阻尼器使用中的失效实例

阻尼器使用中的失效实例
阻尼器使用中的失效实例

返工就发 就是 不仅 公司 缓冲 液体阻尼汰的计主

料“阻尼器的使工的事故:美国发生了严重漏图4-1美土耳其某公是另一个严重实际上,阻仅原来的设置?

结构刚度?

不均匀破?

变形加大? 支座阻尼硅油和硅胶司容易的买到50年代开始冲器,至今仍60年代,泰体弹簧和阻尼尼器成功的改的产品。这种主要是他们解据介绍,有

“putty”来实使用并不是总国一个原来生漏油(见图4-美国加州某漏公路桥上安置重教训[11]。阻尼器并不像置目的达不到度改变,周期破坏,引起扭大引起伸缩缝尼器失效引起胶材料,作为化到,一种是粉始,泰勒最先仍用这种材料泰勒阻尼器发尼器的要求。随改用了液体硅落后四十多年解决不了高压有的生产厂家

实现这一屈服阻尼器使是一帆风顺生产其他减振-1)影响了使漏油的阻尼器置的支座屈服钢

像有的人想象到,还可能会产期改变,地震扭转等附加力缝处磨损破坏起桥梁的破坏化工原料阻尼粉色胶泥状物质先把硅胶用于料作填充器。

发现这种材料随着硅油及密硅油。也就是说年的材料和技压下的密封问题家,如已经破产

服的,这种硅使用中的失,国际上已经振器的公司为使用。现在已器 图钢阻尼器在地的是个可有可产生预想不到震力加大,引力; 坏; 坏。

尼器内用的硅质,一种无色于减振装置中料的温度稳定密封材料及办说,这是四十技术为什么还题。

产的Colebr

硅胶不适合用失效实例

经发生过多起为加州一个大已经重新更换4-2 土耳其地震中破坏,可无的产品。到的坏作用。引起破坏;硅油和硅胶两色透明粘滞性。作为一次定等性能极差办法的研究成十几年前,就还有这么多厂rand Device

用于长期使用起由于阻尼器大桥安置的阻换翻新改造。其某公路桥在引起桥面严。经设计的阻。如:

两种材料,都性液体。

性减振没有很,无法达到有成功,泰勒公就已经被美国厂家仍然应用,就是用装置

用的锁定装置器漏油,导致失阻尼器,仅仅两

在地震中的破严重破坏(图阻尼器一旦失都可以在美国很高参数要求有高精度要求公司在液体弹国等先进生产用?如前所述置内填充硅胶

置,其理由是失效,两年,坏 4-2)失效,杜帮求的求的弹簧和厂淘述,估胶材

告。图、不能他们Tayl 1995

料。? 硅胶在冷动性,起粘滞性能? 导热性差地方却变局部热量? 长期使用看上去还离的现象?

使用这种境下油固品在安装因以上原因它无法满足华盛顿桥的能满足华盛顿们还是不能在lor 公司的传在美国,硅5年由科学基

冷热中的变化起不了粘滞作能也会丧失。差,这种硅胶变化不大,至量会使硅胶分用性能差,在还可以工作。象,其滞回曲种硅胶材料,固分离,就同装不久后的漏图4-3韩国因胶泥为填充足实际工程的的工程上,Te 顿州公路管理在试验中通过传统锁定装置硅胶不适在桥

基金会主持的化非常大,当作用。当加热

胶,导热性能至使装置内的分解成原来的在最初使用的但几个循环曲线迅速变化最初生产出同样会产生漏漏油问题就足高铁Colebr 充材料的锁定装测试要求。在echstar 公司理局的测试要过,无法满足规置(见图4-6梁阻尼装置上

的美国金门大当受冷(如-1热时(如30℃能很差,当某的固液不均。的固液两部分的1-2个受力环过去,填充化。阻尼器处出的产品不存漏油。韩国高足以证明(见rand Device 装置,从来没在美国已经属司使用Colebr 求。既便应T 规范和业主的)。

上作粘滞材料

大桥的联合测10℃)时,硅℃)时,硅胶某部分变热,因为胶泥是分,导致了不力循环内,硅充材料发热,处于失控状态存在漏油问题高速铁路上使见图4-5)。 的锁定装置没有经受长期属于被淘汰的rand Device Techstar 的要的要求,最终料,是早已有

测试中,全部硅胶变成很硬胶会变得很稀温度会上升是由橡胶粉和不均匀的物理硅胶作填充材就会产生硅态。

题,用一段时用的Colebr 置使用后漏油期荷载,上万的产品。几年的产品,初要求,降低了终业主中止了有共识的问题

选用的是液体硬的固体,丧稀,流动性很升得很快,但其硅液组成,这理特性。

材料的锁定装硅胶变质和材料时间后,在冷热rand Device 油

万次往复的试年前,在美国初步中标。但了部分测试要了原合同,安题。也正因此

体粘滞阻尼的丧失活

很大,其它这种置,料分热环的产试验报

西雅但他们要求,装了此,在

的材

新改

希腊和平和改造中又重新图

4-5图4-4 西和友谊体育馆新安放了1285

和平与友谊西雅图华盛顿馆几年前曾经个美国泰勒

谊体育馆

顿桥上安置的安设了其他公公司的阻尼器

图的TAYLOR 公公司的阻尼器器。这一反复4-6

和平与友司阻尼器

器,在2004复过程,经费

友谊体育馆使奥林匹克工费损失很大。

使用的阻尼器程翻

弹簧减震器

巩义市华能管道装备制造有限公司https://www.360docs.net/doc/9d3129227.html, 弹簧减震器是通过减震,弹簧的刚度及弹簧预压缩的初始力,以减少或消除管道由于介质的不规则流称,风力作用,水锤(或汽锤)以及地震等原因引起的周期振动或瞬时冲击,它可提高整个管系的固有振动频率,使之离开因外界干扰引起的管道强迫振动频率,从而避免管道共振现象,并减少管道由于振动产生的附加应力。 弹簧减震规格的选择取决于防止管道振动所需要的防振力大小,如果可以根据管道的质量,刚度以及外界作用于管道的周期性或冲击力,通过管道动力分析计算出所需的防振力的话,则应按照计算的精确值选择减震弹簧的规格并确定弹簧预压的初始力。否则,可根据管道的公称直径选择减震弹簧的规格。 弹簧减震器的选型方法: 1、算出设备运行总重量:即设备与配重静态重量之和乘以安全系数(通常可取1.3)之后的运行重量。 2、根据设备总尺寸选择减振器。一般减震器间距最大不宜超过2米,如设备底座外形为不规则,也应根据设备重量及受力分布情况,布局减震器。如果设备有偏重,减振器应不平均分布。设备运行总重量除以减振器个数,得到每个减振器荷载量。 3、根据算出的荷载量选择合适的减振器型号,以接近弹簧减振器最佳荷载为原则(通常选取弹簧减振器的最佳荷载略大于减振器荷载量,以减少减振器疲劳。) 弹簧减震器减振效率计算: 1、计算设备干扰频率:f=n/60(其中n为设备每分钟转速); 2、计算所选减振器固有频率:f0=(1/2π)*√(g/h).(其中h为弹簧静位移,或称压缩量)。引入z=f/f0; 3、用弹簧减振器为设备减振,在声学上是主动隔振问题,根据隔振原理,力传递率η=√{[1+(z/Qm)2]/[(1-z2)2+(z/Qm)2]}. 其中Qm为品质因数,Qm=wM/R,(w=√(K/M) 为弹簧振子固有圆频率,M为振子质量,R为阻力系数),此处引入阻尼比D=R/2√(KM),可得Qm=1/2D,可得力传递率η=√{[1+4D2z2]/[(1-z2)2+4D2z2]}. 根据隔振原理z=f/f0>√2,而D通常较小,上述传递率公式可近似为η=1/(z2-1) 得到传递率,便可根据隔振率=1-传递率,得到隔振率。 弹簧减震器优点: 1.可以达到较低的固有频率,一般5HZ以下,低阻尼,对于高频振动有较好的隔振效果. 2.可以承受较大的载荷,一颗弹簧减震器的载重可达几十吨! 3.通过适当的防锈处理后,抗腐蚀能力强,性能稳定,使用寿命长.一般可使用20年以上. 弹簧减震器缺点: 1.由于存在自振现像,容易传递低频振动. 2.阻尼太小,临界阻尼比一般只有0.005,因此在与设备频率接近区间会产生共振现象. 弹簧减震器的主要用途: 风机、风柜、空调箱、空气压缩机、空调机组、发电机、冷却水塔等设备的减震隔振,如能附加采用阻尼器设设,则能适用于冲床、压力、锻锤机等冲击型设备的振动隔离。 弹簧减震器由巩义市华能管道装备制造有限公司生产,欢迎您来关注https://www.360docs.net/doc/9d3129227.html,.

阻尼器用在哪里

阻尼器用在哪里 阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。 1、在航天、航空、军工、机械等行业中广泛应用,有着几十年成功应用的历史。 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究,发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考 ·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法

·管理部门通过,带来了上百个结构工程实际应用。这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。 2、仓储货架编辑 在重力式货架仓储中,由于货物受到重力影响,在倾斜的仓储滑道中做加速运动,如果任其自由运动, 货物撞击货架,可能会引起货物损坏,操作人员安全隐患以及货架整体结构的损毁。而阻尼器在其中起了非常重要的作用。重力式货架中的阻尼器,又称减速器,主要用于消除重力式货架中货物产生的重力加速度,从而使得货物能够平稳,缓慢的沿轨道下滑,消除安全隐患。保证货物及操作人员的安全性。其中阻尼可分为外置式和内置式。 3、液压阻尼器是一种对速度反应灵敏的振动控制装置; 液压阻尼器主要适用于核电厂、火电厂、化工厂、钢铁厂等的管道及设备的抗振动。常用于控制冲击性的流体振动(如主汽门快速关闭、安全阀排放、水锤、破管等冲击激扰)和地震激扰的管系振动; 液阻尼器对低幅高频或高幅低频的振动不能有效地控

某教学楼应用阻尼器的抗震性能分析

龙源期刊网 https://www.360docs.net/doc/9d3129227.html, 某教学楼应用阻尼器的抗震性能分析 作者:徐倩 来源:《建筑与装饰》2016年第06期 摘要传统的抗震结构体系通常是加大结构本身的性能来抵御地震作用,消能减震结构体系是通过给结构添加消能减震装置来耗散地震能量达到抗震目的。黏滞阻尼器具有构造简单、材料经济、环境影响小、便于施工、减震效果明显、对原结构干扰小的优点,目前在很多领域都有应用。 关键词黏滞阻尼器;弹性时程分析;弹塑性时程分析 1 前言 黏滞耗能阻尼器的研发和应用,等于给建筑或桥梁装上了"安全气囊"。在地震来临时,阻尼器最大限度吸收和消耗了地震对建筑结构的冲击能量,大大缓解了地震对建筑结构造成的冲击和破坏。 2 工程概况 小学教学楼2#楼占地1087.68平方米,建筑面积5510.06平方米。本工程抗震设防烈度为8(0.2g),地震分组:第三组,场地类别:Ⅱ类。教学楼的3D模型图如图1所示。 3 确定阻尼器的参数和数量及安装位置和型式 阻尼器的安装位置:楼层平面内的布置遵循“均匀、分散、对称”的原则[1]。阻尼器竖向布置应先对非减震结构进行计算分析,确定层间位移角最大楼层,将阻尼器安装在此楼层处,安装数量根据具体情况而定,然后再对安装了阻尼器的结构进行分析,再将阻尼器安装到此时层间位移角最大楼层,如此循环直到将所有阻尼器安装完毕[2-3]。阻尼器连接单元在模型中的模拟形式如下图2所示,表1 黏滞阻尼器技术参数及布置表: 4 结构弹性时程分析 《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波 在表2和图3. 在ETABS分析中,弹性时程分析采用软件所提供的快速非线性分析(FNA)方法,得出层间位移角表3 。

二阶弹簧-阻尼系统PID控制器参数整定

《控制系统仿真与CAD》大作业 二阶弹簧—阻尼系统的PID控制器设计及参数整定 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 班级:电气173班 学号:************ 姓名:李** 老师:** 时间:2020年6月13日

1. 题目与要求 考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数()G s 如下,参数为M=1kg ,b=2N.s/m ,k=25N/m ,()1F s =。设计要求:用.m 文件和simulink 模型完成。 图 1 弹簧--阻尼系统 (1)控制器为P 控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。 (2)控制器为PI 控制器时,改变积分系数大小,分析其对系统性能的影响并绘制相应曲线。(例如当Kp=50时,改变积分系数大小) (3)设计PID 控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。 2. 分析: (1)根据受力分析可得系统合力与位移之间微分方程: F kx x b x M =++&&& (2)对上得微分方程进行拉普拉斯变换,转化后的系统开环传递函数: 25211)()()(22++= ++== s s k bs Ms s F s X s G (3)系统输入为力R(S)=F(S),系统输出C(S)为位移X(S),系统框图如下: 图 2 闭环控制系统结构图 3. 控制器为P 控制器时: 控制器的传递函数p p K s G =)(,分别取p K 为1,10,20,30,40,50,60,70,80, (1)simulink 构建仿真模型如图3,文件名为:P_ctrl ;

车辆最佳匹配减振器阻尼_图文(精)

第8卷第3期 2008年6月 交通运输工程学JournalOfTrafficandTransportatio报 一 ● ● n Lngmeerlng V01.8 Jun.NO.3 2008 文章编号:1671—1637I2008)03—0015—05 0 车辆悬架最佳阻尼匹配减振器设计 周长城1’2,孟婕 (1.山东理工大学交通与车辆工程学院,山东淄博255049; 2.北京理工大学机械与车辆工程学院,北京 100081)

摘 要:为了使设计减振器对车辆具有最佳减振效果,利用悬架最佳阻尼比,对减振器最佳阻尼系 数进行了研究,建立了减振器最佳速度特性数学模型,提出了减振器阀系参数设计优化方法,对设计减振器进行了特性试验和整车振动试验,并与原车载减振器性能进行了对比。计算结果表明:减振器特性试验值与最佳阻尼匹配要求值的最大偏差为9%,而且,在低频范围内,设计减振器的整车振动传递函数幅值明显低于原车载减振器的幅值,有效遏制了簧下质量在13Hz附近的共振,因此,减振器速度特性模型和阀系参数优化设计方法是正确的。关键词:汽车工程;减振器;最佳阻尼;速度特性;设计模型;优化方法中图分类号:U463.335.1 文献标识码:A Designofshockabsorbermatchingtooptimal dampingofvehiclesuspension ZhouChang—chen91”.MengJiel (1.SchoolofTrafficandVehicleEngineering,ShandongUniversityofTechnology,Zibo255049,Shandong,China;2.Schoolof MachineandVehicleEngineering,BeijingInstituteofTechnology,Beijing100081,China) Abstract:Inorderto

减振器阻尼系数与悬架系统阻尼比的匹配(精)

第22卷第6期2000年12月 武汉汽车工业大学学报 JOURNA L OF W UH AN AUT OM OTI VE PO LY TECH NIC UNI VERSITY V ol.22N o.6 Dec.2000 文章编号:10072144X(20000620022204 汽车减振器阻尼系数与悬架系统阻尼比的匹配 韦勇1,阳杰2,容一鸣2 (1.柳州五菱汽车有限责任公司技术中心,广西柳州545007;2.武汉汽车工业大学机电工程学院,湖北武汉430070 摘要:阐述了双轴汽车减振器阻尼系数与悬架系统阻尼比匹配设计的原则,论述了悬架减振器 外特性的匹配设计要求和设计方法,并对某实际车型进行了减振器阻尼系数与悬架系统阻尼比匹 配分析及改进设计。通过道路试验验证了改进设计的结果是可行的。 关键词:减振器;汽车悬架;阻尼比匹配 中图法分类号:U463.33文献标识码:A 汽车悬架动力学表明,地面对悬架系统的激振力等于悬架质量的惯性力和非悬架质量的惯性力之和。车轮动载(激振力又决定了车轮的接地性能,它是汽车行驶安全性的重要尺度。显然,在悬架系统中配置恰当的减振器,才能有效地抑制车身振动,保证良好的平顺性及安全性。

1阻尼匹配的原则 根据振动理论和工程经验,悬架阻尼的匹配关系由式(1确定: ξ=C 2Km =0.2~0.45(1式中,ξ为悬架系统阻尼比;C为悬架减振器的等效阻尼系数 (NsΠm;K为悬架刚度(NΠm; m为悬架质量(kg。当减振器不是垂直安装时,要考虑安装角的影响。 悬架中的弹性元件在支承车身质量的同时,还可缓和路面产生的振动,而减振器起抑制振动的作用。缓冲和抑振是矛盾着的两个方面,它们是在保证车辆和乘员安全的正常运行条件下统一起来的,这就是悬架阻尼必须匹配设计的依据。ξ值较大时,能迅速减振,但不适当地增大ξ值会传递较大的路面冲击,甚至使车轮不能迅速向地面回弹而失去附着力和对激励的缓冲能力;ξ值较小时,振动持续时间变长,又不利于改善舒适性。 一般说来,压缩行程时的悬架阻尼比要小于复原行程,因为在压缩行程,应尽量减小减振器对地面冲击的传递能力,以便充分利用弹性元件的缓冲作用,如果不适当地选择了高系数值,就相当于过分增大了悬架刚度,使车辆的平顺性变坏。在确定了ξ值之后,可由式(1确定减振器的阻尼系数。因此,确定ξ值是减振器设计的原始技术条件。 收稿日期:2000209218. 作者简介:韦勇(19672,男,广西柳州人,柳州五菱汽车有限责任公司工程师. 2悬架减振器非线性外特性的规律化和量化问题 众所周知,被动悬架可行性设计区理论规定了悬架弹性元件和阻尼元件的线性制约关系或匹配关系[1]。在解决悬架阻尼系数的匹配问题时,必须解

弹簧减震器结构图解

弹簧减震器结构图解 独立悬架与非独立悬架示意图 a. 独立悬架 b. 非独立悬架 独立悬架如图所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧 1-卷耳2-弹簧夹3-钢板弹簧4-中心螺栓 钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车

架的振动衰减,起到减振器的作用。 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种,工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的。 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸 筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防 尘罩11-油封 横向稳定器的安装

在世界桥梁工程的阻尼器

https://www.360docs.net/doc/9d3129227.html,/chinese/kangzhen/qitai/anzhuangfangshi.htm 在世界桥梁工程中遇到的桥上应用到的阻尼器有以下几种: ?锁定装置 ?液体粘滞阻尼器 ?熔断阻尼器 ?限位阻尼器 ?摩擦型液体粘滞阻尼器 ?支座式金属屈服阻尼器 前面五种都是主活塞形式的阻尼器。粘滞锁定阻尼器和粘滞阻尼器是最常用的阻尼器,这两种结构可能是完全相同,仅硅油(或胶泥)流动的小孔大小不同,粘滞锁定阻尼器仅是粘滞阻尼器的一种特例。熔断阻尼器和限位阻尼器是实际工程发展出的液体粘滞阻尼器的最新产品。摩擦型液体粘滞阻尼器是最近几年在国内外有的公司生产的一种阻尼器,如果真有需要,泰勒公司可以生产,但并不推荐。支座式金属屈服阻尼器不是本文的内容,我们不作讨论。 锁定(Lock-up)装置(Lock-Up Device (LUD), or Shock Transmission Unit (STU)) Lock-Up 装置,见图4-1,它是一种类似速度开关的限位装置,当桥梁运动到某一速度时启动。锁定装置两个安置点间的相对位移。它的工作原理就像汽车上的安全带。在慢速运动中它不限制。在急速运动中会起到制动作用。这种装置不能耗散能量。用在大桥上的锁定装置,在温度和正常活荷载下可以自由变形,但对于中小地震荷载、较大的风荷载带来的桥梁各部分间的运动和碰撞,可有效地起到减少、转移和限制作用。 图4-1泰勒公司生产的680 吨大型锁定装置及桥上的安装 液体粘滞阻尼器(Liquid Viscous Damper) 在本文的前述文章―结构工程中应用的泰勒公司液体粘滞阻尼器‖中我们已经全面的介绍了液体粘滞阻尼器。他是我们介绍的基本产品,也是要推荐的主要产品。它是个需要并且能够精确计算的定量化的产品,绝不仅是一个定性化的减振器。

二阶弹簧—阻尼系统,PID控制器设计,参数整定

二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制 的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:()P P G s K = 积分控制器的传递函数为:11()PI P I G s K T s =+ ? 微分控制器的传递函数为:11 ()PID P D I G s K T s T s =+ ?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。

图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: F kx x b x M =++ 25 21 1)()()(22++= ++== s s k bs Ms s F s X s G 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数)

阻尼弹簧减振器

ZT型阻尼弹簧减振器(JG/T3024-1995) 产品主要特点与用途: ZT型阻尼弹簧减振器(又称预应力弹簧减振器)具 有钢弹簧减振器的低频率和阻尼大的双重优点,消除钢 弹簧固有的共振振幅现象。该系列产品共20种规格,其 单只荷载10kg-5100kg各类荷载所应对的固有频率 2.0Hz-4.6Hz,阻尼比0.065。该系列减振器荷载范围广, 便于用户选择,固有频率低,隔振效果好,并且结构紧凑,外形尺寸较小,安装更换方便,使用安全可靠,工作寿命长,对工作环境适应性强,并能在-40℃-110℃环境下正常工作。对积极隔振、消极隔振、冲击振动和固体传声的隔离均有明显的效果。是隔离振动降低噪声、治理振动公害、保护环境的理想减振器。 ZT型系列减振器共有三种安装形式,ZT型减振器上下座面有防滑橡胶垫,对于干扰力较小的动力设备,可直接将ZT型减振器置放于设备的机座下,勿需固定,可任意移动调节重心,ZT(I)型上部固定,ZT(Ⅱ)型上下均可固定。 注ZT、ZT(I)、ZT(Ⅱ)型减振器仅在安装固定方式上不同外,技术特性完全相同。

ZTG型阻尼弹簧减振器 产品主要特点与用途: ZTG型阻尼弹簧减振器由弹簧、上橡胶套、下橡胶垫、上下铁件等 组成的减振器,具有结构简单、体积小,减振效果好,安装方便等优 点。 JA型阻尼弹簧减振器 产品主要特点与用途: 1、弹簧采用低频率值设计,并经喷塑处理,耐候性 佳,防振效果高。 2、顶部、底部均采用防滑耐磨橡胶以及固定螺栓设 计,安全性能大大提高。 3、安装简单并可根据实际需要调整高度及水平。 4、能够有效隔离冷水机组、冷却塔、热泵机组、发电机组等大型机械设备振动,并保护及延长其使用寿命。

二阶弹簧阻尼系统ID控制器设计参数整定

二阶弹簧阻尼系统I D控制器设计参数整定 This model paper was revised by the Standardization Office on December 10, 2020

二阶弹簧—阻尼系统的PID 控制器设计及参数整定 一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: ()P P G s K = 积分控制器的传递函数为: 11()PI P I G s K T s =+? 微分控制器的传递函数为: 11()PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等于1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和得图所示)

避震器与阻尼

避震器与阻尼 由上图可清处看出避震器对于抑制弹簧谈跳的效果。

避震器的内部就是使用高黏滞系数的流体以及小尺寸的孔径,来进行阻尼的设定。 避震器的功用 从避震器这个名称看来,好像车辆的震动主要是由避震器来吸收,其实不然。车辆在行经不平路面之震动所产生的能量主要是由弹簧来吸收,弹簧在吸收震动后还会产生反弹的震荡,这时候就利用避震器来减缓弹簧引起的震荡。 当避震器失效时,车子在行经不平路面就会因为避震器无法吸收弹簧弹跳的能量,而使车身有余波荡漾的弹跳,影响行车稳定性及舒适性。简单的说,避震器最主要是要抑制弹簧的跳动,迅速弭平车身弹跳。 阻尼 「阻尼」这个词我们可能很常听到,但是究竟何谓阻尼呢?简单的说,阻尼是作用于运动物体的一种阻力,而且阻力通常与运动速度成正比。就拿一般人常见的门弓器来说,当你轻轻开门时,门弓器内的油压缸所产生的阻力很小,很轻松就能把门推开;但是当你用力推门时,反而会因阻力较大而不好推。同样原理应用于汽车避震器,当弹簧受到较大的伸张或压缩力时,避震器会因阻尼效应而给予较大的抑制力。 避震器之所以会产生阻尼效应,是因避震器受力而压缩或拉伸时,内部的活塞在移动时会对液压油或高压气体加压使之通过小孔径的阀门,当液压油或高压气体通过阀门时会产生阻力,此一阻力就产生阻尼;而阀门的孔径大小和液压油的黏度都会改变阻尼的大小。一般阻尼较大的避震器就是所谓较硬的避震器,阻尼越大则避震器越不容易被压缩或拉伸,所以车身的晃动也会越小,并增加行经不平路面时轮胎的循迹性,然而却会降低行驶时的舒适性。 可调式避震器 可调式避震器可分为阻尼大小可调式避震器和弹簧位置高低可调式避震器,以及阻尼大小和弹簧位置高低都可调整的避震器。 阻尼大小可调式: 在避震器的内部使用可以调整孔径大小的阀门,在将阀门的孔径变小之后,避震器的阻尼也会跟着变硬。调整避震器的阻尼大小的方式可分为有段与无段的方式。以电子控制方式改变阻尼大小的避震器,则是采取有段调整的方式。

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

二阶弹簧—阻尼系统,PID控制器设计,参数整定

*** 二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20 世纪30 年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整, 在长期应用中已积累了丰富的经验。特别是在工业过程控制中, 由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:G (s) K P P G (s) K PI P 1 1 T s I 积分控制器的传递函数为: 1 1 G (s) K T s PID P D T s I 微分控制器的传递函数为: 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1 );系统示意图如图 1 所示。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:M x bx kx F G( s) X F ( ( s) s) Ms 1 1 2 bs k s2 s 2 25 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P、PI、PID 控制器)设计及其参数整定,定量 分析比例系数、积分时间与微分时间对系统性能的影响。同 时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅 助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小, 分析对系统性能的影响并绘制相应曲线。(当kp=50 时,改变积分时间常数)

循环水泵应该采用哪种阻尼弹簧减震器

上海淞江减震器集团有限公司技术人员为您介绍:循环水泵应该采用哪种减震器效果是最好的,是橡胶减震器好呢还是弹簧减震器效果好,所以下面为您介绍一下。 循环水泵减震器一般选择弹簧减震器效果是最好的,那么弹簧减震器又有很多种类,那么我们如何选择呢,下面先为您介绍一下这几种弹簧减震器的性能,然后再选出效果最好的减震器产品。 一、ZTA型阻尼弹簧减震器: ZTA型阻尼弹簧减振器(申请专利产品)具有钢弹簧减振器的低频率和阻尼大的双重优点,消除钢弹簧固有的共振振幅现象。 产品特点: 1、外形壳体为优质钢材一体成型,减振器在运输以及运作过程中永远都不会出现断裂情况,提升减振器使用寿命。

2、荷载范围广,便于用户选择,固有频率低,隔振效果好,并且结构紧凑,外形尺寸较小,安装更换方便,使用安全可靠,工作寿命长。 3、对工作环境适应性强,并能在-40℃-110℃环境下正常工作。对积极隔振、消极隔振、冲击振动和固体传声的隔离均有明显的效果。是隔离振动降低噪声、治理振动公害、保护环境的理想减振器。 二、ZTF型阻尼弹簧减震器: 1、弹簧采用低频率值设计,并经喷塑处理,耐候性佳,防震效果好。 2、顶部、底部均采用防滑耐磨橡胶以及固定螺栓,安全性能大大提高。 3、安装简单并根据实际需要调整水平及高度。 4、能够有效隔离冷水机组、冷却塔、热泵机组、发电机组、等大型动力设备的振动,并保护及延长其使用寿命。 三、JB型低频阻尼弹簧减震器: 产品介绍:JB型弹簧减振器又称风机减振器具有结构简单,安装方便等特点,减振器上下端各有螺丝及螺丝孔,弹簧上端有高度调节螺母,可根据安装需要自由调整高度,减振器两端有侧向橡胶阻尼,加大了垂向的阻尼系数,提高了纵向和横向的刚度,确保设备能更安全的运行。 产品特性:本体材质分为特殊强化尼龙及球状铸铁。特殊强化尼龙材质为尼龙加强化纤维,强度极佳;尼龙材质可耐酸硷,防紫外线,并经严格老化测试,品质优良,安全性高。球状铸铁本体经热浸镀锌处理,耐候性佳。外型轻巧坚固,按装容易;适用于各类机械内避震装置。弹簧均经热处理、ED防锈、烤漆等程序处理。荷重挠度25mm、40mm能有效消除机械结构振动。尼龙材质工作温度0℃~50℃。 四、循环水泵: 循环水泵是输送流体或使其增压的机械,包括某些输送气体的机械。其作用是向汽轮机凝汽器供给冷却水,用以冷却凝气轮机排汽。

调谐高质量阻尼器(TMD)在高层抗震中地应用

调谐质量阻尼器(TMD)在高层抗震中的应用 摘要:随着经济的发展,高层建筑大量涌现,TMD系统被广泛应用。越来越多的学者对TMD系统进行研究和改进。本文介绍了TMD系统的基本工作原理,总结了其各种新形式,分析了它的研究现状,并指出了两个新的研究方向等。 关键词:TMD系统高层建筑抗震原理发展应用 The use of the tuned mass damper in the seismic resistance of the high-rise building Abstract:With the economic development, the high-rise buildings spring up, then, the tuned mass dampers are extensively used. More and more scholars research and improve the tuned mass damper. This thesis introduces the operating principle of the tuned mass damper,summarizes many new forms of the tuned mass damper, analyzes its research status and even points out two new research directions. Keyword: the tuned mass damper the high-rise building seismic resistance principle development use 1.引言 随着社会经济的快速发展,城市人口密度不断增长,城市建筑用地日益紧张,高层建筑成为城市化发展的必然趋势[1-3]。高层及超高层建筑的不断涌现,加上建筑物的高度和高宽比的增加以及轻质高强材料的应用,导致结构刚度和阻尼不断下降。建筑物在强风或地震等激励作用下的动力反应强烈,难以满足建筑结构安全性、舒适性和使用性的要求。传统的采用提高结构强度和刚度来抗风抗震的设计方法,存在着一定的弊端[1]:(1)经济性差;(2)安全性难以保证。这主

弹簧 质量 阻尼系统的建模与控制系统设计

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号:

提交时间:目录

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图所示,

图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中,, ,,,。系统的建立 由图,根据牛顿第二定律,分别分析两个小车的受力情况,建立系统的动力学模型如下: 对有: 对有:

阻尼减震器的特点及优点【建设施工经典推荐】

阻尼减震器的特点及优点 什么是阻尼减震器 阻尼减震器对阻尼弹簧,橡胶减振垫组合使用,克服其缺点,具有复合隔振降噪,固有频率低,隔振效果好,对隔离固体传声,尤其是对隔离高频冲击的因体传声更为优越。是积极,消极隔振的理想产品。 阻尼减震器的特点 阻尼减震器载荷范围广,工作寿命长,使用安全可靠。上下座外表有防滑橡胶垫,对于扰力小,重点低的设备可直接将减振器放置于设备减振台座下,勿需固定:上座配有螺栓与设备固定。下座分别设有螺栓与地基螺栓孔,可以下固定。用户可根据不同的需要和场合进行选择。 阻尼减震器的优点 1、顶部和底部采用防滑耐磨橡胶和固定螺栓制成,提高了安全性能,安装方便。 2、铸钢外壳由合金钢弹簧制成,并且是注射成型的。耐候性好,使用寿命长,防震效果好。 3、它能有效隔离各种卧式和立式水泵、风机、空调机组、发电机组、柴油机组、管道等动力设备的振动,保护和延长其使用寿命。 阻尼减震器的功能 1、阻尼减震器有助于机械系统在瞬间受到冲击后迅速恢复到稳定状态。 2、阻尼震振器可以减少机械振动引起的声辐射和机械噪声。 3、能提高各种机床和仪器的加工精度、测量精度和工作精度。各种机器,尤其是精密机床,在动态环境中工作时,需要高抗冲击性和动态稳定性。通过各种阻尼处理,其动态性能可以提高。 4、阻尼减震器可以减小机械结构的协同振动幅度,从而避免因动应力极值而造成的结构损伤。 阻尼减震器的技术参数 阻尼减振器适用工作温度为-40℃--110℃,正常工作载荷范围内固有频率2HZ—5HZ,阻尼比00.045—0.065。(减振弹簧经150次疲劳试验无裂缝,无断裂,达到和超过了国家有关标准)。

悬架用减振器设计指南

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

阻尼器

粘滞阻尼器Viscous Damper 一、粘滞阻尼器的基本构造 粘滞阻尼器(或称油阻尼器)的原理与构造如右图所示。我们知道,用水枪喷水时,如果要使水流越快或水的出口越小,需要的力也越强。油阻尼器就是运用了这一原理。一般的油阻尼器用钢制的油缸与活塞代替水枪筒与压杆。并在活塞上设置细小的油孔,代替水的出口。当油体通过狭小的阻尼孔时,阻尼器吸收的能量通过流体抵抗转换为热能。 当油体通过的阻尼孔直径一定时,油阻尼器的抵抗 中文名称:阻尼器 英文名称:damper 定义:利用航空器角速度反馈系统增强角运动阻尼的自动装置。 应用学科:航空科技(一级学科);飞行控制、导航、显示、控制和记录系统(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 阻尼器 阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。

目录 概述 发展过程 仓储货架 工程结构 分类 展开 概述 发展过程 仓储货架 工程结构 分类 展开 编辑本段概述 瑞安立奇气弹簧基本概念 大家知道,使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。而安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。 编辑本段发展过程 ·在航天、航空、军工、机械等行业中广泛应用,几十年成功应用的历史 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研 究,发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考

相关文档
最新文档