出正常加药量应有方案,报生产部审批,批准后才能实施。执行超正常加药量方案时,在执行前必须通知生产部循环水系统操作人员,实施过程中应加强联系、巡检、监视和监测。 2 . 水质稳定处理的循环冷却水系统,不论其生产装置开停与否都不得自行停运,以确保循环水的水质稳定效果和换热器正常的运行,延长使用寿命。 3 . 循环水系统每年应至少进行一次清洗预膜。 五:循环水现场监测 1 对循环冷却水系统实施有效的监测是保证系统良好运行必不可少的方法,能方便查找水质异常的原因并通过对药剂投加或水处理工艺参数的及时、适当调整有效地控制水质。 2 水质分析是保证水处理取得良好效果的重要保证,应严格按照《质量检验规程》操作,使其指标合格率达95 %以上。对循环冷却水与补充水进行分析,质监化验室每月对

相关文档
最新文档