漏电流测试方法(终审稿)

漏电流测试方法(终审稿)
漏电流测试方法(终审稿)

漏电流测试方法

文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

测量接地漏电流

漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚

测量正常状态

连接

连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。

插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。再次切换极性,测量功率,并具有重要价值的测量。

决定

另一种形式,无论附加,0.5毫安大致正常

单一故障条件(一电源线开路)测量

连接

删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P 连接· 2P剥离(漏电电流∵ ,只有电力导线断开one 。)

壁挂2P插头插座条。

开关电源极性连接到墙上插座旋转2P半条。

交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器

3P · 2P。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。极性开关电源,开关电源的测量4供应断开的导线,最大测量值。

决定

另一种形式连接,正常值小于1mA无关。

外部泄漏电流测量

测量正常状态

连接

连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。

3P · 2P适配器地线连接到地面的墙。

ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

泄漏之间的被测ME设备(如外部与绝缘设备,如铝箔贴部分为20cm × 10CM内)外的金属部分电流之间插入MD,ME仪器测测量从外部泄漏电流。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。再次切换极性,测量功率,并具有重要价值的测量。同样,外测量漏电流(在大多数情况下零)。

决定

另一种形式,无论附加,0.1毫安大致正常

单一故障条件(保护接地断线)测量

连接

Tsunagazu遗留下来的正常状态地线无处3P · 2P适配器连接。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

同样,外部之间的漏电流单一故障,离开地面导致无处Tsunagazu适配器3P · 2P。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。再次切换极性,测量功率,并具有重要价值的测量。同样,外测量漏电流(在大多数情况下零)。

决定

另一种形式,无论附加,0.5毫安大致正常

Ⅰ患者泄漏电流测量

测量正常状态

连接

连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。

3P · 2P适配器地线连接到地面的墙。

患者与ME下安装测试(如铅引起的)设备到MD和接地端子之间的墙壁,测量泄漏电流从设备连接ME测量患者。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。附件部分一个单一的病人(如铅引起的)和测量,又使他们的电源极性切换,最大测量值。

决定

在B型和BF固定部分比0.1毫安少低于正常值CF连接的形式,是0.01毫安

单一故障条件(保护接地断线)测量

连接

Tsunagazu遗留下来的正常状态地线无处3P · 2P适配器连接。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。附件部分一个单一的病人(如铅引起的)和测量,又使他们的电源极性切换,最大测量值。

决定

在B型和BF固定部分比0.5毫安少低于正常值CF连接的形式,是0.05毫安

患者泄漏电流测量Ⅱ

单一故障条件(国家外部电压信号输入或输出加法)测量

注意

这种测量方法是使100V以上的仪器仪表和非供电电压由一个危险的触电或经营者的被测设备故障的陪同下,测量。不具备专业技术不应该!!

下面是更希望你能帮助消除研究的图像将被记录下来。

连接

适配器连接到墙壁电源插座3P · 2P 3P插头连接到被测设备与ME形附件部分B。3P · 2P适配器地线连接到地面的墙。

100V电源电压加至信号输入或输出,测量ME到MD和接地端子之间的墙壁安装仪器的病人(如铅引起)的部分,从设备泄漏连接ME测量病人测量电流。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

测量

打开仪器与ME形附件B部分测量的权力,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。附件部分一个单一的病人(如铅引起的)和测量,电源极性切换再次执行,每个测量值和最大值。

决定

B类单位安装低于正常值5毫安(CF和BF的规定的格式不安装)

患者泄漏电流测量Ⅲ

单一故障条件(附于外部电压形成的条件加入F)测量

注意

这种测量方法是使100V以上的仪器仪表和非供电电压由一个危险的触电或经营者的被测设备故障的陪同下,测量。不具备专业技术不应该!!

下面是更希望你能帮助消除研究的图像将被记录下来。

连接

ME设备与实测形状或形式CF BF主机(B型的设备已安装部分必须是绝对的)直接连接在墙壁到地面3P插头。插入导线之间和100V电源供应的主要单位或CF - MD形形式BF此外,测量电流泄漏到ME仪器测量F 型安装。极性开关电源,开关的电源电压100V导致极性增加。

测量

打开仪器与ME形附件B部分测量的权力,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。附件部分一个单一的病人(如铅引起的)和测量,又使他们的电源极性切换,最大测量值。

决定

和BF安装部分低于5毫安时,CF型安装低于正常值0.05毫安部分

患者测量电流测量

测量正常状态

连接

连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。

3P · 2P适配器地线连接到地面的墙。

患者与ME下安装测试(如铅引起的)设备之间的MD插入,并测量从ME 设备之间的测量主机患者泄漏电流。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。安装的病人(如铅引起),之间的切换电源后,分别测得的最高值极性进行测量。

决定

在B型和BF固定部分比0.1毫安少低于正常值CF连接的形式,是0.01毫安

单一故障条件(保护接地断线)测量

连接

Tsunagazu遗留下来的正常状态地线无处3P · 2P适配器连接。

开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

测量

打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。

其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量

μAMV)。安装的病人(如铅引起),之间的切换电源后,分别测得的最高值极性进行测量。

决定

在B型和BF固定部分比0.5毫安少低于正常值CF连接的形式,是0.05毫安

电源线路滤波器中的漏电流

电源线路滤波器中的漏电流 1. 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。办公室设备和信息技术设备的产品安全标准EN 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过3.5 mA,采用下文所述的测量方法进行测量。 3.5 mA的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(B 型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5 mA。另外,等电位联结导体的最小截面积必须符合EN 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告! 强接触电流。先接地。” “警告! 强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源EMI滤波器的安全标准。在欧洲,新颁布了EN 60939,自2006年1月1日起代替了当时现行的EN 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的EMI滤波器标准,UL 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5 mA。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 2. 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于3相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对顺序生产的每一个滤波器都进

泄漏电流测量

实验二泄漏电流测量 一、实验目的 1.熟悉测量泄漏电流的试验设备及其接线。 2.学会测量电力设备绝缘泄漏电流及绘制伏安曲线的方法。 3.掌握通过绘制出的伏安特性曲线判断绝缘状况。 4.比较泄漏电流试验和绝缘电阻试验的异同 二、基本原理 泄漏电流测量试验的机理与绝缘电阻试验的相同,只是试验的方法不同。泄漏电流测量的试验电压有高压整流设备供给,试验电压可任意调节,所加电压比兆欧表的高,可用灵敏而准确度高的微安表来测量泄漏电流的大小。故测量值较兆欧表准确。并可根据所测出的泄漏电流与所加的试验电压绘制出一条伏安曲线,由曲线的变化规律可进一步分析被试品绝缘的状况。 对于绝缘良好的被试品,其泄漏电流与一定的外加电压成正比;若绝缘受潮或有缺陷则泄漏电流的增加与试验所加电压不再保持直线关系。 三、试验用仪器设备 电源部分:220V/0~250V 自耦调压变压器一台 高压试验变压器(K=200)一台 整流部分:高压硅堆一只 测压部分:电压表(150V)一只 测流部分:微安表(100μA)一只 被试品:绝缘套管一个 四、试验原理接线 AC T C x 1 说明: V1 :电压表,测量升压变压器低压侧绕组的电压;A1 :微安表,测量高压回路当中的电流 R1 :试验变压器上面的水电阻 R2 :球隙放电器上面的水电阻 Q1 :球隙器 ZL :整流器 C :滤波电容 C X:被试品(套管) 1~2:自耦变压器的原边输入 3~4:自耦变压器的副边输出

a~x:升压变压器的低压侧 A~X:升压变压器的高压侧 E~F:升压变压器的低压的测量绕组 注:在微安表上面有短路刀闸 五、试验步骤 1.按照试验原理接好试验电路。 2.检查接线,确认接线正确,接通高压电源,逐渐升高电压至电压表指示 35.4V(实际上加到高压部分为35.4*1.414*200=10000V),停止加压,打 开微安表的短路刀闸,待微安表指针稳定后读取10kV时的泄漏电流值。 3.按步骤2,读取电压表读数为70.7V(20kV)、106V(30kV)、141.4(40kV) 时的泄漏电流值。 4.数据记录完毕,调压器归零,切断电源。 5.用接地棒连接电容器的高电位端,进行放电。 六、注意事项 1.在整个试验过程中,要密切监视被试品、试验回路及有关表计。若有击 穿、闪络、气体放电等现象发生,尤其是在加到高压为30KV和40KV 时,此时应先将调压器归零,进行降压,然后再切断电源、放电。查明 原因,待妥善处理后,方可继续进行试验。 2.每次试验完毕后,都要进行充分的放电,然后才能进行下一次的试验, 放电的时侯必须确定要先切断电源。 3.每次加高压前必须检查调压器是否在零位,防止在未退至零位时就投入 高压电源而产生冲击,损伤试验设备的绝缘和得到不正确的试验结果。 每次切除高压时必须将调压器退至零位,这样可以防止下次通电时突然 加上高压。 七、实验报告 1.整理出各项试验结果,绘制出泄漏电流与试验电压的关系曲线。 2.根据绘制的伏安特向曲线判断被试品绝缘状况。

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

漏电流安规测试学习心得

泄露电流安规测试 泄露电流测试目的 IEC60990《接触电流和保护导体电流的测量方法》中提到接触电流是“当人体或动物接触一个或多个装置或设备的可接触零部件时,流过他们身体的电流。”如图1所示,接触电流也称之为泄漏电流,注意不要与耐压测试中的漏电流混为一谈。 个人理解:耐压测试中漏电流是3.5kV输入电压下板卡的漏电流总和,主要是衡量板卡绝缘能力;接触电流是市电输入电压下由整机设备与人体到大地形成回路,流经人体的电流值,主要是衡量对人体的伤害能力。 图1 泄露电流示意图 泄露电流分类 1) 对地漏电流 对于I类设备的电子产品可触及的金属部件或是外壳应具备良好的接地线路,以作为基本绝缘意外的一种防电击保护措施。但是我们也经常遇到一些使用者随意将I类设备当成II 类设备使用,或是说其I类设备电源输入端直接将地端拔除,这样就存在一定的安全隐患。即便如此,作为生产商有义务去避免这种情况对使用者造成的危险,这就是为什么要测试接触漏电流的目的。 对地漏电流是指在正常条件下由电网部分穿过或跨过绝缘流入I类设备保护接地导线的电流,即经由电源线上的接地线流回大地。在接地线良好的情况下,该电流不会对人造成点击伤害。对地漏电流与接触漏电流无关,其量值和测量方法也不同,对地漏电流的测量通常是在设备接地系统有缺陷的情况下,从设备泄露到地的电流。因此I类设备应保证接地连续性良好,接地电阻小于规定值0.1Ω,为故障电流提供低阻返回路径,从而保证可触及件不带电,人碰触才是安全。对地漏电流主要应用在I类设备测试,目前电视主板没有要求。 2) 接触漏电流 接触漏电流是指在正常或单一故障条件下,当人体接触到不同配电系统的I类或II类设备时,可能流过人体的电流。接触漏电流产生的路径有两种:a、电网电源——绝缘隔离系统——人体——大地,该电流的大小由绝缘隔离系统决定。b、设备的某一部分流经人体

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析 2014-08-02 摘要: 本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。 1.案例背景 MLCC电容在使用过程中出现阻值降低、漏电失效现象。 2.分析方法简述 透视检查NG及OK样品均未见裂纹、孔洞等明显异常。 图1.样品X射线透视典型照片

从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。从电容外观来看,所有样品表面均未见明显异常,如裂纹等。 图2.电容典型外观照片 利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。 对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。 对比失效样品,OK样品电容内部结构成分一致,内电极为Ni电极,电极层连续性较差,且存在较多细小孔洞。但并未发现贯穿相邻电极的孔洞和机械应力裂纹的存在,电容表面破损程度亦较低,故不存在漏电现象。

漏电流测试操作规范

XASM/JS 1105 漏电流测试操作规范 编写:练伟平 审核:杨锡联 批准:王明莉 西安外科医学科技有限公司 2011.11

1.适用范围 漏电流是国家标准GB9706.1中规定的医用电气设备的安全要求之一。本文规定了对低温等离子体多功能手术系统漏电流测试的方法、要求、测试步骤及对所用仪器。 2.使用仪器 CS5505F医用设备漏电测试仪。 本仪器可满足国家标准GB9706.1中漏电流的测试要求。 3.测试仪技术指标 漏电流测试范围及精度:0 ~10mA(±2%+2个字) 带载能力:500VA 采用网络符合GB9706.1中的频率特性 4.测试依据: GB9706.1通用要求中的19条。 正常状态下的对地漏电流、外壳漏电流、患者漏电流。 单一故障状态下的对地漏电流、外壳漏电流、患者漏电流。 5.要求 表1漏电流允许值 6.测试方法及步骤 测试前必须确定本测试仪器是在检定的有效期内,并对其进行运行检查,确保测量的有效性。 6.1接线: a)测试仪器接保护地线. b)将被测设备的电源输入插头插入仪器的输出插座。 c)将仪器MDA线与被测设备的接地端子连接。 d)将仪器MDB线与被测设备的外壳连接。

e)打开电源,电流设置到1mA ,时间设置为10sec。 f)L、N转换设置到自动。 6.2对地漏电流测试:MDB按钮置于OFF,按下START键,输出电压调至242V, 此时显示的读数为对地漏电流值。直至设定的时间结 束。按下G键,重复测量为单一故障状态下的对地漏电 流。 6.3外壳漏电流测试:MDB按钮置于ON ,按下START键,输出电压调至242V, 此时显示的读数为外壳漏电流值。直至设定的时间结 束。按下G键,重复测量为单一故障状态下的外壳漏电 流。 6.4患者漏电流:将仪器MDB线与被测刀头的金属外壳连接,MDB按钮置于 ON ,按下START键,输出电压调至242V,此时显示的读 数为患者漏电流值。直至设定的时间结束。按下G键,重 复测量为单一故障状态下的患者漏电流。 6.4判定 机器漏电流允许值见表1. 当测量值超过设置值时, 仪器会自动报警。按下【复位】键可解除报警。 7. 注意事项:本仪器的电源输入插座应带有保护接地线。 本仪器的电源输入插座应保持相线和中线(L、N)的正确接法。 使用后填写仪器使用记录。

关于变频器漏电的若干问题

关于变频器应用中漏电保护开关跳闸问题分析报告 一,漏电保护开关的工作原理 下图所示,漏电保护开关检测的是输入共模电流,也就是所说的对地漏电流,检测漏电流的电流互感器是同时穿过了 R/S/T三根火线和零线,在没有漏电流的情况下,不论接三相负载还是接单相负载,R/S/T和N线这4根线中流过的电流之和总是为零。当负载侧有对地短路现象或者对地有较大的电容时,输出侧的电流就会通过大地返回电网,此时流过电流互感器的电流之和不为零,这个电流就称之为漏电流。当检测到的电流大到一定程度就会触发保护开关脱扣。 二,对地漏电流的产生原因和电流通路分析 1,变频器应用中为什么会产生较大的漏电流 普通电机的绕组和机壳之间存在着较大的分布电容,在电网供电的情况下,电源线上只有50Hz的工频电压,由于频率很低,通过分布电容的漏电流很小。但在用变频器驱动电机时,由于变频器输出的是几kHz的高频脉宽调制的电压波形,输出电压是在0V到530V之间快速跳变的脉动电压,对于同样的电机同样的分布电容,漏电流会增大百倍以上,这是由变频器的工作原理决定的。

上图是实测的是输出零频时变频器输入端的漏电流波形,可以看出,主要成分是5kHz的开关频率。说明漏电流的主要是由于变频器输出的PWM波。 2,输入端安规电容的作用 输入端安规电容的作用主要是减小变频器内部对外部电网的干扰影响,由于变频器中安规电容取值很小(2200P),对于工频的阻抗很大(1.4M),对漏电流的贡献很小(每相约0.15mA ,且三相平衡时基波漏电流之和为零)。 但如果电网中的电压谐波很高时,电网灌入变频器的漏电流就会明显加大,且三相不会抵消,漏电流的值与电压谐波的频率成正比,与谐波电压的幅值成正比。 3,电机机壳接地的位置 为了减小输入的漏电流,可以调整电机机壳的接地位置:将电机机壳的接地线接至变频器上的PE端子,如下图所示,按照这种接法,变频器内部的安规电容提供了负载侧漏电流的一个循环通路,可以减小电网侧的漏电流。但由于电机侧很难与大地隔离,这一措施对减小漏电流有改善,但效果有限(尤其是当电机距离变频器较远时,变频器与负载电机之间连接的PE线对高频的阻抗变大,以至于大于电机机壳接地阻抗)

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项? ? ??测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就

等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一

华为终端电源安全测试规范V1.0

DKBA 华为技术有限公司内部技术规范 DKBA 7684-2014.07 终端电源安全测试规范V1.0 2014年xx月xx日发布2014年xx月xx日实施 华为技术有限公司 Huawei Technologies Co., Ltd. 版权所有侵权必究 All rights reserved

修订声明Revision declaration 本规范拟制与解释部门:终端可靠性实验室 本规范的相关系列规范或文件:无 相关国际规范或文件一致性:无 替代或作废的其它规范或文件:无 相关规范或文件的相互关系:无

终端电源安全测试规范V1.0 范围Scope: 本规范为了降低终端电源的市场安全失效率, 降低电源的FFR, 规定了终端电源常规安规测试的要求和测试方法,同时结合电源在市场上的不良安全失效案例,规定了电源非常规安全测试项目及测试方法, 其目的在于根据标准要求,统一测试方法,提高测试结果的准确性和可复现性,最终达到改善电源质量的目的. 简介Brief introduction: 本规范针对终端电源依据安规标准IEC/EN/UL60950-1, GB4943.1, IEC/EN/UL 60065, GB8898 在安规认证、摸底测试过程中,各项测试的目的、方法、结果判定进行统一的规范和指导,其目的在于让相关人员在安规测试业务上形成共识,以确保安规测试方法的正确性,提高测试结果的准确性和可复现性,从而提升工作效率。 关键词Key words: 终端电源、适配器、充电器、安规测试。 引用文件: 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 术语和定义Term&Definition: <对本文所用术语进行说明,要求提供每个术语的英文全名和中文解释。List all Terms in this document, full spelling of the abbreviation and Chinese explanation

接触电流测量中使用的模拟人体网络的校准

学术论文 Academic Papers 接触电流测量中使用的模拟人体网络的校准倪 华 金雷鸣/上海市质量监督检验技术研究院 该文通过介绍接触电流,引出相关标准中对应的测试接触电流所需的三种模拟 人体阻抗网络,对其计量属性进行分析,提出了几种校准方法,并对测得的数据进 行分析,选择最佳的校准方法以及所必需配置的仪器。 关键词 接触电流;模拟人体阻抗网络 ;校准 ;高频电流 0 引言 接触电流是漏电流的一种,漏电流是指设备在外界施加电压的作用下,相互绝缘的金属部件之间或带电部件与接地部件之间,通过其周围的介质或绝缘表面所形成的电流。泄漏电流可分为两种:1型电流,在正常条件或单一故障条件下,当人体接触连接到不同电源系统的接地或不接地的Ⅰ类或Ⅱ类设备时流过人体的电流;2型电流,在正常条件下流过Ⅰ类设备的保护导体的电流。将流过人体的电流(1型电流)称为接触电流。因此对接触电流的定义是:当人体或动物接触一个或多个装置的或设备的可触及零部件时,流过他们身体的电流。 接触电流对人体的效应主要有四种:感知、反应、摆脱和电灼伤。感知阈值是能引起人体任何感觉的最小电流值;反应阈值是通过人体能引起肌肉不自觉收缩的最小电流值;摆脱阈值是手握电极的人能自行摆脱电极的最大电流值;电灼伤是电流流过或穿过人体表皮而引起的皮肤或器官的灼伤的电流值。 四种人体效应中,感知、反应和摆脱与接触电流的峰值有关,并且随频率变化而不同;电灼伤与接触电流的有效值有关,而与频率无关。所以对于电击而言是测量电流的峰值,对电灼伤则是测量电流的有效值。1 相关标准中的模拟人体阻抗网络 接触电流简单地说是流过人体的电流,为能测量电子、电气产品所产生的接触电流,就需要使用模拟人体阻抗网络来模拟测量流过人体的电流。人体总阻抗由阻性分量和容性分量组成,经研究分析采用1750Ω±250Ω的电阻值模拟人体电阻,用0.105μF~0.160μF的电容量模拟人体电容,总的原则是模拟时间常数为225μs±15μs 为前提,这样使测得的电流既模拟了人体阻抗又具有可比性。 根据GB/T12113-2003/IEC 60990:1999 《接触电流和保护导体电流的测试方法》,规定了在各种情况下的三种模拟人体阻抗网络。 图1为模拟人体阻抗网络,在电灼伤测量中使用,图2为测量感知电流、反应电流时使用的 图1 电灼伤测量使用的模拟人体阻抗网络 R S:1 500 Ω;R B:500 Ω;C S:0.22 μ F 国内统一刊号CN31-1424/TB2010/4 总第218期

7630 接触电流测试仪

7630 接触电流测试仪 操作规程 一、试验前注意事项 (1)、本仪器的输出范围(0-277V、0-40A)。 (2)、检查供电电源是否符合(本仪器使用115VAC/230VAC、50/60Hz 、2A单相电源,在开启仪器的电源开关前,请确认背板上的电压选择开关,是否放置在正确的位 置上)。 (3)、本仪器是否良好与大地接通(本仪器使用三芯电源线,当电源线插到带有地线的插座时,即完成机体接地)。 (4)、操作人员不可穿着金属装饰物的服装或佩戴金属饰物、操作前必须带好绝缘手套穿着绝缘鞋。 二、参数设置说明 (1)、根据需要,在背板上选择合适的仪器供电电压后,插好仪器供电电源,打开正面操作面板左下角的电源开关,进入开机画面后,按任意键进入下一画面(系统可能设置为Perform Tests或Main Menu 画面),以下步骤按初始设置为“Main Menu”界面进行说明。 (2)、“Main Menu”界面中的“Setup system”选项为系统参数设定界面,进入该界面,根据测试要求和习惯对系统参数进行测试。 (3)、在“Main Menu”界面中选择“Setup Tests”选项进入测试项目设定界面,在该界面内选择“Touch Current”进入接触电流测试设定模式。 (4)、在“Touch Current”该设定模式内,对各测试参数进行设定,使用操作面板上的“∧”“∨”键选择参数项目。每按一次进入下一个参数项目,设定好后按“Enter”进行确认。该模式下设定项目依次为: “Leakage-HI/Leakage-LO”泄漏电流上限/下限值,作为每一个测试内允许的待测物泄漏电流的限值,超过该范围,测试失败。 “Voltage-HI/Voltage-LO”电压上限/下限值, 作为每一个测试内允许的待测物工作最大、最小电压值,超过该设定范围,测试失败。 “Delay Time/Dwell Time”延迟时间、测试时间设置。 “Offset”泄漏电流补偿设定,可手动输入或按“Test”自动监测“offset”值。Offset 量测说明详见说明书“p38”。 “Neutral/Reverse/Ground”待测物工作电源状态设定。此三个功能键有八种组合状态,用来设定待测物的工作电源状态,根据测试需要对三个功能键进行设定,待测物的工作电源设定表详见说明书“P39”。 “Meas.Device”人体阻抗模型选择,根据安全规范选择相应的网络,其英文字代号与安规规范对照表见说明书“P42”。 “Probe”测试棒选择设置。该模式下“Ground To Line/ Ground To Neutral”为L/N任意一极对地间泄露电流。“Probe-HI To Line”为L极对表面间泄漏电流,“Probe-HI To Probe-LO ”为表面间泄漏电流。“AUTO”为“Ground To Line&Ground To Neutral”泄漏电流。 “More”选项实现“Touch Current”设置页面翻页功能。 “Leakage”泄漏电流模式设定,对泄露电流显示值进行“RMS/PEAK”值的选择。 “Continuous”电源持续输出模式设定。 “PLC Control”远程控制设定。”

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项 测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不

是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一种是采用屏蔽环将表面泄漏电流直接短接,使之不流过微安表。 (3)温度 温度对泄漏电流测量结果有显著影响。温度升高,泄漏电流增大。 测量最好在被试设备温度为30~80℃时进行。因为在这样的温度范围内,泄漏电流的变化

各品牌变频器输入漏电流对比测试

各品牌变频器输入漏电流对比测试 深圳市汇川技术有限公司实验报告 密级:机密 一、实验相关信息: 1. 实验名称:各品牌变频器输入漏电流对比测试 2. 实验日期:2007-07-27——07-28 3. 实验人员:廖湘衡、叶辉 4. 实验地点:研发部实验室 5. 实验仪器:漏电流互感器,FLUKE187万用表 6. 实验目的或者背景: 二、实验过程及记录: 1、测试方法: 变频器三相输入相线穿过漏电流互感器,将FLUKE187万用表打到交流uA档接到漏 电流互感器输出端进行测试,变比:1000:1。 2、输出频率固定,不同载频时,输入端漏电电流的测量: 变频器运行状态输出频率40Hz固定,驱动1.5Kw的电机空载运行,V/F控制,电机通过配电箱接地,变频器 未接地,电机在实验台上运行。 载频频率(KHz) 0.5 1 2 3 4 5 6 8 9 10 12 15 汇川MD320T15GB- - 27.4 - 37.3 - 45.2 52.0 - 58.5 - - 输入漏电流(mA)

变频器运行状态输出频率40Hz固定,驱动1.5Kw的电机空载运行,V/F控制,电机通过配电箱接地,变频器 未接地,电机在地面上运行。 汇川MD320T15GB18.5 24.3 28.0 33.5 38.1 42.2 46.3 53.3 - 60.5 - - 输入漏电流(mA) 输出频率40Hz固定,驱动1.5Kw的电机空载运行,V/F控制,变频器接地,电机接变频器的 地,电机在地面上运行。 汇川MD320T15GB24.3 33.2 37.3 46.2 53.3 58.8 65.2 70.4 74.7 77.3 - - 输入漏电流(mA) 台达- - - 31.1 - - 45.1 - 55.8 - 65.1 72.6 VF0007A43A(0.75K w) 输入漏电流 (mA) 汇川-台达输入漏电 15.1 20.1 18.9 流差(mA) 深圳市汇川技术有限公司实验报告 密级:机密 3、不同设置状态,汇川MD320T15GB对比实验测试漏电电流: 变频器运MD320T15GB驱动1.5Kw的电机空载运行,V/F控制,载频:6KHz。行状态 条件设置电机在实验台上运行电机在地面上运行一 变频器未变频器接变频器接地,电机通过变频器接变频器接变频器接变频器未条件设置接地,电地,电机地地,电机地,电机接地,电机二机通过配未接地接变频器未接地通过配电未接电抗输入接电输出接电

电解电容漏电流测试仪操作规程示范文本

电解电容漏电流测试仪操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电解电容漏电流测试仪操作规程示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时 针方向调至最低端。如果220V电源的地线接地性能不良, 应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压 调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预 置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择 合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时

间置于适当的值上,通过二位BCD 拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2 秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电 流数据,并一直处于测试状态。 6. 如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结

安规测试及其方法

,全标准里面规定是:用水测试15S,然后用汽油测试15S,标识不能模糊不清。 3.电容放电测试: 对一个电源线可以插拔的设备,其电源线经常会被拔出插座,拔出插座的电源插头,经常是被人玩,或任意放置。这样导致一个问题,被拔出的电源插头时带电的,而这个电随时间而消失,如果这个时间太长,那么将会对玩插头的人造成电击,对任意放置的电源插头会损坏其它设备或设备自己。因此各个整机安全标准对这个时间作出严格的规定。我们设计产品要 考虑这个时间,产品作安全认证需要测量这个时间。

4.电路稳定测试: 1)SELV电路 SELV电路,就是安全地电压电路,这个电路对使用人员就是安全的,例如手机充电器的直流输出端,到手机,它们是安全的,可以任意触摸不会有危险。 注:SELV电路在不同的标准里面有不同解释,例如在IEC60364里面解释与IEC60950-1是不同的,因此关于SELV需要注意在哪个标准下面,其危险也是不同的。 SELV电路需要满足特殊的要求,才能是SELV电路,这些要求是,在单一故障是,仍然是满足SELV电路要求的。因此对每一个SELV电路都需要做单一故障下的测试,证明是SELV 电路是稳定的。测试时是将单一故障逐一引入,监视SELV电路。 2)限功率源电路 由于限功率源电路输出的功率很小,在已经知道的经验中,它们不会导致着火危险,因此在安全标准中,对这类电路的外壳作了专门降低要求规定,它们阻燃等级是UL94V-2。因此有这类电路都需要测量,证明它们是限功率源电路。 3)限流源电路 搞过电工的人知道,AC220V电路经过一定的电阻之后,对人就没有危险了。那么究竟是多大的电阻,和电阻有什么样的要求。可能大家就不知道了。在安全标准里面就有这个规定,这个规定就是限流源电路。限流源电流,要求在电路正常和单一故障下,流出的电流是在安全限值以下的,对人不会导致危险小于0.25mA。对于隔离一次和二次电路的电阻是要求满足专门标准的耐冲击电阻。 5.接地连续测试: 搞过电气安装的人知道,有些设备必须接地,否则将在其可以触摸的表面有危险电压。这些危险电压必须通过接地释放。安规测试规定需要使用多大的电流,多久时间,测量的电阻必须小于0.1欧姆,或电压降小于2.5V(有条件使用这个值)。 6.潮湿测试: 潮湿测试,是模拟设备在极端环紧下,设备的安全性能。设备在制造出后,是在任何湿度下都能安全运行的,不能因为是雨季,湿度大而告诉用户设备不能使用。因此在设计时必须考虑设备在可以预见的湿度下满足安全要求,因此湿度测试是必须的。测试要求根据标准不同,有少量的差异。 7.扭力测试: 扭力测试是设备外部导线在使用中,经常受到外力作用弯曲变形。这个测试就是测试导线能够承受的弯曲次数,在产品生命周期内不会因为外力作用发生断裂,AC220V电线外露等危险。 8.稳定性测试: 设备在正常使用中,常常会有不同的外力作用,比如:比较高的设备人会靠住它,或有人在维护时攀爬它;比较矮的设备,外形如同凳子式的,有人可能会站在上面等。由于设备受到这些外力作用,设备在设计时没有考虑周全会导致设备倒塌,翻转等危险。因此设备设计完成后需要做这些测试。检查它们满足安全要求。 9.外壳受力测试:

接触电流

接触电流和保护导体电流的测量方法 1范围 本标准为下述电流规定了测量方法: ——流过人体的直流电流或者正弦波形或非正弦波形的交流电流;和 ——流过保护导体的电流。 推荐的接触电流的测量方法是以流经人体的电流可能引起的效应为基础的。在本标准中,对流经测量网络(代表人体阻抗)的电流的测量指的就是接触电流的测量。这些网络对于动物并不一定有效。 具体限值的规范和含义不在本标准范围内,IEC 60479-1提供了电流通过人体的效应的有关信息,根据该信息就可以确定出电流的限值。 本标准适用于IEC 60536所定义的各类设备。 本标准中的测量方法不考虑在以下情况下使用: ——持续时间小于1 s的接触电流; ——在GB 9706.1中规定的患者电流; ——频率低于15 Hz的交流; ——含直流分量的交流,使用将交、直流叠加效应作合成指示的单一网络尚待研究; ——超过所选择的那些电灼伤限值的电流。 本基础安全标准主要是提供给技术委员会在按IEC指南104和ISO/IEC指南51制定标准时使用。本标准不打算提供给制造商或认证机构使用。 技术委员会在制定标准时要使用基础安全标准。如果未在相关标准巾专门引用或规定。则本基础安全标准的试验方法和试验条件的要求将不适用。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 11918--2001 工业用插头插座和耦合器第1部分:通用要求(idt IEC 60309-1:1999) GB/T12501.2--1997 电工电子设备按电击防护分类第2部分:对电击防护要求的导则(idt IEC 60536-2:1992) GB/T 16895.9--2000建筑物电气装置第7部分:特殊装置或场所的要求第707节:数据处理设备用电气装置的接地要求(idt IEC 60364-7-707:1984) IEC 60050(195) 国际电工技术词汇表(IEV)--第195部分:接地与防电击 IEC 60050(604) 国际电工技术词汇表(IEV)--第604部分:发电、输电和配电——运行 IEC 60364-4-41:1992 建筑物的电气装置——电击防护 IEC 60479-1:1994 电流通过人体的效应和牲畜的效应——第1部分:通用部分 IEC 60536:1976 电工电子设备按电击防护分类 IEC 61140:1997 电击防护——装置和设备的通用要求 ISO/IEC指南51:1990 标准中含安全特性的导则 IEC指南104:1997 起草安全标准的导则和担负安全主导职责及安金群组职责委员会的任务 3定义 本标准采用下列定义。 3.1 接触电流 touch current 当人体或动物接触一个或多个装置的或设备的可触及零部件时,流过他们身体的电流。[见IEV 195-05-21-] 3.2 保护导体电流 protective conductor current 流过保护导体的电流。 3.3 设备 equipment

电解电容漏电流测试仪操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电解电容漏电流测试仪操作规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7534-73 电解电容漏电流测试仪操作规程(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时针方向调至最低端。如果220V电源的地线接地性能不良,应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时间置于适当的值上,通过二位BCD 拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,

当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充 电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2 秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电 流数据,并一直处于测试状态。 6. 如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,仪器将循环采集漏电流数据并显示出来。 三、保养维护 1. 严禁将带电的电容接入仪器,以防损坏电流检

相关文档
最新文档