§5对称矩阵的标准形

§5对称矩阵的标准形
§5对称矩阵的标准形

§8.5 对称矩阵的标准形

二次型的标准型

§2 标准形 一、二次型的标准型 二次型中最简单的一种是只包含平方项的二次型 2 222211n n x d x d x d +++ . (1) 定理1 数域P 上任意一个二次型都可以经过非化线性替换变成平方和(1)的形式. 易知,二次型(1)的矩阵是对角矩阵, ().000000 ,,,212 1212 222211?????? ? ????????? ??=+++n n n n n x x x d d d x x x x d x d x d 反过来,矩阵为对角形的二次型就只包含平方项.按上一节的讨论,经过非退化的线性替换,二次型的矩阵变到一个合同的矩阵,因此用矩阵的语言,定理1可以叙述为: 定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定理2也就是说,对于任意一个对称矩阵A 都可以找到一个可逆矩阵C 使 AC C ' 成对角矩阵. 二次型),,,(21n x x x f 经过非退化线性替换所变成的平方和称为 ),,,(21n x x x f 的标准形. 例 化二次型 32312121622),,,(x x x x x x x x x f n -+= 为标准形. 二、配方法 1.,011≠a 这时的变量替换为

????? ????==-=∑=-. , , 222 11 1111n n n j j j y x y x y a a y x 令 ??? ? ? ? ? ? ?--=--100010 111 11121111 n a a a a C , 则上述变量替换相应于合同变换 11AC C A ' → 为计算11AC C ',可令 ()??? ? ? ??==nn n n n a a a a A a a 22221112,,,α. 于是A 和1C 可写成分块矩阵 ??? ? ??-=???? ? ?' =--11 1111111,n E O a C A a A ααα, 这里α'为α的转置,1-n E 为1-n 级单位矩阵.这样 .111 1 1111111 11 11111111 1111111 1111??? ? ??'-=???? ??-???? ? ?'-=???? ??-???? ??'? ??? ??'-=' --------αααααααααa A O O a E O a a A O a E O a A a E a O AC C n n n 矩阵αα'--1 111a A 是一个)1()1(-?-n n 对称矩阵,由归纳法假定,有 )1()1(-?-n n 可逆矩阵G 使 D G a A G ='-'-)(1 111αα 为对角形,令 ??? ? ??=G O O C 12,

矩阵的各种标准形研究

玉林师范学院本科生毕业论文 反例在数学证明中的运用Study about the Kind of Matrix Standard Form Question 院系数学与信息科学学院 专业数学与应用数学 学生班级2010级1班 姓名 学号201004401137 指导教师单位数学与信息科学学院 指导教师姓名 指导教师职称副教授

数学与应用数学2010级1班梁玉漫 指导老师钟镇权 摘要 数学与应用数学专业本科生撰写学位论文应当符合写作规范和排版格式的要求.以下格式为依据国家标准和行业规范所编制的学士学位论文格式模板,供我系毕业生参照使用.理工科论文句号一律用实心圆点. 摘要部分说明: “摘要”是摘要部分的标题,不可省略. 标题“摘要”可选“标题1+四号”或手动设置成字体:黑体,居中,字号:四号,1.5倍行距,段前为0,段后11磅. 论文摘要是学位论文的缩影,文字要简练、明确。内容要包括目的、方法、结果和结论。单位制一律换算成国际标准计量单位制,除特别情况外,数字一律用阿拉伯数码。文中不允许出现插图. 摘要正文选用模板中的样式所定义的“正文”,每段落首行缩进2个汉字;或者手动设置成每段落首行缩进2个汉字,字体:宋体,字号:小四,行距:多倍行距1.25,间距:前段、后段均为0行,取消网格对齐选项. 摘要篇幅以一页为限,字数为300-500字. 摘要正文后,列出3-5个关键词。“关键词:”是关键词部分的引导,不可省略。关键词请尽量用《汉语主题词表》等词表提供的规范词. 关键词与摘要之间空一行.关键词词间用逗号间隔,末尾不加标点,3-5个,黑 体,小四.

Mathematics and Applied Mathematics 2007-2 Supervisor Su Derong Abstract Study about the question of matrix not only is the foundation of studying classical mathematics, also is useful value for the mathematics theory. It is not only an important branch of mathematics, also already become the powerful tool of processing massive question in the modern science and technology .Specially, computer has been used, which is opened the broad prospect for studying about the question of matrix. But the standard form of matrix has very important status whether in the theory or in the application. This article takes standard form of matrix as research object, starting from equal normal form, according to characteristic nature and qualitative, draws about two kind of different standard forms----similar standard form and contract standard form. What is more , sums up these two kinds of standard form convergence point as the solid symmetrical matrix standard form, through many examples, make every standard form expresses itself clearly, also causes the relation between them clearer. In the end , sums up the relation of several standard forms. Make us to understand the problem more profound. Key words: matrix, equal standard form, similar standard form, contract standard form

化二次型为实用标准形地几种方法

化二次型为标准形的几种方法 摘要 二次型是代数学要研究的重要容,我们在研究二次型问题时,为了方便,通常将二次型化为标准形.这既是一个重点又是一个难点,本文介绍了一些化二次型为标准形的方法:正交变换法,配方法,初等变换法,雅可比方法,偏导数法.正文详细介绍了几种方法的定义以及具体步骤,并举出合适的例题加以说明.其中,偏导数法与配方法又相似,只是前者具有固定的步骤,而配方法需要观察去配方. 关键词:正交变换法配方法初等变换法雅可比方法偏导数法

reduce the quadratic forms to the standard forms Abstract:Quadratic is the important content should study algebra, in our studies of quadratic problem, for convenience, will usually be quadratic into standard form. This is both a key is a difficulty, this paper introduces some HuaEr times for the standard form of orthogonal transform method, method: match method, elementary transformation, jacobian method, partial derivative method. The text introduces several methods defined and concrete step, simultaneously gives appropriate examples to illustrate. Among them, the partial derivative method and match method and similar, but the former has the fixed steps, and match method need to observed to formula. Keywords:orthogonal transform method match method elementary transformation jacobian method partial derivative method

化二次型为实用标准型的方法

化二次型为标准型的方法 二、 二次型及其矩阵表示 在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 2 2 ax 2bxy cy f ++=. (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方 向转轴) '' '' x x cos y sin y x sin y cos θθ θθ ?=-??=+?? (2) 把方程(1)化成标准方程。在二次曲面的研究中也有类似的情况。 (1)的左端是一个二次齐次多项式。从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。现在就来介绍它的一些最基本的性质。 设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的二次齐次多项式 22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++ 称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。 设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式 11111221n n 22112222n n 33113223n n n n12n22nn n x c y c y ...c y x c y c y ...c y x c y c y ...c y ...........x c y c y ...c y =++??=++?? =++???=++?? (4) 称为由12n x ,x ,...,x 到12n y ,y ,...,y 的一个线性替换,。如果ij c 0≠,那么线性替换(4)就称为非退化的。 在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。另 ij ji a =a ,i

二次型化为标准形的几种方法

2015届本科毕业论文 题目:二次型化为标准型方法 所在学院:数学科学学院 专业班级:数学与应用数学11-2班 学生姓名:赵江南 指导教师:艾合买提 答辩日期:2015年5月5日

目录 1 引言.............................................. 错误!未定义书签。 2 关于二次型定义 ................................... 错误!未定义书签。 3 二次型化为标准型的方法 ........................... 错误!未定义书签。 正交变换法 ...................................... 错误!未定义书签。 . 配方法 ......................................... 错误!未定义书签。 . 初等变换法 ..................................... 错误!未定义书签。 . 雅可比方法 ..................................... 错误!未定义书签。 . 偏导数法 ....................................... 错误!未定义书签。 4. 小结 ............................................ 错误!未定义书签。参考文献 .......................................... 错误!未定义书签。致谢 .............................................. 错误!未定义书签。

5-2 化二次型为标准形

5-2 化二次型为标准形 包括四个内容:1、满秩线性变换与合同矩阵; 2、用正交变换化实二次型为标准形; 3、用配方法化二次型为标准形; 4、惯性定理与实二次型的规范形。 5.2.1满秩线性变换与合同矩阵 一、满秩线性变换与正交变换 复习:P21:-6行至P22:-1行,线性变换及其矩阵表示 定义:[P194:-6行至P195:8行] 由变量y1,y2,…,yn到x1,x2,…,xn的实线性变换?? ? =CY X )9.5()8.5(矩阵形式代数形式。 当矩阵C是可逆矩阵时,称X=CY为满秩(可逆)线性变换。 当矩阵C是正交矩阵时,称X=CY为正交变换。 正交变换是满秩变换,但满秩变换不一定是正交变换。 二、经过满秩线性变换后,原二次型矩阵与新二次型矩阵的关系 设实二次型f(x1,x2,…,xn)的矩阵为A,则 f(X)=XTAX(AT =A) 作满秩线性变换X=CY(C ≠0),得 f(X)=XT AX=(CY)T A(CY)=YT (CT AC)Y=g(Y) (5.10) g(Y)是关于变量y1,y2,…,yn的二次型,并且 (CTAC)T=CTAT(CT)T=CTAC,所以CT AC是对称矩阵。 可见,经过满秩线性变换后,新二次型的矩阵为:CT AC。 定义5.2[P196:3-7行]n阶方阵A与B合同:A B。 合同变换,合同变换的矩阵。 定理:满秩线性变换前后,两个二次型的矩阵是合同的。[从两方面详细讲述] 思考题(1)[P205]若二次型f=XTAX(AT =A)经过满秩线性变换X=C Y化成了二次型f=YT BY,问A与B的关系是什么? 本章中心问题:[P195:-6行至-1行] 实二次型 ????→?满秩实线性变换 标准形(只含平方项的二次型) XTAX======YT(CTAC)Y=d1y12+d2y22+…+dnyn2 (AT =A)

第5讲 λ矩阵与标准形

第5讲 λ-矩阵与标准形 内容:1. 矩阵的Jordan 标准形 2. 矩阵的最小多项式 3. λ-矩阵与Smith 标准型 4. 多项式矩阵的互质性与既约性 5. 有理式矩阵的标准形及仿分式分解 λ-矩阵又称多项式矩阵是矩阵理论中的重要内容, 在线性控制系统理论中有着重要的应用. 本讲讨论λ-矩阵和数字矩阵的相似标准形、矩阵的Jordan 标准形、矩阵的最小多项式、多项式矩阵与有理分式矩阵的标准形. §1 矩阵的Jordan 标准形 1.1 矩阵相似 定义 1.1 设A 和B 是矩阵,C 和D 是非奇异矩阵,若DAC B =,则称A 和B 相抵;若AC C B T =,则称A 和B 相合(或合同);若AC C B 1-=,则称A 和B 相似,即若n n C B A ?∈,,存在n n n C P ?∈,使得B AP P =-1,则称A 与B 相似,并称P 为把A 变成B 的相似变换矩阵.特别,当1-=P P H ,称A 与B 酉相似,当1-=P P T ,称A 与B 正交相似. 相似是矩阵之间的一种重要的关系. 相似矩阵具有以下性质:

定理1.1 设n n C B C A ?∈,,, )(λf 是一个多项式,则 (1) 反身性:A 与A 相似; (2) 对称性:若A 与B 相似,则B 与A 也相似; (3) 传递性:若A 相似于B ,B 相似于C ,则A 与C 相似; (4) 若A 与B 相似,则B A det det =,rankB rankA =; (5) 若A 与B 相似,则)(A f 与)(B f 相似; (6) 若A 与B 相似,则)det()det(B I A I -=-λλ,即A 与B 有相同的特征多项式,从而特征值相同. 对角矩阵是较简单的矩阵之一,无论计算它的乘积、幂、逆矩阵和特征值等都比较方便.问题:方阵A 能否相似于一个对角矩阵? 定义1.2 设n n C A ?∈,若A 相似于一个对角矩阵,则称A 可对角化. 定理 1.2 设n n C A ?∈,则A 可对角化的充要条件是A 有n 个线性无关的特征向量. 证明 充分性.设),,,(211n diag AP P λλλ =Λ=-,其中 ),,,(21n p p p P =,则由Λ=P AP 得i i i p Ap λ=, ),,2,1(n i =,可见i λ是A 的特征值,P 的列向量i p 是对应特征值i λ的特征向量, 再由P 可逆知n p p p ,,,21 线性无关. 必要性. 如果A 有n 个线性无关的特征向量n p p p ,,,21 ,即有i i i p Ap λ=,),,2,1(n i =,记),,,(21n p p p P =,则P 可逆,且有 ),,,(),,,(221121n n n p p p Ap Ap Ap AP λλλ ==

化二次型为标准型

化二次型为标准型公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第二节 化二次型为标准形 若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式 ,2 222211n n y b y b y b +++ 则称之为二次型),,,(21n x x x f 的标准形. 由上节讨论知,二次型AX X x x x f T n =),,,(21 在线性变换CY X =下,可化为.)(Y AC C Y T T 如果AC C T 为对角矩阵 ? ?????????? ?=n b b b B 21 则),,,(21n x x x f 就可化为标准形,2222211n n y b y b y b +++ 其标准形中的系数恰好为 对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵. 内容分布图示 ★ 二次型的标准性 ★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形 ★ 例5 ★ 例6 ★ 定理3 ?4 ★ 用正交变换化二次型为标准形 ★ 例7 ★ 例8 ★ 二次型与对称矩阵的规范形 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回 内容要点: 一、用配方法化二次型为标准形. 定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤: (1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形;

第二节 化二次型为标准型

第二节 化二次型为标准形 若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式 ,2 222211n n y b y b y b 则称之为二次型),,,(21n x x x f 的标准形. 由上节讨论知,二次型AX X x x x f T n ),,,(21 在线性变换CY X 下,可化为.)(Y AC C Y T T 如果AC C T 为对角矩阵 n b b b B 21 则),,,(21n x x x f 就可化为标准形,222 2211n n y b y b y b 其标准形中的系数恰好为对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵. 内容分布图示 ★ 二次型的标准性 ★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形 ★ 例5 ★ 例6 ★ 定理 3 4 ★ 用正交变换化二次型为标准形 ★ 例7 ★ 例8 ★ 二次型与对称矩阵的规范形 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回 内容要点: 一、用配方法化二次型为标准形. 定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤: (1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形; (2) 若二次型中不含有平方项, 但是)(0j i a ij ,则先作可逆变换 ),,,2,1(j i k n k y x y y x y y x k k j i j j i i 且 化二次型为含有平方项的二次型, 然后再按(ⅰ)中方法配方. 注:配方法是一种可逆线性变换, 但平方项的系数与A 的特征值无关. 因为二次型f 与它的对称矩阵A 有一一对应的关系,由定理1即得: 定理2 对任一实对称矩阵A ,存在非奇异矩阵C ,使 B AC C T 为对角矩阵. 即任一 实对称矩阵都与一个对角矩阵合同. 二、用初等变换化二次为标准型 设有可逆线性变换为CY X ,它把二次型AX X T 化为标准型BY Y T ,则 B AC C T . 已

化二次型为标准型的方法样本

化二次型为标准型的方法 一、 绪论 高等代数是数学专业的一门重要基础课。该课程以线性空间为背景, 以线性变换为方法, 以矩阵为工具, 着重研究线性代数的问题。二次型式多元二次函数, 其内容本应属于函数讨论的范围, 然而二次型用矩阵表示之后, 用矩阵方法讨论函数问题使得二次型的问题变得更加简洁明确, 二次型的内容也更加丰富多彩。本文的中心问题是如何化二次型为标准形, 也就是用矩阵方法把对称矩阵合同与对角矩阵。 二次型是高等代数的重要内容之一, 二次型的基本问题是要寻找一个线性替换把它变成平方项, 即二次型的标准型。二次型的理论来源于解析几何中二次曲线、 二次曲面的化简问题, 其理论也在网络、 分析、 热力学等问题中有广泛的应用。将二次型化为标准型往往是困惑学生的一大难点问题, 而且它在物理学、 工程学、 经济学等领域有非常重要的应用, 因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值。 我们知道, 任一二次型和某一对称矩阵是相互唯一确定, 而任一实对称矩阵都能够化成一对角矩阵, 相应的任一实二次型都能够化为标准型。在高等代数课本中介绍了将实二次型化为标准型的两种方法: 配方法和正交变换法; 另外, 由于任意矩阵能够利用初等变换化为对角矩阵, 因此也可用初等变换法将二次型化为标准型。 经过典型例题, 更能体会在处理二次型问题时的多样性和灵活性, 我们应熟练掌握各种方法。 以下就是几种方法的简单介绍, 而且又提出了一种新的方法: 雅可比喻法。我们在解决二次型问题时可对它们灵活应用。 二、 二次型及其矩阵表示 在解析几何中, 我们看到, 当坐标原点与中心重合时, 一个有心二次曲线 的一般方程是 22ax 2bxy cy f ++=.

化二次型为标准形的方法

化二次型为标准形的方法 内容摘要:高等代数作为我们数学专业的一门重要的基础课。它以线性空间为背景,以线 性变换为方法,以矩阵为工具,着重研究线性代数的问题。二次型式多元二次函数,其内容本属于函数的讨论范围,然而二次型用矩阵表示之后,用矩阵方法讨论函数问题,使得二次型的问题变得更加简洁明确,二次函数的内容也更加丰富多彩。而我们要讨论的是如何化二次型为标准形,也就是用矩阵方法把对称矩阵合同与对角矩阵。二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准形。下面介绍了一些化二次型为标准形的方法:配方法,交变换法,初等变换法,雅可比方法,偏导数法 关键词:二次型 线性替换 矩阵 标准形 导言:二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题。二次型是学中的 一个极其重要的问题,这个问题不仅在数学上,而且在物理学,工程学,经济学领域都有广泛的应用。在研究时为了研究的方便,我们经常要化二次型为标准形。我们知道,任一二次型和某一对称矩阵是相互唯一确定的,而任一实对称矩阵都可以化为一对角矩阵,相应的以实二次型都可以化为标准形,以下就是化二次型为标准形的几种方法,通过典型例题,体会二次型问题时的多样性和灵活性。 化二次型为标准形的方法 一. 配方法 配方法是解决这类问题时另一个常用方法,通过观察对各项进行配方,其实质就是运用非退化的线性替换。使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式和两数的平方差公式逐步的消去非平方项并构造新的平方项。 定理:数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和 222 1122...n n d x d x d x +++的形。 1.如果二次型含有i x 的平方项,那么先把含有i x 的乘积项集中,然后再配方,再对其 余的项同样进行,直到都配成平方项为止,写出前面过程所经过的所有非退化的线性替换,就将二次型化为标准形了。 例 1.上述所给出的方法化二次型23(,,)f x x x =22 1122 23224x x x x x x +++为标准形,写出所用的变换矩阵。

求矩阵的Jordan标准形的两种方法

求矩阵的Jordan 标准形的两种方法 方法1. 利用矩阵的初等因子 原理: 由于矩阵的每一个初等因子与一个Jordan 块相对应, 反之亦然. 求出全部的初等因子即可得出其Jordan 标准形. 方法2. 利用特征值和特征向量可求的可逆矩阵T 使得AT T 1-为Jordan 标准形. 原理: 在复数域上, 每一个矩阵都与一个Jordan 标准形相似, 即存在可逆矩阵T 使得AT T 1-为Jordan 标准形. 例. 设??? ? ? ?? -----=411301621A , 分别用两种方法求A 的Jordan 标准形. 解: 方法1. .)1(0 001000 1120011000123101100 014111102310411316212222 )1(232132???? ? ??-- →????? ??-+---??→?????? ??-+----→?? ? ? ? ??----+--???→?????? ??---+=-++--λλλλλλλλλλλλλλλλ λλλλλλr r r r r r A E 得A 的初等因子为2)1(,1--λλ, 于是A 的Jordan 标准形为 . 1100 1000121??? ? ? ??=???? ??=J J J 方法2. (1) 首先求A 的特征值. 3)1(||-=-λλA E , 所以特征值为1,1,1. (2) 求出相应的特征向量. 求解齐次线性方程组0)(=-X A E 的全部解: .000000311311311622???? ? ??-→????? ?? ---=-A E 相应的特征向量为)0,1,1(1-=α, )1,0,3(2=α. 1α,2α为特征值空间V 1的基. (3) 求出一组基, 使得A 在此基下的矩阵为Jordan 标准形.

第5讲 λ-矩阵与标准形

第5讲λ-矩阵与标准形 内容:1. 矩阵的Jordan标准形 2. 矩阵的最小多项式 3. λ-矩阵与Smith标准型 4. 多项式矩阵的互质性与既约性 5. 有理式矩阵的标准形及仿分式分解 λ-矩阵又称多项式矩阵是矩阵理论中的重要内容,在线性控制系统理论中有着重要的应用. 本讲讨论λ-矩阵和数字矩阵的相似标准形、矩阵的Jordan标准形、矩阵的最小多项式、多项式矩阵与有理分式矩阵的标准形. §1 矩阵的Jordan标准形 1.1 矩阵相似 定义 1.1设A和B是矩阵,C和D是非奇异矩阵,若B=,则称A和B相抵;若AC DAC =,则称A和B相合(或合 B T C 同);若AC =,则称A和B相似,即若n n C C B1- ∈ ,,存在n n n C A? B ∈, P?使得B -1,则称A与B相似,并称P为把A变成B的相似变P= AP 换矩阵.特别,当1- P H,称A与B酉相似,当1- =P P T,称A与B =P 正交相似. 相似是矩阵之间的一种重要的关系. 相似矩阵具有以下性质:

定理1.1 设n n C B C A ?∈,,, )(λf 是一个多项式,则 (1) 反身性:A 与A 相似; (2) 对称性:若A 与B 相似,则B 与A 也相似; (3) 传递性:若A 相似于B ,B 相似于C ,则A 与C 相似; (4) 若A 与B 相似,则B A det det =,rankB rankA =; (5) 若A 与B 相似,则)(A f 与)(B f 相似; (6) 若A 与B 相似,则)det()det(B I A I -=-λλ,即A 与B 有相同的特征多项式,从而特征值相同. 对角矩阵是较简单的矩阵之一,无论计算它的乘积、幂、逆矩阵和特征值等都比较方便.问题:方阵A 能否相似于一个对角矩阵? 定义1.2 设n n C A ?∈,若A 相似于一个对角矩阵,则称A 可对角化. 定理 1.2 设n n C A ?∈,则A 可对角化的充要条件是A 有n 个线性无关的特征向量. 证明 充分性.设),,,(211n diag AP P λλλ =Λ=-,其中 ),,,(21n p p p P =,则由Λ=P AP 得i i i p Ap λ=, ),,2,1(n i =,可见i λ是A 的特征值,P 的列向量i p 是对应特征值i λ的特征向量, 再由P 可逆知n p p p ,,,21 线性无关. 必要性. 如果A 有n 个线性无关的特征向量n p p p ,,,21 ,即有i i i p Ap λ=,),,2,1(n i =,记),,,(21n p p p P =,则P 可逆,且有 ),,,(),,,(221121n n n p p p Ap Ap Ap AP λλλ ==

相关文档
最新文档