71版上科所中小电机电磁计算程序

71版上科所中小电机电磁计算程序
71版上科所中小电机电磁计算程序

Y2-160M1-2三相异步电动机电磁设计解读

目录 摘要 ..................................................................... I Abstract................................................................. II 第一章绪论........................................................ - 4 - 1.1 工程背景...................................................... - 4 - 1.2 该课题设计的主要内容.......................................... - 4 - 第二章三相异步电动机................................................ - 6 - 2.1 三相异步电动机结构............................................ - 6 - 2.1.1 异步电动机的定子结构..................................... - 7 - 2.1.2 异步电动机的转子结构..................................... - 8 - 2.1.3 三相异步电动机接线图..................................... - 8 - 2.2 三相异步电动机工作原理........................................ - 9 - 2.3 三相异步电动机的机械特性和工作特性........................... - 12 - 第三章三相异步电机电磁设计......................................... - 14 - 3.1 主要尺寸和空气隙的确定....................................... - 14 - 3.2 定子绕组与铁芯设计........................................... - 14 - 3.2.1 定子绕组型式和节距的选择................................ - 15 - 3.2.2 定子冲片的设计.......................................... - 16 - 3.3 额定数据及主要尺寸........................................... - 17 - 3.4 磁路计算..................................................... - 19 - 3.5 性能计算..................................................... - 22 - 3.5.1 工作性能计算............................................ - 22 - 3.5.2 起动性能计算............................................ - 26 - 第四章电机转动轴的工艺分析......................................... - 28 - 4.1 转动轴的加工工艺分析......................................... - 28 - 4.2 选择设备和加工工序........................................... - 30 - 4.3 成品的最后工序............................................... - 31 - 小结与致谢........................................................... - 32 - 参考文献............................................................. - 33 -

凸极同步发电机电磁计算程序

凸极同步发电机电磁计算程序 额定数据和主要尺寸 1.额定电压 U N V 600= 2.额定转速 n N 1500/m in r = 3.额定频率 ?HZ 50= 4.额定功率因数 cos ?=0.8 5.额定电流 80N I A = 6.相数 m=3 7.确定功率: 600800.8 1.173.16P k w = ???= 8.根据功率取对应T2X-250L 电机,额定功率75N P k w = 9.效率 91.4% η = 10.极数 2p 120120504 1500 N f n ?== = 11.计算功率: ' 1.0875 101.25c o s 0.8 E N K P P k w ? ?= = = 式中 1.08 E K =(对于同步发电机取值) 12.极弧系数:极弧长度(0.630.72)p b τ =~

取'p α= 0.67 p b τ = 13.气隙磁密 (0.7 1.07B T δ=~ 取0.8B T δ = 14.取线负荷 280/280/ A K A m A c m == 15.电机的计算体积 3 ' 2 '16.110 il p B d p N P D le f K K A B n δ α ? ???= ? ?? 3 3 3 3 6.110101.2510 0.67 1.110.92280000.81500 27.110 m -???= ?????=? 16.主要尺寸比:0.6 2.5 λ =~ 17.定子铁心内径取值范围 il D = 0.23990.3860m = =~ 18.定子铁心铁外径: ()111.42 1.420.23990.3407i D D m ===~0.3860~0.5481 按标准选取1 430D m m = 则定子内径: 11430302.823001.42 1.42 i D D c m m m = =≈≈ 19.定子铁心有效长度: 2 3 122 1 27.110 0.30113000.3 i i D lef l lef m m m D -??≈= = ≈≈ 20.定子铁心净长度: ()3000.92276F et F et k k F et l K l n b K l m m =-= ?=?= 式中F e t K =0.92(对0.5mm 厚硅钢片) 在对发电机的计算中,k k n b 不计入F e t l 中

异步电动机机械特性的MATLAB仿真

辽宁工业大学 实验室开放课题设计(论文) 题目:异步电动机机械特性的MATLAB仿真》 院(系):电气工程学院 专业班级:自动化 131 学号: 0 ` 学生姓名:徐峰 指导教师:赵丽丽

起止时间:

摘要 异步电动机以其结构简单、运行可靠、效率较高、成本较低等特点,在日常生活中得到广泛的使用。目前,电动机控制系统在追求更高的控制精度的基础上变得越来越复杂,而仿真是对其进行研究的一个重要手段。MATLAB是一个高级的数学分析和运算软件,可用动作系统的建模和仿真。在分析三相异步电动机物理和数学模型的基础上,应用MATLAB软件简历了相对应的仿真模型;在加入相同的三相电压和转矩的条件下,使用实际电机参数,与MALAB给定的电机模型进行了对比仿真。 第一章对异步电机的实验要求做出了相关的描述,第二章对MATLAB仿真软件做了一定的介绍,第三章是对异步电动机的机械特性、启动、制动和正反转进行理论分析和仿真模拟以及仿真结果的分析。 经分析后,表明模型的搭建是合理的。因此,本设计将结合MATLAB的特点,对三相异步电机进行建模和仿真,并通过实际的电动机参数,对建立的模型进行了验证。 关键词:异步电机、数学模型、MATLAB仿真、三相异步电动机

目录 第1章实验任务及要求 (1) 第2章 MATLAB及SIMULINK的介绍 (2) MATLAB介绍 (2) S IMULINK模块的介绍 (3) 第3章仿真实验 (4) 三相异步电动机的机械特性 (4) 三相异步电动机起动的仿真 (6) 三相异步电动机制动仿真 (8) 三相异步电动机正反转仿真 (10) 第4章总结 (12) 参考文献 (13) 附录 (14)

三相异步电动机电磁计算

三相电机 额定电压U=380V,f=50HZ,机座号Y132,输出P2=8KW,p=4极 螈 1. 2.芄型号:Y132M 3. 4.蒂输出功率:P N=8KW 5. 6.袂相数:m1=3 7. 8.薇接法: 9. 10.莃相电压:Uφ=380V 11. 13. 14.极对数:p=2 15. 16.定子槽数:Z1=36

17. 18.转子槽数:Z2=32 19. 20.定子每极每相槽数: 21. 22.肂定子外径:D1=21cm D i1=13.6cm 荿定子内径: =0.4mm 蒃气隙长度:δ 转子外径:D2=13.52cm 13.6-0.04*2=13.52cm 转子内径:D i2=4.8cm 定子槽型:半闭口圆底槽 定子槽尺寸:b o1=0.35cm b1=0.67cm h o1=0.08cm R1=0.44cm h12=1.45cm 转子槽形:梯形槽 转子槽尺寸:b o2=0.1cm b r1=0.55cm b r2=0.3cm h o2=0.05cm h r12=2.3cm

23.极距: 24.定子齿距: 25.转子齿距: 26.气隙长度: 27.转子斜槽距:b sk=t1=1.187cm 28.铁芯长度:l=16cm 29.铁芯有效长度:无径向通风道:l ef=l+2δ=16.08cm 30.净铁芯长:无径向通风道:l Fe=K Fe l=0.95*16=15.2cm K Fe=0.95(不涂漆) 31.绕组型式:单层交叉式 32.并联支路数:a1=1 33.节距:1-9,2-10,11-18 34.每槽导线数:由后面计算的数据根据公式计算为: 每极磁通φ1=0.00784wb 波幅系数:K A=1.46 绕组系数:K dp1=0.96

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

三相异步电动机功率的计算(完整资料).doc

【最新整理,下载后即可编辑】 现场找不到功率表,要求以钳式电流表代替。即用电流表套住一根主电缆,测量其交流电流值,并换算为功率。 ※工人师傅的经验公式为:P=0.5*I 其中:P为电机有功功率,单位千瓦;I为实测电流,单位安培。 然则问题是,何以证明此经验公式? 三、问题的研究 电机是普通三相异步电动机,Y型接法。额定电压380V,额定功率7.5KW,额定电流15.2A。 通过经验可知,三相电机总功率等于3乘以每相的功率,即p=3*u*i,其中: p为三相电机总功率,单位瓦 u为相电压,单位伏 i为相电流,单位安注:暂用字母大小写区分相电压与线电压 又查阅资料知,线电压等于1.732倍相电压,线电流等于相电流,即p=3*(U/1.732)*I,其中:

p为三相电机总功率,单位瓦 U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安故:得到公式p=1.732*U*I 四、问题的解决 综上,P=1.732*U*I*cosφ/1000,其中: P为三相电机有功功率,单位千瓦 U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安cosφ为功率因数,针对电机通常取0.8 故:P=0.52*I≈0.5*I(KW),公式得证。 五、问题的补充 1 三相四线制

三相四线制供电方式,即国际电工委员会(IEC)规定的TN-C方式,是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。故三根相线、一根中性线。 三相五线制供电方式,即国际电工委员会(IEC)规定的TN-S方式,是把工作零线N和专用保护线PE严格分开的供电系统。故三根相线、一根工作零线、一根保护零线。 单相三线制是三相五线制的一部分,即根据国际电工委员会(IEC)标准和国家标准而定的TN—S系统,在配电中出现了N线和PE线。故相线、零线、接地线。 三相三线制一般常用于电力输送和工厂强力电源供电,它不是国际电工委员会(IEC)规定的方式。 2 Y型接法

11KW调速永磁同步电动机电磁设计程序2

11KW变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm2(平方厘米)、电压以V (伏)、电流以A (安八功率和损耗以(瓦)、电阻和电抗以门(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率P n =11kW 2相数叶=3 3额定线电压U N1 =380V 额定相电压丫接法U N =U N1 / 3 = 219.39V 4额定频率f =50HZ 5电动机的极对数P=2 6额定效率N =0.87 7额定功率因数cos N =0.78 8失步转矩倍数T;°N =22 9起动转矩倍数T;N =22 10起动电流倍数I;N =2.2 12 额定转速n N =1000r/min 13额定转矩T N二9.55P N 103二 9.55 11 二105.039N.m n N 11额定相电流I N P N X105 0U N N COS N 11 105 3 219.39 0.87 0.78 A-24.62

14绝缘等级:B级 15绕组形式:双层叠绕Y接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度:=0.07cm 19定子外径D1 =26cm 20定子内径D i1 =18cm 21 转子外径D2二D H—2、=(18 -2 0.07)cm =17.86 22转子内径D i2 =6cm 23定,转子铁心长度h日2 =15cm 24铁心计算长度l a J =15cm 铁心有效长度l ef =la 2、=(15 2 0.07)cm = 15.14cm 25定子槽数Q1 = 36 26定子每极每相槽数q =Q1 /2gp =36/2 3 3=2 27极距巨p =蔥D i1/2P =3.14 18/2 9.728cm 28定子槽形:梨形槽定子槽尺寸 h01= 0.08cm b01= 0.38cm bi = 0.78cm r1 二 0.53cm h o2 = 1.72cm 巧“18^ 29定子齿距t1卩 1.5708cm Q136

电磁仿真软件心得

电磁仿真软件心得标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

——简单有效,如果问题的外部轮廓较为复杂 或者椭球2 轴差距太大,以采用相似形边界或圆柱边界,对于辐射问题,如果估计问题的增 益较低(比如2db),那么边界宜采用球形,此时为了得到结果准确也只好牺牲时间了;另 在hfss 8 中提供了一种新的吸收边界——pml 边界条件,对于这种边界,笔者并不是很满意, 尽管其有效距离为八分之一个中心波长——是老边界的一半,可以减少计算量,然而这种边 界由程序自己生成,为一个立方体的复杂结构,对于一些特殊的复杂问题,这种边界内部有 很多的空间是无用的,此时还不如使用老边界灵活。 2.5、关于开孔 有些问题需要在壁上开孔,此时可以采用2 种办法,其一是老老实实的在模型上挖空;其二是采用hnatrue 边界条件,通常,如果是在面上开孔,将会采用后者,简单,便于修改。 2.6、关于网格划分

当模型建立好了之后,进入计算模块,第一步是给问题划分网格。对于一般问题,让软件自动划分比较省心,但对大型问题和复杂问题,让软件自己划分可能需要很好的耐性来等 待。根据实际经验,在大型模型的结构密集区域或场敏感区域使用人工划分可以得到很好的 效果,有些问题的计算结果开始表现为收敛,但进一步提高精度,却又反弹,问题就在于开 始时场敏感区域的网格划分不够仔细,导致计算结果的偏差。 2.7、关于所需要的精度 计算问题时,一般需要给定一个收敛精度和计算次数以避免程序“陷入计算而无法自拔”,当对模型熟悉后,可以单单给定次数。在问题之初,建议的计算精度不要太高,实际 中曾见到有操作者将问题的s 参数精度设定为0.00001,其实这是完全没有必要的,一般s 参数的精度设定为0.02 左右就已经可以满足绝大部分问题的需要(此时应该注意有无收敛 反弹的情况)。如果是计算次数,对于密闭问题,建议是设定为8~12 次,对于辐射问题,

三相异步电动机功率的计算

三相异步电动机功率的计算 2008-4-29 0:40:40 现场找不到功率表,要求以钳式电流表代替。即用电流表套住一根主电缆,测量其交流电流值,并换算为功率。 ※工人师傅的经验公式为:P=0.5*I 其中:P为电机有功功率,单位千瓦;I为实测电流,单位安培。 然则问题是,何以证明此经验公式? 三、问题的研究 电机是普通三相异步电动机,Y型接法。额定电压380V,额定功率7.5KW,额定电流15.2A。 通过经验可知,三相电机总功率等于3乘以每相的功率,即p=3*u*i,其中: p为三相电机总功率,单位瓦 u为相电压,单位伏 i为相电流,单位安注:暂用字母大小写区分相电压与线电压 又查阅资料知,线电压等于1.732倍相电压,线电流等于相电流,即p=3*(U/1.732)*I,其中: p为三相电机总功率,单位瓦 U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安 故:得到公式p=1.732*U*I 四、问题的解决 综上,P=1.732*U*I*cosφ/1000,其中: P为三相电机有功功率,单位千瓦

U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安 cosφ为功率因数,针对电机通常取0.8 故:P=0.52*I≈0.5*I(KW),公式得证。 五、问题的补充 1 三相四线制 三相四线制供电方式,即国际电工委员会(IEC)规定的TN-C方式,是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。故三根相线、一根中性线。 三相五线制供电方式,即国际电工委员会(IEC)规定的TN-S方式,是把工作零线N和专用保护线PE严格分开的供电系统。故三根相线、一根工作零线、一根保护零线。 单相三线制是三相五线制的一部分,即根据国际电工委员会(IEC)标准和国家标准而定的TN—S系统,在配电中出现了N线和PE线。故相线、零线、接地线。 三相三线制一般常用于电力输送和工厂强力电源供电,它不是国际电工委员会(IEC)规定的方式。 2 Y型接法 采用三相三线制的三角形接法,为三组线圈头尾相接,适用于4.5KW以下电动机 采用三相四线制的Y形接法又称星形接法,为三组线圈的三个尾相接,形成一个Y形,适用于4.5KW以上电动机

计算电磁学之FDTD算法的MATLAB语言实现

South China Normal University 课程设计实验报告 课程名称:计算电磁学 指导老师: 专业班级: 2014级电路与系统姓名: 学号:

FDTD算法的MATLAB语言实现 摘要:时域有限差分(FDTD)算法是K.S.Yee于1966年提出的直接对麦克斯韦方 程作差分处理,用来解决电磁脉冲在电磁介质中传播和反射问题的算法。其基本思想是:FDTD计算域空间节点采用Yee元胞的方法,同时电场和磁场节点空间与时间上都采用交错抽样;把整个计算域划分成包括散射体的总场区以及只有反射波的散射场区,这两个区域是以连接边界相连接,最外边是采用特殊的吸收边界,同时在这两个边界之间有个输出边界,用于近、远场转换;在连接边界上采用连接边界条件加入入射波,从而使得入射波限制在总场区域;在吸收边界上采用吸收边界条件,尽量消除反射波在吸收边界上的非物理性反射波。 本文主要结合FDTD算法边界条件特点,在特定的参数设置下,用MATLAB语言进行编程,在二维自由空间TEz网格中,实现脉冲平面波。 关键词:FDTD;MATLAB;算法 1 绪论 1.1 课程设计背景与意义 20世纪60年代以来,随着计算机技术的发展,一些电磁场的数值计算方法逐步发展起来,并得到广泛应用,其中主要有:属于频域技术的有限元法(FEM)、矩量法(MM)和单矩法等;属于时域技术方面的时域有限差分法(FDTD)、传输线矩阵法(TLM)和时域积分方程法等。其中FDTD是一种已经获得广泛应用并且有很大发展前景的时域数值计算方法。时域有限差分(FDTD)方法于1966年由K.S.Yee提出并迅速发展,且获得广泛应用。K.S.Yee用后来被称作Yee氏网格的空间离散方式,把含时间变量的Maxwell旋度方程转化为差分方程,并成功地模拟了电磁脉冲与理想导体作用的时域响应。但是由于当时理论的不成熟和计算机软硬件条件的限制,该方法并未得到相应的发展。20世纪80年代中期以后,随着上述两个条件限制的逐步解除,FDTD便凭借其特有的优势得以迅速发展。它能方便、精确地预测实际工程中的大量复杂电磁问题,应用范围几乎涉及所有电磁领域,成为电磁工程界和理论界研究的一个热点。目前,FDTD日趋成熟,并成为分析大部分实际电磁问题的首选方法。

Flux永磁电机动态退磁计算

永磁同步电机磁钢退磁计算 磁钢退磁风险及退磁性能评估是永磁电机无法回避的问题,本文针对永磁同步电机,说明采用Altair Flux 进行磁钢退磁分析的过程。 1、退磁率评估 所谓退磁率评估其实是一个电磁场后处理过程,在执行完成瞬态磁场计算后,根据指定的退磁评估点(如90%剩磁Br),由软件提取永磁体中的磁场强度H和磁密B,计算出永磁体内部的新的剩磁Br’,并计算出永磁体剩磁低于指定退磁点剩磁的面积或体积大小,即永磁体中出现退磁现象且低于指定剩磁的占比。而静态退磁评估是指在瞬态磁场计算过程中,永磁体的剩磁始终保持不变,即不考虑永磁体退磁、回复过程及引起的磁场变化和设备电气性能输出的变化(如电机电磁转矩下降)。 2、动态退磁分析 动态退磁指的是在磁场计算过程之中同时考虑永磁体由于退磁及回复过程(recoil)导致的永磁体结构中剩磁的改变,以及在新剩磁数值下的磁场分布。Altair Flux2019.1新增永磁体动态退磁分析功能,即在瞬态磁场计算过程中软件自动计算并更新永磁体退磁后的剩磁材料属性,并用于下一时间步的磁场计算。Flux 中要考虑永磁体动态退磁过程,只需在永磁体材料属性定义界面中勾选中“求解过程中考虑退磁”选项即可,其他分析设置过程与常规瞬态磁场分析设置相同,无需额外的特别设定。Flux软件计算永磁退磁过程中会自动考虑永磁体的回复线,软件内部根据定义的非线性退磁曲线结合Preisach磁滞回线模型进行。 动态退磁分析适用于2D和3D瞬态磁场分析,且在瞬态分析中初始计算设置为从静态计算开始。该退磁过程只考虑由于反向磁场引起的退磁,不考虑由于温度变化引起的热退磁。 以8极48槽三相永磁同步电机2D瞬态磁场分析为例,计算模型以及使用磁钢材料属性如下图所示:

中小型三相感应电动机(单笼转子)电磁计算程序

中小型三相感应电动机(单笼转子)电磁计算程序 一. 额定数据及主要尺寸 1. 输出功率P N 2. 外施相电压U N ф,Y 接法3 N N U U = φ,Δ接法N N U U =φ 3. 功电流 φ N N KW U m P I 1= 4. 效率 η’ 按照设计任务书的规定 5. 功率因数cos φ’ 按照设计任务书的规定 6. 极对数p 7. 定转子槽数 Z 1、Z 2 8. 定转子每极槽数 p Z Z p 21 1= 9. p Z Z p 22 2= 10. 定转子冲片尺寸(见图1) 11. 极距 p D i 21 πτ= 12. 定转子齿距 1 1 1Z D t i π= 2 2 2Z D t π= 13. 节距 y —— 以槽数计 14. 转子斜槽宽 b sk (一般取一个定子齿距t 1,也可按需要设计) 15. 每槽导体数 双层线圈 N s1 =2×每线圈匝数 单层线圈 N s1 =每线圈匝数 16. 每相串联导体数 111 11a m Z N N s = φ 17. 绕组线规(估算)1 11 11''''J a I A N c t = I ’1(定子电流初步值)= ' cos '?ηKW I 18. 槽满率 ⑴槽面积 2 )'(222 21 1121r h h b r A s s π+-+=

⑵槽绝缘占面积 双层绕组 )22(112121' b r r h A s t t +++?=π 单层绕组 )2(21'r h A s t t π+?= ⑶槽有效面积 t s ef A A A -= ⑷槽满率 %100211?=ef s t f A d N N S 19. 铁心长l t 铁心有效长 无径向通风道 δ2+=t ef l l 定转子径向通风道不交错 ' 11v v t sf b n l l -= 定转子径向通风道交错 )('22'11v v v v t sf b n b n l l +-= 'v b 由图9查出 净铁长 无径向通风道 t Fe Fe l k l = 有径向通风道 )(v v t Fe Fe b n l k l -= 20. 绕组系数 111p d dp K K K = ⑴分布系数 2sin 2sin 111 αα q q K d = ⑵短距系数 βπ2sin 1 =p K 21. 每相有效串联导体数 11dp K N φ 二. 磁路计算 22. 每极磁通 1 11 11122.24dp dp Nm K fN E fN K K E φφ≈ = 其中φεN L U E )1(' 1-= (假设'1'L E K ε-=) 23. 每极齿部截面积 定子 111p t t Fe t Z b l K A = 转子 222p t t Fe t Z b l K A = 对于非平行齿,则b t 取离最窄齿三分之一齿高处的齿

中小型异步电动机的MATLAB计算程序

中小型异步电动机的MATLAB计算程序%%%%%%%%%%%%%%%%%%%%%%%%%第一部分额定数据和主要尺寸%%%%%%%%%%%%%%%%%%%%%%%%% myflag1 = 1; %myflag1 myflag1=1是三角形接法,myflag1=0是星 形接法 myflag2 = 0; %myflag2 myflag2=1是双层槽绝缘占面 积,myflag2=0是单层槽绝缘占面积 myflag3 = 1; %myflag3 myflag3=1是无径向通风道的铁心长 度,myflag3=0是定转子径向通风道不交错,其它是通 风道交错 myflag4 = 1; %myflag4 myflag4=1是无径向通风道的净铁心长 度,myflag4=0是有径向通风道的净铁心长度 myflag5 = 2; %myflag5 myflag5=1是双层线圈,myflag5=2是单层 线圈 myflag6 = 0; %myflag6 myflag6=1是平底槽,myflag6=0是圆底槽myflag7 = 0; %myflag7 myflag7=1是平底槽,myflag7=0是圆底槽myflag8 = 1; %myflag8 myflag8=1是圆底槽,myflag8=0是半开口 平底槽,其它为开口平底槽 myflag9 = 1; %myflag9 myflag9=1是半开口槽和半闭开口 槽,myflag9=0是开口槽 myflag10 = 1; %myflag10 myflag10=1是单层线圈,myflag10=0是双 层线圈 myflag11 = 1; %myflag11 myflag11=1是无径向通风道,myflag11=0 是有径向通风道 myflag12 = 3; %myflag12 myflag12=1是双层叠绕组,myflag12=2单 层同心式,myflag12=3单层同心式(分组的)、交叉 式,myflag12=4 单层链式 myflag13 = 1; %myflag13 myfalg13=1是无径向通风道,myflag13=0 是径向通风道

凸极同步发电机电磁计算程序

凸极同步发电机电磁计算程序 5.1 额定数据和主要尺寸 1.额定电压 U N V 600= 2.额定转速 n N 1500/min r = 3.额定频率 ?HZ 50= 4.额定功率因数 cos ?=0.8 5.额定电流 80N I A = 6.相数 m=3 7.确定功率 : 600800.8 1.173.16P kw =???= 8.根据功率取对应T2X-250L 电机,额定功率75N P kw = 9.效率 91.4%η= 10.极数 2p 12012050 41500 N f n ?=== 11.计算功率: ' 1.0875 101.25cos 0.8E N K P P kw ??= == 式中 1.08E K =(对于同步发电机取值) 12.极弧系数:极弧长度(0.630.72)p b τ=~ 取'p α= 0.67p b τ = 13.气隙磁密 (0.7 1.07)B T δ=~ 取0.8B T δ= 14.取线负荷 280/280/A KA m A cm == 15.电机的计算体积 3' 2'16.110il p B dp N P D lef K K A B n δα????=? ?? 33 33 6.110101.25100.67 1.110.92280000.815002 7.110m -???= ?????=?

16.主要尺寸比:0.6 2.5λ=~ 17.定子铁心内径取值范围 il D = 0.23990.3860m ==~ 18.定子铁心铁外径: ()111.42 1.420.23990.3407i D D m ===~0.3860~0.5481 按标准选取1430D mm = 则定子内径:11430302.823001.42 1.42i D D cm mm ==≈≈ 19.定子铁心有效长度: 231221 27.1100.30113000.3i i D lef l lef m mm D -??≈==≈≈ 20.定子铁心净长度: ()3000.92276Fet Fet k k Fet l K l n b K l mm =-=?=?= 式中Fet K =0.92(对0.5mm 厚硅钢片) 在对发电机的计算中,k k n b 不计入Fet l 中 本次设计选用的硅钢片型号为:DR530-50对应的老牌号为D22 21.磁极铁心总长度:300m ef l l mm == 22.磁极铁心净长度: 0.953028.5Fem Fem m l K l cm =?=?= 式中Fem K =0.95(对于1 1.5mm ~厚钢片) 23.极距: 1300235.524i D mm p ππτ?=== 24.圆周速度:223.55/1000 f m s τ ν=?= 25.气隙长度: 最小气隙:c K B A ???= δ τ δ)~(30.025.0 28023.55 0.250.300.5 1.03030.8 mm ?=?=(~)~1.2364 取 1.1mm δ= 最大气隙: 1.5 1.65M mm δδ==

永磁电机电磁计算

永磁电机电磁计算 传统的电机学和电机设计中,习惯地把电机的分析和计算归结为电路和磁路的计算问题。实际上,电路和磁路中的各个参数是由电机电磁场的场量得来,由于数值计算和仿真技术的不断发展,我们可以直接使用有限元对电机的电磁场进行分析和计算。 本文将应用ANSYS软件,对大型永磁电机的电磁场进行分析和计算。这里只研究平行平面场问题,即二维电磁场,因而只有一个自由度即矢量磁势Az。电机的对称周期取一对磁极范围。考虑漏磁的影响,把转轴和机座作为模型的内外边界。 定义电机材料特性 首先,定义硅钢片的材料属性与磁化曲线,如图1: 永磁体的材料特性需要说明的是,永磁体的退磁曲线是指剩磁密度Br 与矫顽力Hcb的曲线,以下简称BH曲线。退磁曲线通常在第二象限,但ANSYS 程序中需按第一象限输入。此外还需要知道永磁体的工作温度,即电机内部温度分布,Br的可逆温度系数,Hcb的可逆温度系数。 参数化建模 参数化建模具有很多优点,各个变量物理意义明确,便于查找和修改。而且可以通过对话框快速对电机尺寸参数进行调整,缩短调试程序和优化设计的时间。这里采用ANSYS内部的对话框进行交互,可以方便其他设计人员对程序的调试,提高程序的通用性,如图2:

有限元模型的建立和边界条件 定、转子应分别建模,这样两部分模型不会相互干扰。定、转子之间的气隙,可定义两层或更多层,再经过径向拼接得到整个求解区域。分网时应注意疏密结合,气隙部分网格要足够稠密,而且沿径向应均匀分网。其它部分网格可稀疏些。模型尽量使用四边形网格,并保证节点连续。 这里只研究电机转速恒定情况,用有限元法进行电机的电磁场分析,要模拟电机定、转子之间的相对运动。这里使用运动边界法,即假设定子模型静止不动,让转子部分旋转,和真实情况一样。具体如下:气隙模型中有一条定、转子网格重合的公共运动边界,分别为定、转子的运动边界上的节点编号,并且保证相邻节点径向间距相等,这样能保证转子旋转后运动边界上的节点重合,压缩重合的关键点(KP)、节点(node),保持网格的连续性。如图3 图3 运动边界示意图 后处理

三相异步电机功率的计算

三相异步电动机功率的计算 一、问题的由来 前两天国家抽验XA5032,我被临时调到现场帮忙,偶然被问到测量电机功率的问题,才发现基础知识已忘记太多了,现总结在此。 这些知识虽与数控机床关系不大,与嵌入式系统距离更远,不过作为基础知识了解一下还是很有必要的。 二、问题的起因 ※现场找不到功率表,要求以钳式电流表代替。即用电流表套住一根主电缆,测量其交流电流值,并换算为功率。 ※工人师傅的经验公式为:P=0.5*I其中:P为电机有功功率,单位千瓦;I为实测电流,单位安培。 然则问题是,何以证明此经验公式? 三、问题的研究 电机是普通三相异步电动机,Y型接法。额定电压380V,额定功率7.5KW,额定电流15.2A。 通过经验可知,三相电机总功率等于3乘以每相的功率,即p=3*u*i,其中: p为三相电机总功率,单位瓦

u为相电压,单位伏 i为相电流,单位安注:暂用字母大小写区分相电压与线电压 又查阅资料知,线电压等于1.732倍相电压,线电流等于相电流,即p=3*(U/1.732)*I,其中: p为三相电机总功率,单位瓦 U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安 故:得到公式p=1.732*U*I 四、问题的解决 综上,P=1.732*U*I*cosφ/1000,其中: P为三相电机有功功率,单位千瓦 U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安 cosφ为功率因数,针对电机通常取0.8 故:P=0.52*I≈0.5*I(KW),公式得证。 五、问题的补充

1三相四线制 三相四线制供电方式,即国际电工委员会(IEC)规定的TN-C方式,是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。故三根相线、一根中性线。 三相五线制供电方式,即国际电工委员会(IEC)规定的TN-S方式,是把工作零线N和专用保护线PE严格分开的供电系统。故三根相线、一根工作零线、一根保护零线。 单相三线制是三相五线制的一部分,即根据国际电工委员会(IEC)标准和国家标准而定的TN—S系统,在配电中出现了N线和PE线。故相线、零线、接地线。 三相三线制一般常用于电力输送和工厂强力电源供电,它不是国际电工委员会(IEC)规定的方式。

无刷同步发电机电磁计算程序

无刷同步电机电磁计算程序 5.1 额定数据和主要尺寸 1.额定电压 U N V 380= 2.额定转速 n N 3000/min r = 3.额定频率 ?HZ 50= 4.额定功率因数 cos ?=0.9 5.额定电流 80N I A = 6.相数 m=3 7.确定功率: 600800.8 1.173.16P kw =???= 针对有会员 对公式7提出的质疑,经过分析和讨论,公式7更正为: P=sqrt(3)×600×80×0.8=66.5kW ,以下步骤用此数据代入,恕不一一修正。 另,其他公式目前暂未发现错误之处,欢迎大家继续批评指正 8.根据功率取对应T2X-250L 电机,额定功率75N P kw = 9.效率 91.4%η= 10.极数 2p 12012050 41500 N f n ?= == 11.计算功率: ' 1.0875 101.25cos 0.8E N K P P kw ??= == 式中 1.08E K =(对于同步发电机取值) 12.极弧系数:极弧长度(0.630.72)p b τ=~ 取' p α= 0.67p b τ = 13.气隙磁密 (0.71.07)B T δ=~ 取0.8B T δ= 14.取线负荷 280/280/ A K A m A c m == 15.电机的计算体积 3' 2'16.110il p B dp N P D lef K K A B n δα????=? ??

33 33 6.110101.25100.67 1.110.92280000.81500 27.110m -???= ?????=? 16.主要尺寸比:0.6 2.5λ=~ 17.定子铁心内径取值范围 il D = 0.23990.3860m ==~ 18.定子铁心铁外径: ()111.42 1.420.23990.3407i D D m ===~0.3860~0.5481 按标准选取1430D mm = 则定子内径:11430302.823001.42 1.42i D D cm mm ==≈≈ 19.定子铁心有效长度: 23122127.1100.30113000.3i i D lef l lef m mm D -??≈==≈≈ 20.定子铁心净长度: ()3000.92276Fet Fet k k Fet l K l n b K l mm =-=?=?= 式中Fet K =0.92(对0.5mm 厚硅钢片) 在对发电机的计算中,k k n b 不计入Fet l 中 本次设计选用的硅钢片型号为:DR530-50对应的老牌号为D22 21.磁极铁心总长度:300m ef l l mm == 22.磁极铁心净长度: 0.953028.5Fem Fem m l K l cm =?=?= 式中Fem K =0.95(对于1 1.5mm ~厚钢片) 23.极距: 1300235.524i D mm p ππτ?=== 24.圆周速度:223.55/1000 f m s τ ν=?= 25.气隙长度: 最小气隙:c K B A ???= δ τ δ)~(30.025.0

计算电磁学各种方法和电磁仿真软件

计算电磁学各种方法和电磁仿真软件 计算电磁学中有众多不同的算法,如时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FE)、矩量法(MoM)、边界元法(BEM)、 谱域法(SM)、传输线法(TLM)、模式匹配法(MM)、横向谐振法(TRM)、线方法(ML)和解析法等等。 在频域,数值算法有:有限元法 ( FEM -- Finite Element Method)、矩量法( MoM -- Method of Moments),差分法( FDM -- Finite Difference Methods),边界元法( BEM --Boundary Element Method),和传输线法( TLM -- Transmission-Line-matrix Method)。 在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。 这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD)、传 输线法(TLM)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、线方法(ML)、边界元法(BEM)、谱域法(SM)、模式匹配 法(MM)、横向谐振法(TRM)、和解析法。 依照结果的准确度由高到低,分别是:解析法、半解析法、数值方法。 在数值方法中,按照结果的准确度有高到低,分别是:高阶、二阶、一阶和零阶。 时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、传输线法(TLM)、线方法(ML)是纯粹的数值方法; 边界元法(BEM)、谱域法(SM)、模式匹配法(MM)、横向谐振法(TRM)则均具有较高的分辨率。 模式匹配法(MM)是一个半解析法,倘若传输线的横向模式是准确可得的话。理论上,模式可以是连续谱。但由于数值求解精度的限制,通常要求横向模式是离散 谱。这就要求横向结构上是无耗的。更通俗地讲,就是无耗波导结构。换言之,MM 最适用于波导空腔、高Q且在能量传输的某一维上结构具有一定的均匀性。譬如,它适用于两个圆柱腔在高度维上的耦合的分析,但不适用

相关文档
最新文档